Research advances and prospects of source separation and recycling technologies of toilet black water
-
摘要:
厕所是日常生活的基本设施,在改善人类生活环境方面发挥了重要作用。厕所黑水主要由粪便和尿液组成,含有大量有机质和氮、磷等营养物质,其源分离与资源化处理逐渐成为一个亟待解决的环境和技术问题。通过文献调研和分析,梳理了厕所黑水源分离和资源化处理的主要技术路线。围绕厕所黑水源分离,综述了厕所黑水源分离新型便器设备及其应用范围;根据粪便废水和尿液的特点,系统总结了源分离后不同废水的分类处理与资源化技术的研究进展,揭示了厕所黑水的污染控制和碳、氮、磷的有效回收是目前的根本任务;最后,根据当前的研究与工程应用现状,总结了厕所黑水源分离与资源化技术评估及绿色发展、多种技术的合理组合、集中化智慧化运行管理等方面面临的挑战,并提出相关建议。研究旨在为因地制宜推广适宜的厕所黑水源分离及资源化技术的规模化应用提供理论依据和参考。
Abstract:Toilets are the basic facilities of daily life, playing an important role in improving human living environment. Toilet black water mainly consists of feces and urine with a large amount of organics and nutrients such as nitrogen and phosphorus, and its source separation and recycling are becoming an urgent environmental and technological issue. Through literature research and analysis, the main technical route of toilet black water source separation and recycling was sorted out. Focusing on the source separation of toilet black water, the new developed source separation equipment and their application scope were summarized. Based on the characteristics of fecal wastewater and urine, the research progress of main treatment and resource recycling technologies of different wastewater after source separation were analyzed systematically, and the fundamental tasks of pollution control and efficient recovery of carbon, nitrogen and phosphorus were revealed. Finally, the challenges on the assessment and green development of toilet black water source separation and recycling technologies, reasonable combination of multiple technologies, and centralized and intelligent operation and management were summarized and relevant suggestions were proposed, according to the current research and engineering application. This study aimed to provide theoretical basis and key reference for promoting the large-scale application of suitable source separation and recycling technologies of toilet black water in accordance with local conditions.
-
Key words:
- toilet source separation /
- fecal wastewate /
- grey water /
- urine treatment /
- resource recovery
-
表 1 粪便废水资源化技术对比
Table 1. Comparison of fecal wastewater resource recovery technologies
资源化技术 处理方法 处理效果 数据来源 厌氧消化 餐厨垃圾与粪污厌氧共消化 累积产甲烷量313.2 mL/g (以VSS计) 文献[22] 零价铁与粪便废水厌氧消化 甲烷含量为93.4%~99.2% 文献[23] 好氧堆肥 粪便、植物材料和食物垃圾共堆肥 大肠杆菌、粪肠球菌的数量削减均超过99.99% 文献[26] 高温堆肥与乳酸发酵 获得土壤改良剂用于盆栽和田间施肥 文献[28] 热处理技术 粪便污泥和农业废物低温热解 生物炭较处理前体积减小95%以上,可用于酸性土壤的改良 文献[31] 水热碳化处理粪污 生成高能量水热生物炭,可进一步加工作为电池阳极,
同时可以去除废水中重金属和微污染物文献[33-34] 水热液化处理粪污 转化成生物原油,可作为重质燃料或加氢处理升级为运输燃料 文献[36] 电化学技术 固液分离、二次沉降、活性炭过滤以及
电化学处理粪便废水处理出水再利用,出水水质具有可靠的生物安全性 文献[38] 固液分离、沉淀池、颗粒活性炭柱以及
电化学反应器出水达到当地污水排放标准,可用于冲厕所 文献[40] 采用掺硼超纳米晶金刚石(BD-UNCD)
电极进行电化学处理提高消毒效率24%~124%,同时节约消毒能耗
并使电极腐蚀降低至最低文献[41] 表 2 源分离后尿液处理与资源化技术对比
Table 2. Comparison of treatment and recycling technologies of urine after source separation
处理技术 优点 缺点 产物 后续处理 数据来源 磷酸铵镁沉淀结晶 磷的回收率高且纯度高 氮、钾及微量营养元素
不能完全回收鸟粪石 吸附/吹脱 文献[49-50] 离子交换吸附 能耗较低,可直接应用 消耗大量的材料 富含氮、磷的材料 沉淀结晶 文献[53] 电化学处理 磷的回收率高且纯度高 氮、钾及微量营养元素
不能完全回收鸟粪石 吸附/吹脱 文献[69] 生物电化学处理 COD的去除率以及氮、磷的
回收率高电极成本和运行维护
成本较高污染物浓度低的浓缩尿液 鸟粪石结晶,
用于产电文献[68]
膜处理电渗析 体积小,操作简单 成本高、能耗大,且药物
需要处理污染物浓度低的浓缩尿液 营养物回收 文献[57] 正渗透膜 有效地去除可溶性污染物,
膜污染及能耗低NH4 +-N去除率低,
需要汲取液污染物浓度低的浓缩尿液 沉淀结晶,吹脱 文献[57] 纳滤膜 可选择性地分离尿液中的无机盐 膜污染严重,能耗高 富含各种营养物的溶液 营养物回收 文献[58] -
[1] FU B, XIAO X A, LI J Z. Big data-driven measurement of the service capacity of public toilet facilities in China[J]. Applied Sciences,2022,12(9):4659. doi: 10.3390/app12094659 [2] 沈峥, 刘洪波, 张亚雷. 中国“厕所革命”的现状、问题及其对策思考[J]. 中国环境管理,2018,10(2):45-48. doi: 10.16868/j.cnki.1674-6252.2018.02.045SHEN Z, LIU H B, ZHANG Y L. The current situation, issues and strategies of "toilet revolution" in China[J]. Chinese Journal of Environmental Management,2018,10(2):45-48. doi: 10.16868/j.cnki.1674-6252.2018.02.045 [3] ZHOU X Q, SIMHA P, PEREZ-MERCADO L F, et al. China should focus beyond access to toilets to tap into the full potential of its Rural Toilet Revolution[J]. Resources, Conservation and Recycling,2022,178:106100. doi: 10.1016/j.resconrec.2021.106100 [4] BRANDS E. Prospects and challenges for sustainable sanitation in developed nations: a critical review[J]. Environmental Reviews,2014,22(4):346-363. doi: 10.1139/er-2013-0082 [5] LAM L, KURISU K, HANAKI K. Comparative environmental impacts of source-separation systems for domestic wastewater management in rural China[J]. Journal of Cleaner Production,2015,104:185-198. doi: 10.1016/j.jclepro.2015.04.126 [6] 王洪良. 浓集生活废物资源化处理利用技术研究: 面向下一代乡村环境卫生模式构建[D]. 北京: 中国科学院大学, 2018. [7] 尹文俊, 陈家斌, 刘勇锋, 等. 源分离厕所粪尿无害化及资源化技术研究进展[J]. 给水排水,2020,56(增刊1):493-499. doi: 10.13789/j.cnki.wwe1964.2020.S1.114YIN W J, CHEN J B, LIU Y F, et al. Research progress on harmless and recycling technology of source separation toilet manure and urine[J]. Water & Wastewater Engineering,2020,56(Suppl 1):493-499. doi: 10.13789/j.cnki.wwe1964.2020.S1.114 [8] 叶美瀛, 王平波, 刘宇奇, 等. 室外真空排水系统及其在我国农村生活污水治理工程中的应用[J]. 环境工程技术学报,2021,11(6):1196-1201. doi: 10.12153/j.issn.1674-991X.20210074YE M Y, WANG P B, LIU Y Q, et al. Outdoor vacuum sewerage system and its application in rural sewage treatment engineering in China[J]. Journal of Environmental Engineering Technology,2021,11(6):1196-1201. doi: 10.12153/j.issn.1674-991X.20210074 [9] MALILA R, LEHTORANTA S, VISKARI E L. The role of source separation in nutrient recovery: comparison of alternative wastewater treatment systems[J]. Journal of Cleaner Production,2019,219:350-358. doi: 10.1016/j.jclepro.2019.02.024 [10] 周燕, 梅小乐, 杜兵. 国内外生态厕所类型分析及其应用研究[J]. 北方环境,2013,25(6):21-25.ZHOU Y, MEI X L, DU B. The analysis and applicable study on types of foreign and domestic ecological toilets[J]. Northern Environment,2013,25(6):21-25. [11] WANG X M, CHEN J X, LI Z F, et al. Nutrient recovery technologies for management of blackwater:a review[J]. Frontiers in Environmental Science,2023,10:1080536. doi: 10.3389/fenvs.2022.1080536 [12] GAO M J, ZHANG L, FLORENTINO A P, et al. Performance of anaerobic treatment of blackwater collected from different toilet flushing systems: can we achieve both energy recovery and water conservation[J]. Journal of Hazardous Materials,2019,365:44-52. doi: 10.1016/j.jhazmat.2018.10.055 [13] 党成成, 谢国俊, 邢德峰, 等. 无水冲生态厕所的类型和发展应用[J]. 中国资源综合利用,2021,39(7):28-32.DANG C C, XIE G J, XING D F, et al. Types and development applications of non-flushing ecological toilets[J]. China Resources Comprehensive Utilization,2021,39(7):28-32. [14] 潘理黎, 吕伯昇, 严国奇, 等. 我国免水生态厕所的发展现状与展望[J]. 科技导报,2005,23(11):66-68. doi: 10.3321/j.issn:1000-7857.2005.11.020PAN L L, LU B S, YAN G Q, et al. Current situation and prospect of ecological toilet without water in China[J]. Science & Technology Review,2005,23(11):66-68. doi: 10.3321/j.issn:1000-7857.2005.11.020 [15] 高铁山, 高兴瑞, 刘涛, 等. 一种气水混合型冲厕装置: CN211172264U[P]. 2020-08-04. [16] 黄碧捷, 陈书雪. 生物预处理与城市分质供水[J]. 中国环保产业,2007(9):37-39. doi: 10.3969/j.issn.1006-5377.2007.09.008HUANG B J, CHEN S X. Biological pretreatment and water quality based on water supply in urban area[J]. China Environmental Protection Industry,2007(9):37-39. doi: 10.3969/j.issn.1006-5377.2007.09.008 [17] 张奇誉, 刘来胜. 农村分散式生活污水源分离技术现状与发展趋势分析[J]. 中国农村水利水电,2020(8):20-24. doi: 10.3969/j.issn.1007-2284.2020.08.004ZHANG Q Y, LIU L S. An analysis of the current situationand development trend of rural decentralized domestic sewage based on source separation technology[J]. China Rural Water and Hydropower,2020(8):20-24. doi: 10.3969/j.issn.1007-2284.2020.08.004 [18] 李子富, 王晓希, 王婷婷, 等. 城市生态卫生排水系统及其应用[J]. 建设科技,2010(21):44-47. doi: 10.3969/j.issn.1671-3915.2010.21.013LI Z F, WANG X X, WANG T T, et al. Urban ecological sanitation drainage system and its application[J]. Construction Science and Technology,2010(21):44-47. doi: 10.3969/j.issn.1671-3915.2010.21.013 [19] 赵丙良, 袁林江, 张娜, 等. 改良型外循环厌氧反应器处理黑水特性研究[J]. 水处理技术,2011,37(12):86-89. doi: 10.16796/j.cnki.1000-3770.2011.12.021ZHAO B L, YUAN L J, ZHANG N, et al. Treatment of blackwater with modified uasb reactor[J]. Technology of Water Treatment,2011,37(12):86-89. doi: 10.16796/j.cnki.1000-3770.2011.12.021 [20] 施凡. 绿墙系统处理灰水和黑水的研究[D]. 温州: 温州大学, 2021. [21] WEN C X, DAI Z Q, CHENG F K, et al. Review on research achievements of blackwater anaerobic digestion for enhanced resource recovery[J]. Environment, Development and Sustainability, 2022: 1-31. [22] WANG H H, LI Z F, ZHOU X Q, et al. Anaerobic co-digestion of kitchen waste and blackwater for different practical application scenarios in decentralized scale: from wastes to energy recovery[J]. Water,2020,12(9):2556. doi: 10.3390/w12092556 [23] XU R, XU S N, ZHANG L, et al. Impact of zero valent iron on blackwater anaerobic digestion[J]. Bioresource Technology,2019,285:121351. doi: 10.1016/j.biortech.2019.121351 [24] PAULO P L, AZEVEDO C, BEGOSSO L, et al. Natural systems treating greywater and blackwater on-site: integrating treatment, reuse and landscaping[J]. Ecological Engineering,2013,50:95-100. doi: 10.1016/j.ecoleng.2012.03.022 [25] 王洪波, 孙𦔯, 王晓昌. 以锯末为微生物载体的好氧堆肥反应器对人粪便降解特性的研究[J]. 安全与环境学报, 2008, 8(2): 43-46.WANG H B, SUN S, WANG X C. A study on the characteristic features of feces decomposition by using sawdust as microbial carrier for an aerobic compositing reactor[J]. Journal of Safety and Environment, 2008, 8(2): 43-46. [26] GERMER J, BOH M Y, SCHOEFFLER M, et al. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter[J]. Waste Management,2010,30(2):185-191. doi: 10.1016/j.wasman.2009.09.030 [27] OARGA-MULEC A, JENSSEN P D, KRIVOGRAD KLEMENČIČ A, et al. Zero-discharge solution for blackwater treatment at remote tourist facilities[J]. Journal of Cleaner Production,2017,166:798-805. doi: 10.1016/j.jclepro.2017.08.002 [28] ANDREEV N, RONTELTAP M, BOINCEAN B, et al. Treatment of source-separated human feces via lactic acid fermentation combined with thermophilic composting[J]. Compost Science & Utilization,2017,25(4):220-230. [29] HILL G B, BALDWIN S A. Vermicomposting toilets, an alternative to latrine style microbial composting toilets, prove far superior in mass reduction, pathogen destruction, compost quality, and operational cost[J]. Waste Management,2012,32(10):1811-1820. doi: 10.1016/j.wasman.2012.04.023 [30] ZHANG H Y, SCHUCHARDT F, LI G X, et al. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)[J]. Waste Management,2013,33(4):957-963. doi: 10.1016/j.wasman.2012.11.008 [31] KRUEGER B C, FOWLER G D, TEMPLETON M R, et al. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste[J]. Water Research,2020,169:115253. doi: 10.1016/j.watres.2019.115253 [32] MAWIOO P M, RWEYEMAMU A, GARCIA H A, et al. Evaluation of a microwave based reactor for the treatment of blackwater sludge[J]. Science of the Total Environment,2016,548/549:72-81. doi: 10.1016/j.scitotenv.2016.01.013 [33] XU X W, TU R, SUN Y, et al. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk[J]. Bioresource Technology,2019,271:427-438. doi: 10.1016/j.biortech.2018.09.066 [34] FAKKAEW K, KOOTTATEP T, POLPRASERT C. Faecal sludge treatment and utilization by hydrothermal carbonization[J]. Journal of Environmental Management,2018,216:421-426. doi: 10.1016/j.jenvman.2017.09.031 [35] FAKKAEW K, KOOTTATEP T, POLPRASERT C. Effects of hydrolysis and carbonization reactions on hydrochar production[J]. Bioresource Technology,2015,192:328-334. doi: 10.1016/j.biortech.2015.05.091 [36] 王影娴, 吴向阳, 王猛, 等. 厕所粪便与粗甘油共液化制备生物原油研究[J]. 农业工程学报,2019,35(22):181-186. doi: 10.11975/j.issn.1002-6819.2019.22.021WANG Y X, WU X Y, WANG M, et al. Biocrude oil production via co-liquefaction of toilet feces and crude glycerol[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(22):181-186. doi: 10.11975/j.issn.1002-6819.2019.22.021 [37] EBOIBI B E, LEWIS D M, ASHMAN P J, et al. Integrating anaerobic digestion and hydrothermal liquefaction for renewable energy production: an experimental investigation[J]. Environmental Progress & Sustainable Energy,2015,34(6):1662-1673. [38] SAHONDO T, HENNESSY S, SINDALL R C, et al. Field testing of a household-scale onsite blackwater treatment system in South Africa[J]. Science of the Total Environment,2020,703:135469. doi: 10.1016/j.scitotenv.2019.135469 [39] ROGERS T W, ROGERS T S, STONER M H, et al. A granular activated carbon/electrochemical hybrid system for onsite treatment and reuse of blackwater[J]. Water Research,2018,144:553-560. doi: 10.1016/j.watres.2018.07.070 [40] WELLING C M, SASIDARAN S, KACHORIA P, et al. Field testing of a household-scale onsite blackwater treatment system in Coimbatore, India[J]. Science of the Total Environment,2020,713:136706. doi: 10.1016/j.scitotenv.2020.136706 [41] THOSTENSON J O, MOUROUVIN R, HAWKINS B T, et al. Improved blackwater disinfection using potentiodynamic methods with oxidized boron-doped diamond electrodes[J]. Water Research,2018,140:191-199. doi: 10.1016/j.watres.2018.04.022 [42] NAGY J, ZSENI A. Human urine as an efficient fertilizer product in agriculture[J]. Agronomy Research,2017,15(2):490-500. [43] LARSEN T A, RIECHMANN M E, UDERT K M. State of the art of urine treatment technologies: a critical review[J]. Water Research X,2021,13:100114. doi: 10.1016/j.wroa.2021.100114 [44] SIMHA P, GANESAPILLAI M. Ecological sanitation and nutrient recovery from human urine: how far have we come: a review[J]. Sustainable Environment Research,2017,27(3):107-116. doi: 10.1016/j.serj.2016.12.001 [45] MARTIN T M P, ESCULIER F, LEVAVASSEUR F, et al. Human urine-based fertilizers: a review[J]. Critical Reviews in Environmental Science and Technology,2022,52(6):890-936. doi: 10.1080/10643389.2020.1838214 [46] RANDALL D G, NAIDOO V. Urine: the liquid gold of wastewater[J]. Journal of Environmental Chemical Engineering,2018,6(2):2627-2635. doi: 10.1016/j.jece.2018.04.012 [47] ALEMAYEHU Y A, ASFAW S L, TERFIE T A. Nutrient recovery options from human urine: a choice for large scale application[J]. Sustainable Production and Consumption,2020,24:219-231. doi: 10.1016/j.spc.2020.06.016 [48] TANSEL B, LUNN G, MONJE O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions[J]. Chemosphere,2018,194:504-514. doi: 10.1016/j.chemosphere.2017.12.004 [49] PATEL A, MUNGRAY A A, MUNGRAY A K. Technologies for the recovery of nutrients, water and energy from human urine: a review[J]. Chemosphere,2020,259:127372. doi: 10.1016/j.chemosphere.2020.127372 [50] 蒋善庆, 王晓昌, 李超, 等. 源分离尿液资源化利用与风险控制技术研究进展[J]. 安全与环境学报,2014,14(5):174-182. doi: 10.13637/j.issn.1009-6094.2014.05.040JIANG S Q, WANG X C, LI C, et al. Review on the resource utilization and risks control technologies of source separated urine[J]. Journal of Safety and Environment,2014,14(5):174-182. doi: 10.13637/j.issn.1009-6094.2014.05.040 [51] MERINO-JIMENEZ I, CELORRIO V, FERMIN D J, et al. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine[J]. Water Research,2017,109:46-53. doi: 10.1016/j.watres.2016.11.017 [52] SAKTHIVEL S R, TILLEY E, UDERT K M. Wood ash as a magnesium source for phosphorus recovery from source-separated urine[J]. Science of the Total Environment,2012,419:68-75. doi: 10.1016/j.scitotenv.2011.12.065 [53] SENDROWSKI A, BOYER T H. Phosphate removal from urine using hybrid anion exchange resin[J]. Desalination,2013,322:104-112. doi: 10.1016/j.desal.2013.05.014 [54] GUAN T, KUANG Y, LI X D, et al. The recovery of phosphorus from source-separated urine by repeatedly usable magnetic Fe3O4@ZrO2 nanoparticles under acidic conditions[J]. Environment International,2020,134:105322. doi: 10.1016/j.envint.2019.105322 [55] TARPEH W A, UDERT K M, NELSON K L. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine[J]. Environmental Science & Technology,2017,51(4):2373-2381. [56] LINARES R V, YANGALI-QUINTANILLA V, LI Z Y, et al. Rejection of micropollutants by clean and fouled forward osmosis membrane[J]. Water Research,2011,45(20):6737-6744. doi: 10.1016/j.watres.2011.10.037 [57] JIANG Q, LIU J, SONG X R, et al. Energy efficient bioelectro-concentration and recovery system of nutrients from human urine by integrating forward osmosis[J]. Resources, Conservation and Recycling,2022,181:106253. doi: 10.1016/j.resconrec.2022.106253 [58] PRONK W, PALMQUIST H, BIEBOW M, et al. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine[J]. Water Research,2006,40(7):1405-1412. doi: 10.1016/j.watres.2006.01.038 [59] TUN L L, JEONG D, JEONG S, et al. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation[J]. Journal of Membrane Science,2016,512:13-20. doi: 10.1016/j.memsci.2016.04.004 [60] ZHANG J H, XIE M F, TONG X, et al. Ammonia capture from human urine to harvest liquid N-P compound fertilizer by a submerged hollow fiber membrane contactor: performance and fertilizer analysis[J]. Science of the Total Environment,2021,768:144478. doi: 10.1016/j.scitotenv.2020.144478 [61] YU C Z, YIN W J, YU Z J, et al. Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review[J]. RSC Advances,2021,11(56):35525-35535. doi: 10.1039/D1RA05816A [62] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337:686-690. doi: 10.1126/science.1217412 [63] CHEN X, LIANG P, ZHANG X Y, et al. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery[J]. Bioresource Technology,2016,215:274-284. doi: 10.1016/j.biortech.2016.02.107 [64] HOU D X, LU L, SUN D Y, et al. Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors[J]. Water Research,2017,114:181-188. doi: 10.1016/j.watres.2017.02.034 [65] JIANG Q, SONG X R, LIU J, et al. In-situ enrichment and removal of Cu(Ⅱ) and Cd(Ⅱ) from low-strength wastewater by a novel microbial metals enrichment and recovery cell (MMERC)[J]. Journal of Power Sources,2020,451:227627. doi: 10.1016/j.jpowsour.2019.227627 [66] IEROPOULOS I, GREENMAN J, MELHUISH C. Urine utilisation by microbial fuel cells;energy fuel for the future[J]. Physical Chemistry Chemical Physics,2012,14(1):94-98. doi: 10.1039/C1CP23213D [67] BARBOSA S G, PEIXOTO L, TER HEIJNE A, et al. Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine[J]. Environmental Science:Water Research & Technology,2017,3(5):897-904. [68] LIAO M L, LIU Y, TIAN E L, et al. Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell[J]. Chemical Engineering Journal,2020,391:123517. doi: 10.1016/j.cej.2019.123517 [69] IKEMATSU M, KANEDA K, ISEKI M, et al. Electrochemical treatment of human urine for its storage and reuse as flush water[J]. Science of the Total Environment,2007,382(1):159-164. ◇