Research on the path to achieve the goal of realizing "zero-waste" of coal gangue in China
-
摘要:
为解决煤矸石大量堆积造成的环境污染问题,基于“无废城市”建设理念和经验提出了煤矸石“无废”化目标。在分析我国煤矸石产生、分布及理化性质的基础上,从煤炭清洁高效利用和减污降碳2个方面论述实现煤矸石“无废”化的必要性,阐述实现我国煤矸石“无废”化的政策基础、技术现状和存在的问题。建议我国在建设绿色生态煤矿、提高煤矸石综合利用水平、研发煤矸石综合利用技术、制定煤矸石综合利用产品标准4个方面开展工作;加快实现以井下采选充一体化、矿井充填、采坑以及塌陷区回填生态修复为核心的煤矸石综合利用技术工业化应用;构建“发电—有用(价)组分回收或利用—高性能建材或农业应用或矿井充填”的资源化利用产业链,实现煤矸石中多组分梯级分质高值化利用,以保障我国煤矸石“无废”化目标顺利实现。
Abstract:In order to solve the environmental pollution problems caused by the massive accumulation of coal gangue, the goal of realizing "zero-waste" of coal gangue was proposed based on the concept and experience of "zero-waste city". Based on the analysis of the generation, distribution, and physicochemical properties of coal gangue in China, the necessity of the goal of realizing "zero-waste" of coal gangue was discussed from two aspects of the clean and efficient utilization of coal and the reduction of pollution and carbon. The policy basis, technical status quo and existing problems of achieving the goal of realizing "zero-waste" of coal gangue in China were analyzed. It was suggested that China should carry out the work in four aspects: building green ecological coal mines, improving the comprehensive utilization rate of coal gangue, researching and developing technologies for comprehensive utilization of coal gangue resources, and formulating product standards for comprehensive utilization of coal gangue. It was suggested to accelerate the industrialization application of coal gangue comprehensive utilization technologies centered on the integration of underground coal dressing and backfilling, mine filling, pit backfilling, and ecological restoration of collapsed areas, and build a resource-based utilization industrial chain of "power generation - recycling or utilization of useful (valuable) components - high-performance building materials or agricultural applications or mine backfilling" to realize the high-value utilization of multi-component gradation in coal gangue. These measures would ensure the smooth realization of the goal of realizing "zero-waste" of coal gangue in China.
-
Key words:
- coal gangue /
- zero-waste /
- source reduction /
- resource utilization /
- harmless scale consumption /
- path
-
图 1 2017—2021年全国煤炭产生和消费情况统计[5]
注:2017—2020年我国煤炭产量和消费量来源于国家统计局官网;2021年我国煤炭产量数据来源于国家矿山安全监察局官网;2021年我国煤炭消费量数据根据国家统计局公布的2021年全国煤炭消费量同比增长4.6%计算得到。
Figure 1. China's coal production and consumption data from 2017 to 2021
图 2 2017—2021年全国煤矸石产生和利用统计数据[6]
Figure 2. China's coal gangue production and utilization data from 2017 to 2021
图 3 2021年全国各省(区、市)煤炭产量[7]
Figure 3. China's coal production data of various provinces in 2021
图 4 2021年全国主要地区煤矸石产生情况统计数据[6]
Figure 4. China's coal gangue production data of main provinces in 2021
图 5 2021年全国主要企业煤炭产量统计[9]
Figure 5. Coal production data of China's main enterprises in 2021
图 7 2020年煤矸石综合利用技术分布占比[21]
Figure 7. Proportion of comprehensive utilization technology of coal gangue in 2020
分类指标 类型 全硫含量/% ≤1.00 低硫煤矸石 1.00~3.00 中硫煤矸石 3.00~6.00 中高硫煤矸石 >6.00 高硫煤矸石 灰分质量占比/% ≤70.00 低灰煤矸石 70.00~85.00 中灰煤矸石 >85.00 高灰煤矸石 钙镁含量占比/% >10 钙镁型煤矸石 ≤10 铝硅型煤矸石 铝硅比/% ≤0.30 低级铝硅比煤矸石 0.30~0.50 中级铝硅比煤矸石 >0.50 高级铝硅比煤矸石 碳含量/% ≤4.00 低碳煤矸石 4.00~6.00 中碳煤矸石 6.00~20.00 中高碳煤矸石 >20.00 高碳煤矸石 表 2 煤矸石等固体废物综合利用办法、指导意见和标准
Table 2. Measures, guiding opinions and standards for comprehensive utilization of solid waste including coal gangue
名称 重点内容 《煤矸石综合利用管理办法》(2014年) 对煤矸石的综合利用提出明确要求 《关于“十四五”大宗工业固体废弃物综合利用指导意见》(2021年) 鼓励煤矸石作为建筑材料、生态修复材料等应用在工程建设和土地修复中;开展煤矸石有价组分的提取与利用;推广“煤矸石井下充填+地面回填”技术;建立“梯级回收+生态修复+封存保护”煤矸石利用体系 《“十四五”能源领域科技创新规划》(2021年) 集中攻关固体废物充填采煤技术,建设典型固废资源化利用示范项目 《2030年前碳达峰行动方案》(2021年) 支持煤矸石等固体废物大掺量、规模化、高值化利用,鼓励固体废物替代非金属矿物原料以及砂石等资源 GB 18599—2020《一般工业固体废物贮存和填埋污染控制标准》 明确煤矸石等固体废物充填或回填等工艺技术中污染物控制要求 DB15/T 2763—2022《一般工业固体废物用于矿山采坑回填和生态恢复技术规范》 规定了内蒙古地区利用煤矸石等一般工业固体废物对矿山采坑进行回填和生态恢复的技术要求 -
[1] 谢和平, 任世华, 谢亚辰, 等.碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197-2211.XIE H P, REN S H, XIE Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197-2211. [2] 李妍林, 阮久莉, 王艺博, 等.煤炭工业资源-环境-经济耦合协调分析: 以榆林市为例[J]. 环境工程技术学报,2022,12(1):260-266.LI Y L, RUAN J L, WANG Y B, et al. Analysis on the coupling coordination of resource-environment-economy of coal industry: a case of Yulin City[J]. Journal of Environmental Engineering Technology,2022,12(1):260-266. [3] 仲蕊. 煤矸石资源化综合利用提质空间大[N]. 中国能源报, 2022-06-13(09). [4] 孟小燕, 王毅. 我国推进“无废城市”建设的进展、问题及对策建议[J]. 中国科学院院刊, 2022, 37(7): 995-1005.MENG X Y, WANG Y. Progress, problems and countermeasures of promoting construction of "Zero-waste City" in China[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 995-1005. [5] 国家统计局. 国家数据[EB/OL]. [2023-04-03]. https://data.stats.gov.cn. [6] 常纪文, 杜根杰, 杜建磊, 等.我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业,2022(8):13-17. doi: 10.3969/j.issn.1006-5377.2022.08.024CHANG J W, DU G J, DU J L, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry,2022(8):13-17. doi: 10.3969/j.issn.1006-5377.2022.08.024 [7] 中国煤炭网. 2021年全国原煤产量分省完成情况分析[EB/OL]. (2022-01-24)[2023-04-03]. http://www.ccoalnews.com/news/202201/24/c152635.html. [8] 杨方亮, 许红娜.“十四五”煤炭行业生态环境保护与资源综合利用发展路径分析[J]. 中国煤炭,2021,47(5):73-82.YANG F L, XU H N. Analysis on the development path of ecological environment protection and resources comprehensive utilization in coal industry during 14th Five-Year Plan period[J]. China Coal,2021,47(5):73-82. [9] 中国煤炭网. 2021年原煤产量前20名企业排名公布[EB/OL]. (2022-01-24). http://www.ccoalnews.com/news/202201/24/c152645.html. [10] 范晓平, 刘京, 康哲, 等. 煤矸石综合利用与矿山生态修复的战略思考[J]. 环境卫生工程, 2023, 31(1): 8-15.FAN X P, LIU J, KANG Z, et al. Strategic thinking of comprehensive utilization of coal gangue and ecological restoration of mines. [J]. Environmental Sanitation Engineering, 2023, 31(1): 8-15. [11] 郭彦霞, 张圆圆, 程芳琴.煤矸石综合利用的产业化及其展望[J]. 化工学报,2014,65(7):2443-2453.GUO Y X, ZHANG Y Y, CHENG F Q. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal,2014,65(7):2443-2453. [12] 王小云, 牛艳霞. 煤矸石研究综述: 分类、危害及综合利用[J/OL]. 化工矿物与加工,2023. https://kns.cnki.net/kcms/detail//32.1492.TQ.20230228.1822.002.html.WANG X Y, NIU Y X. Summary of research on coal gangue classification harm and comprehensive utilization[J/OL]. Industrial Minerals & Processing,2023. https://kns.cnki.net/kcms/detail//32.1492.TQ.20230228.1822.002.html. [13] 郭媛媛, 于宝源.陈云敏院士: 固体废物领域亟须追溯碳排放源头[J]. 环境保护,2022,50(10):37-39.GUO Y Y, YU B. It is urgent to trace the source of carbon emissions in the field of solid waste[J]. Environmental Protection,2022,50(10):37-39. [14] 姜华, 李艳萍, 高健.双碳背景下煤基产业绿色低碳转型之路[J]. 环境工程技术学报,2022,12(5):1580-1583.JIANG H, LI Y P, GAO J. The road of green and low-carbon transformation of coal-based industry under carbon peak and carbon neutrality background[J]. Journal of Environmental Engineering Technology,2022,12(5):1580-1583. [15] 牛瑞芳.神东矿区井下无岩巷布置与矸石处理技术[J]. 陕西煤炭,2008,27(5):83-84.NIU R F. Layout of entry entirely in coal seam and gangue treatment technology in Shendong Mining Area[J]. Shaanxi Coal,2008,27(5):83-84. [16] 缪协兴, 巨峰, 黄艳利, 等.充填采煤理论与技术的新进展及展望[J]. 中国矿业大学学报,2015,44(3):391-399.MIAO X X, JU F, HUANG Y L, et al. New development and prospect of backfilling mining theory and technology[J]. Journal of China University of Mining & Technology,2015,44(3):391-399. [17] 张吉雄, 张强, 巨峰, 等.煤矿“采选充+X”绿色化开采技术体系与工程实践[J]. 煤炭学报,2019,44(1):64-73.ZHANG J X, ZHANG Q, JU F, et al. Practice and technique of green mining with integration of mining, dressing, backfilling and X in coal resources[J]. Journal of China Coal Society,2019,44(1):64-73. [18] ZHANG Q, ZHANG J X, WU Z, et al. Overview of solid backfilling technology based on coal-waste underground separation in China[J]. Sustainability,2019,11(7):2118. doi: 10.3390/su11072118 [19] 张昊, 张强, 左小, 等.生态环境保护性的采选充系统设计及应用[J]. 中国矿业大学学报,2021,50(3):548-557.ZHANG H, ZHANG Q, ZUO X, et al. Design and application of mining-separating-backfilling system for mining ecological and environmental protection[J]. Journal of China University of Mining & Technology,2021,50(3):548-557. [20] LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: a review[J]. Journal of Cleaner Production,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946 [21] 王玉涛.煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探,2022,50(10):54-66.WANG Y T. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue[J]. Coal Geology & Exploration,2022,50(10):54-66. [22] 张泽琳, 葛小冬.煤矸石中硫铁矿分选方法研究进展[J]. 化工矿物与加工,2016,45(6):76-81.ZHANG Z L, GE X D. Progress on separation method of pyrite from coal gangue[J]. Industrial Minerals & Processing,2016,45(6):76-81. [23] 张覃, 温汉捷, 程伟, 等.中高硫煤共伴生元素赋存状态及分选回收研究进展[J]. 中国矿业大学学报,2022,51(3):491-502.ZHANG Q, WEN H J, CHENG W, et al. A review on the advances in the occurrence modes and beneficiation of associated elements in medium-high sulfur coals[J]. Journal of China University of Mining & Technology,2022,51(3):491-502. [24] 李振, 雪佳, 朱张磊, 等.煤矸石综合利用研究进展[J]. 矿产保护与利用,2021,41(6):165-178.LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources,2021,41(6):165-178. [25] LIU Y Y, LEI S M, LIN M, et al. Assessment of pozzolanic activity of calcined coal-series kaolin[J]. Applied Clay Science,2017,143:159-167. doi: 10.1016/j.clay.2017.03.038 [26] WANG B, LI L, LI J, et al. Recent progresses on the synthesis of zeolites from the industrial solid wastes[J]. Chemical Journal of Chinese Universities-Chinese,2021,42(1):40-59. [27] ZHANG Y L, LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials: a review[J]. Construction and Building Materials,2020,234:117424. doi: 10.1016/j.conbuildmat.2019.117424 [28] ZHOU S, DONG J, YU L, et al. Effect of activated coal gangue in North China on the compressive strength and hydration process of cement[J]. Journal of Materials in Civil Engineering,2019,31(4):04019022. doi: 10.1061/(ASCE)MT.1943-5533.0002643 [29] 王辰, 梁惠祺, 别泉泉, 等.煤矸石制备机制砂的研究进展[J]. 中国煤炭,2021,47(7):68-76.WANG C, LIANG H Q, BIE Q Q, et al. Research progress of manufactured sand from coal gangue[J]. China Coal,2021,47(7):68-76. [30] LI Z, LI X, TANG Y, et al. Sintering behavior and characterization of low-cost ceramic foams from coal gangue and waste quartz sand[J]. Advances in Applied Ceramics,2016,115(7):377-383. doi: 10.1080/17436753.2016.1161692 [31] 柯凯恩, 董晓芸, 周金星, 等.煤矸石生态基质的制备配方及其肥力特征研究[J]. 中国土壤与肥料,2021(4):308-317. doi: 10.11838/sfsc.1673-6257.20212KE K E, DONG X Y, ZHOU J X, et al. Evaluation of the formula for coal gnague ecological substrate and its fertility indexes[J]. Soil and Fertilizer Sciences in China,2021(4):308-317. doi: 10.11838/sfsc.1673-6257.20212 [32] 任晓玲, 周蕙昕, 高明, 等.煤矸石肥料的研究进展[J]. 中国煤炭,2021,47(1):103-109. doi: 10.3969/j.issn.1006-530X.2021.01.016REN X L, ZHOU H X, GAO M, et al. Research progress of coal gangue fertilizer[J]. China Coal,2021,47(1):103-109. doi: 10.3969/j.issn.1006-530X.2021.01.016 [33] 张吉雄, 张强, 周楠, 等.煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167-4181.ZHANG J X, ZHANG Q, ZHOU N, et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167-4181. [34] 常克章.塌陷区回填煤矸石复垦[J]. 煤矿环境保护,2000,14(6):58-59.CHANG K Z. Filling coal gangue on mining subsidence[J]. Coal Mine Environmental Protection,2000,14(6):58-59. [35] 陈利生, 李学良.采煤塌陷区煤矸石回填复垦技术[J]. 金属矿山,2014(9):137-141.CHEN L S, LI X L. Techniques of gangue backfilling and reclamation in subsidence region of coal mined[J]. Metal Mine,2014(9):137-141. [36] 郝丽平.煤矸石材料在高速公路路基填筑施工中的应用[J]. 黑龙江交通科技,2019,42(12):15-16. doi: 10.3969/j.issn.1008-3383.2019.12.008HAO L P. Application of coal gangue material in expressway subgrade filling construction[J]. Communications Science and Technology Heilongjiang,2019,42(12):15-16. doi: 10.3969/j.issn.1008-3383.2019.12.008 [37] 李浩荡, 赵永峰, 尤文顺, 等.新发展格局下国家能源集团煤炭产业高质量发展研究[J]. 中国煤炭,2021,47(1):46-51.LI H D, ZHAO Y F, YOU W S, et al. Research on high-quality development of the coal idustry in China Energy Investment Group under the new development pattern[J]. China Coal,2021,47(1):46-51. ⊗