Tentative study on protein extraction from sweet potato starch processing water by acid-heat flocculation
-
摘要:
甘薯淀粉加工过程产生大量的淀粉分离汁水,其中含有丰富的蛋白质。采用酸热絮凝法从甘薯淀粉分离汁水中提取蛋白质,通过单因素试验,选择pH、温度、离心时间和离心转速为变量,利用正交试验分析影响甘薯淀粉分离汁水蛋白质提取效果的因素主次和较佳工艺,采用集成装置进行工艺模拟试验,检验甘薯淀粉分离汁水蛋白质提取的效果,并分析技术和经济可行性。结果表明:在温度为100 ℃、pH为4.0、离心转速3 500 r/min和离心时间10 min条件下,甘薯淀粉分离汁水的TN和CODCr去除率分别达到76.79%和40.66%;集成装置的蛋白质回收率达到48.86%,回收的粗蛋白质粉的蛋白质含量(以干基计)为73.22%,满足动物饲料原料要求。此外,对于1个大中型甘薯淀粉企业,1 m3甘薯淀粉分离汁水通过回收蛋白质可以创造毛利润20.51元。
Abstract:In the process of sweet potato starch production, a large amount of starch processing water is produced, which contains a lot of protein. The protein extraction from sweet potato starch processing water by acid-heat flocculation was studied. Through the single factor experiment, pH, temperature, centrifugation time and centrifugation speed were selected as variables. The main factors and optimum conditions were studied through orthogonal experiments. While, the effect and technical and economic feasibility of extracting protein from sweet potato starch processing water were analyzed through process simulation test with an integrated device. The results showed that the removal rates of TN and CODCr of sweet potato starch processing water reached 76.79% and 40.66%, respectively, when the temperature was 100 ℃, pH was 4.0, the centrifugation speed was 3 500 r/min and the centrifugation time was 10 min. The process simulation test results of the integrated device showed that the sweet protein recovery rate reached 48.86%, and the protein content (dry basis) of the recovered crude protein powder was 73.22%, which met the requirements of animal feed raw materials. In addition, for a medium-sized or large-sized sweet potato starch enterprise, 1 m3 sweet potato starch processing water could create a gross profit of 20.51 yuan by recycling protein. The protein extraction from sweet potato starch processing water by acid-heat flocculation had both technical and economic feasibility, which had a good promotion prospect.
-
Key words:
- sweet potato /
- starch processing water /
- acid-heat flocculation /
- protein /
- extraction
-
表 1 四因素三水平试验设计
Table 1. Factors and levels for the orthogonal experiments
水平 pH
(因素A)温度/℃
(因素B)离心转速/(r/min)
(因素C)离心时间/min
(因素D)1 6.0 80 3 000 10 2 4.5 90 3 500 15 3 4.0 100 4 000 20 表 2 甘薯(卢选1号)中氨基酸构成
Table 2. Proportion of amino acids in sweet potato
氨基酸组分 含量/
(10−2 g/g)相对含
量/%氨基酸组分 含量/
(10−2 g/g)相对含
量/%天冬氨酸 0.310 25.50 蛋氨酸 0.009 0.73 苏氨酸 0.059 4.85 异亮氨酸 0.051 4.20 丝氨酸 0.075 6.17 亮氨酸 0.080 6.58 谷氨酸 0.140 11.52 酪氨酸 0.026 2.14 脯氨酸 0.044 3.62 苯丙氨酸 0.076 6.25 甘氨酸 0.052 4.28 赖氨酸 0.064 5.27 丙氨酸 0.063 5.18 组氨酸 0.029 2.39 胱氨酸 0.005 0.37 精氨酸 0.052 4.28 缬氨酸 0.070 5.76 色氨酸 0.0111) 0.91 注:天冬氨酸和谷氨酸为酸性氨基酸;精氨酸、赖氨酸和组氨酸为碱性氨基酸;其余为中性氨基酸。
1)色氨酸含量单位为%。表 3 正交试验的结果分析
Table 3. Results analysis of orthogonal experiments
试验编号 因素水平 TN去除
率/%CODCr去除
率/%因素A 因素B 因素C 因素D 1 1 1 1 1 62.50 32.19 2 1 2 2 2 67.86 32.50 3 1 3 3 3 69.64 33.44 4 2 1 2 3 66.07 33.31 5 2 2 3 1 71.43 36.00 6 2 3 1 2 71.43 40.31 7 3 1 3 2 69.62 33.50 8 3 2 1 3 73.21 31.88 9 3 3 2 1 76.79 40.66 K1 69.667 66.063 69.047 70.240 K2 69.643 70.833 70.240 69.637 K3 73.207 76.620 70.230 69.640 R 6.540 6.557 1.193 0.603 K1' 32.710 33.000 34.793 36.283 K2' 36.540 33.460 35.490 35.437 K3' 35.347 38.137 34.313 32.877 R' 3.830 5.137 1.177 3.406 注:K1、K2、K3为某因素分别在其水平1、水平2和水平3下的3组试验获得的TN去除率的平均值;K1'、K2'、K3'为某因素分别在其水平1、水平2和水平3下的3组试验获得的CODCr去除率的平均值;R为TN去除率的各因素的极差(各因素均值K1、K2、K3中的最大值减去最小值);R'为CODCr去除率的各因素的极差(各因素均值K1'、K2'、K3'中的最大值减去最小值)。 表 4 集成装置的蛋白质回收率
Table 4. Protein recovery rate of the integrated device
批次 甘薯淀粉分离
汁水处理
量/L蛋白质滤饼
烘干后
质量/g蛋白质滤饼烘干后
主要成分含量/%蛋白质回
收率/%水分 蛋白质(以
干基计)2 25 243.54 10.6 73.04 57.50 3 25 161.29 8.40 75.44 40.56 4 25 299.88 7.74 75.11 56.31 9 25 224.45 5.33 69.29 41.09 平均值 73.22 48.86 表 5 甘薯淀粉分离汁水酸热絮凝法蛋白质提取成本构成
Table 5. Cost structure of protein extraction from sweet potato starch processing water by acid-heat flocculation
项目 年成本/
万元占总成本
比例/%备注 原料费 0 0 原料为甘薯淀粉分离汁水 燃料动力费 188.352 53.29 功率480 kW/h,电价0.725元/(kW·h);蒸汽消耗6 t/h,蒸汽费160元/t 工人工资费 21.600 6.11 需操作工人6人,每人工资3 000
元/月,以年计福利费 3.024 0.86 按工人工资的14%估算 折旧费 110 31.12 设备总投资660万元,以折旧年限6 a估算 修理费 5.500 1.56 以折旧费的5%估算 其他费用 25 7.07 财务费用、摊销费等 总成本 353.476 100 -
[1] 刘庆昌.甘薯在我国粮食和能源安全中的重要作用[J]. 科技导报,2004,22(9):21-22.LIU Q C. Importance of sweetpotato in the security of food and energy in China[J]. Science & Technology Review,2004,22(9):21-22. [2] FAO. FAO作物统计数据库[DB/OL]. [2022-12-20]. http://www.fao.org/faostat/zh/#data/QC. [3] 郭晓娅, 年跃刚, 闫海红, 等.淀粉废水资源化利用现状与应用前景[J]. 环境工程技术学报,2016,6(2):117-126. doi: 10.3969/j.issn.1674-991X.2016.02.018GUO X Y, NIAN Y G, YAN H H, et al. Current status and application prospect of resource utilization of starch wastewater[J]. Journal of Environmental Engineering Technology,2016,6(2):117-126. doi: 10.3969/j.issn.1674-991X.2016.02.018 [4] 郭晓娅, 年跃刚, 闫海红, 等.玉米淀粉废水强化混凝与反硝化脱氮除磷技术研究[J]. 环境工程技术学报,2017,7(1):7-14. doi: 10.3969/j.issn.1674-991X.2017.01.002GUO X Y, NIAN Y G, YAN H H, et al. Enhanced coagulation and nitrification for nitrogen and phosphorus removal from corn starch wastewater[J]. Journal of Environmental Engineering Technology,2017,7(1):7-14. doi: 10.3969/j.issn.1674-991X.2017.01.002 [5] 姚宏, 王钰楷, 何永淼, 等.两级厌氧-好氧-厌氧氨氧化组合工艺处理制药和淀粉混合废水[J]. 环境工程技术学报,2013,3(3):183-188. doi: 10.3969/j.issn.1674-991X.2013.03.030YAO H, WANG Y K, HE Y M, et al. Study on antibiotic and starch mixed wastewater treatment by combined two-phase anaerobic, aerobic and ANAMMOX process[J]. Journal of Environmental Engineering Technology,2013,3(3):183-188. doi: 10.3969/j.issn.1674-991X.2013.03.030 [6] LI M, ZHU X Q, YANG H, et al. Treatment of potato starch wastewater by dual natural flocculants of chitosan and poly-glutamic acid[J]. Journal of Cleaner Production,2020,264:121641. doi: 10.1016/j.jclepro.2020.121641 [7] 肖继波, 赵委托, 褚淑祎, 等.薯类淀粉废水处理技术及资源化利用研究进展[J]. 浙江农林大学学报,2013,30(2):292-298.XIAO J B, ZHAO W T, CHU S Y, et al. Research progress on treatment technology and resource utilization of potato starch wastewater[J]. Journal of Zhejiang A&F University,2013,30(2):292-298. [8] 刘鲁林. 甘薯可溶性蛋白加工品质评价方法的研究[D]. 北京: 中国农业科学院, 2007. [9] 张靖杰, 国鸽, 李鹏高.薯类蛋白对人体健康的影响及作用机制研究进展[J]. 食品安全质量检测学报,2017,8(7):2575-2580. doi: 10.3969/j.issn.2095-0381.2017.07.031ZHANG J J, GUO G, LI P G. Research progress on the effects of proteins from tuberous crops on human health and the underlying mechanisms[J]. Journal of Food Safety & Quality,2017,8(7):2575-2580. doi: 10.3969/j.issn.2095-0381.2017.07.031 [10] 安徽省市场监督管理局. 甘薯淀粉加工废水还田利用技术规范: DB34/T 4138—2022[S/OL]. [2022-02-20]. https://www.renrendoc.com/paper/227851023.html. [11] 中国循环经济协会. 薯类淀粉物理加工废水废渣资源化利用技术规范: T/CACE 056—2022[S]. 北京: 中国循环经济协会, 2022. [12] 侯利霞, 赵舒畅, 王彦波, 等.甘薯淀粉生产废液中蛋白质不同提取方法的比较研究[J]. 粮油加工,2010(12):105-108.HOU L X, ZHAO S C, WANG Y B, et al. Comparative study on different extraction methods of protein from sweet potato starch production waste liquid[J]. Cereals and Oils Processing,2010(12):105-108. [13] 赵舒畅. 甘薯淀粉生产废液中蛋白质的提取及抗氧化活性研究[D]. 郑州: 河南工业大学, 2011. [14] 田侠. 用改性中空纤维超滤膜技术回收甘薯淀粉生产废水中蛋白质的研究[D]. 沈阳: 沈阳农业大学, 2013. [15] 杨诗妮, 刘海华, 徐贞贞, 等.超滤技术处理甘薯淀粉生产废水的应用效果[J]. 食品工业科技,2021,42(15):144-149. doi: 10.13386/j.issn1002-0306.2020090060YANG S N, LIU H H, XU Z Z, et al. Utilization of ultrafiltration technology in the treatment of sweet potato starch production wastewater[J]. Science and Technology of Food Industry,2021,42(15):144-149. doi: 10.13386/j.issn1002-0306.2020090060 [16] 刘颖. 泡沫分离法制备甘薯蛋白的工艺及其特性研究[D]. 福州: 福建农林大学, 2013. [17] 周添红. 马铃薯淀粉加工废水资源化及尾水可见光催化深度净化研究[D]. 兰州: 兰州交通大学, 2018. [18] 陈钰. 马铃薯淀粉废水中的蛋白回收及表征[D]. 广州: 华南理工大学, 2010. [19] 甘肃省市场监督管理局. 马铃薯淀粉加工中薯渣及蛋白质回收技术规范: DB62/T 2999—2019[S/OL]. [2022-02-20]. http://www.gsdfbz.cn/theme/default/standardPublishDetail3006. [20] 刘伟聪. 生产马铃薯淀粉废水中蛋白质回收方法研究及工艺设计[D]. 哈尔滨: 黑龙江东方学院, 2022. [21] 江洪波, 徐鑫, 覃瑞, 等.马铃薯蛋白提取方法综述[J]. 安徽农业科学,2019,47(3):9-11. doi: 10.3969/j.issn.0517-6611.2019.03.003JIANG H B, XU X, QIN R, et al. Review on extraction methods of potato protein[J]. Journal of Anhui Agricultural Sciences,2019,47(3):9-11. doi: 10.3969/j.issn.0517-6611.2019.03.003 [22] HUSSAIN M, QAYUM A, ZHANG X X, et al. Potato protein: an emerging source of high quality and allergy free protein, and its possible future based products[J]. Food Research International,2021,148:110583. doi: 10.1016/j.foodres.2021.110583 [23] ZENG F K, LIU H, MA P J, et al. Recovery of native protein from potato root water by expanded bed adsorption with amberlite XAD7HP[J]. Biotechnology and Bioprocess Engineering,2013,18(5):981-988. doi: 10.1007/s12257-013-0234-3 [24] 曾凡逵, 刘刚.马铃薯蛋白的分离及氨基酸组成分析[J]. 食品科学,2014,35(9):53-56. doi: 10.7506/spkx1002-6630-201409012ZENG F K, LIU G. Isolation and amino acid analysis of potato protein[J]. Food Science,2014,35(9):53-56. doi: 10.7506/spkx1002-6630-201409012 [25] 顾文芬, 曾凡逵, 程锦春.超滤法从马铃薯淀粉加工分离汁水中回收蛋白质的研究[J]. 现代食品科技,2018,34(3):131-136. doi: 10.13982/j.mfst.1673-9078.2018.03.019GU W F, ZENG F K, CHENG J C. Study on the protein recovery from potato starch processing water by ultrafiltration[J]. Modern Food Science and Technology,2018,34(3):131-136. doi: 10.13982/j.mfst.1673-9078.2018.03.019 [26] CHASE H A, DRAEGER N M. Expanded-bed adsorption of proteins using ion-exchangers[J]. Separation Science and Technology,1992,27(14):2021-2039. doi: 10.1080/01496399208019462 [27] 邓国龙, 莫创荣, 张金莲, 等.酸沉淀法回收木薯黄浆废水中蛋白质及其影响因素的研究[J]. 食品工业科技,2014,35(20):308-311. doi: 10.13386/j.issn1002-0306.2014.20.059DENG G L, MO C R, ZHANG J L, et al. Study on acid precipitation technology of protein in cassava starch wastewater and its influencing factors[J]. Science and Technology of Food Industry,2014,35(20):308-311. doi: 10.13386/j.issn1002-0306.2014.20.059 [28] 刘婷婷, 姚佳, 张飞俊, 等.回收马铃薯淀粉废水中蛋白质的工艺优化[J]. 食品科技,2013,38(10):202-208. doi: 10.13684/j.cnki.spkj.2013.10.058LIU T T, YAO J, ZHANG F J, et al. Optimization of protein extraction process from potato starch wastewater[J]. Food Science and Technology,2013,38(10):202-208. ◇ doi: 10.13684/j.cnki.spkj.2013.10.058