留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻秸秆添加强化沉水植物湿地对农田径流中不同形态氮的去除效果

蔡敏 崔娜欣 张旭 陈桂发 周丽 邹国燕

蔡敏,崔娜欣,张旭,等.稻秸秆添加强化沉水植物湿地对农田径流中不同形态氮的去除效果[J].环境工程技术学报,2023,13(5):1829-1838 doi: 10.12153/j.issn.1674-991X.20230043
引用本文: 蔡敏,崔娜欣,张旭,等.稻秸秆添加强化沉水植物湿地对农田径流中不同形态氮的去除效果[J].环境工程技术学报,2023,13(5):1829-1838 doi: 10.12153/j.issn.1674-991X.20230043
CAI M,CUI N X,ZHANG X,et al.Removal efficiency of different forms of nitrogen from farmland runoff by adding rice straw in submerged plant wetland[J].Journal of Environmental Engineering Technology,2023,13(5):1829-1838 doi: 10.12153/j.issn.1674-991X.20230043
Citation: CAI M,CUI N X,ZHANG X,et al.Removal efficiency of different forms of nitrogen from farmland runoff by adding rice straw in submerged plant wetland[J].Journal of Environmental Engineering Technology,2023,13(5):1829-1838 doi: 10.12153/j.issn.1674-991X.20230043

稻秸秆添加强化沉水植物湿地对农田径流中不同形态氮的去除效果

doi: 10.12153/j.issn.1674-991X.20230043
基金项目: 上海市2021 年度“科技创新行动计划”长三角科技创新共同体领域项目(21002410400);国家重点研发计划项目(2021YFC3201503-02);上海市2022年度“科技创新行动计划”国内科技合作项目申报指南/协同创新示范推广项目(22015821200);生态所启航计划科技项目(生科创-QB 2023-4);长江生态环境保护修复联合研究二期项目(2022-LHYJ-02-0304)
详细信息
    作者简介:

    蔡敏(1991—),男,助理研究员,主要从事水环境治理研究,caiminjay@foxmail.com

    通讯作者:

    崔娜欣(1978—),女,副研究员,主要从事水环境治理研究,86176241@qq.com

  • 中图分类号: X71;X52

Removal efficiency of different forms of nitrogen from farmland runoff by adding rice straw in submerged plant wetland

  • 摘要:

    为提升稻田周边湿地对农田径流中不同形态氮的净化效率,有效拦截农田面源污染导致的氮磷流失,采用农业废物稻秸秆为有机碳源与沉水植物组合构建强化湿地系统,共设置不种植苦草且不添加稻秸秆(NS)、只种植苦草(VN)、只添加稻秸秆(SS)和种植苦草并添加稻秸秆(VS)4个处理,研究强化湿地对不同形态氮农田径流的净化效果与机制。结果表明:1)在处理以氨氮(NH4 +-N)为主要氮形态的农田径流时,VN和VS对废水中TN和NH4 +-N的去除率显著高于其他处理(P<0.05),表明种植苦草是提升湿地对NH4 +-N农田径流净化效果的主要因素;2)处理以硝态氮(NO3 -N)为主要氮形态的农田径流时,SS和VS对废水中TN和NO3 -N的去除率显著高于其他处理(P<0.05),表明添加稻秸秆显著提升了湿地对NO3 -N农田径流的净化效果。3)湿地中只种植苦草时对NO3 -N去除效果不佳,只添加稻秸秆时对NH4 +-N去除效果较差,种植苦草并添加稻秸秆对2种形态氮均有较好的去除效果,同时二者对磷的去除效果与只种植苦草的湿地无显著差异。因此,稻秸秆添加强化沉水植物湿地在拦截净化农田面源污染中具有推广应用的潜力。

     

  • 图  1  4种小型湿地系统示意

    Figure  1.  Diagram of 4 small wetland systems

    图  2  处理NH4 +-N废水时各湿地水体理化指标变化(n=9)

    Figure  2.  Variation of physicochemical indexes of water in each wetland during treating ammonia-nitrogen wastewater (n=9)

    图  3  处理NH4 +-N废水时各湿地水体氮磷浓度和COD变化(n=9)

    Figure  3.  Variation of nitrogen, phosphorus concentrations and COD of water in each wetland during treating ammonia-nitrogen wastewater (n=9)

    图  4  处理NH4 +-N废水时各湿地对氮磷的净化效果(n=9)

    注:图中字母不同表示差异显著(P<0.05)。

    Figure  4.  Nitrogen and phosphorus purification efficiency in each wetland during treating ammonia-nitrogen wastewater (n=9)

    图  5  处理NO3 -N废水时各湿地水体理化指标变化(n=9)

    Figure  5.  Variation of physicochemical indexes of water in each wetland during treating nitrate-nitrogen wastewater (n=9)

    图  6  处理NO3 -N废水时各湿地氮磷浓度和COD变化(n=9)

    Figure  6.  Variation of nitrogen, phosphorus and COD concentrations of water in each wetland during treating nitrate-nitrogen wastewater (n=9)

    图  7  处理NO3 -N废水时各湿地对氮磷的净化效果

    注:同图4。

    Figure  7.  Nitrogen and phosphorus purification efficiency in each wetland during treating nitrate-nitrogen wastewater

    表  1  湿地2种模拟废水进水水质特征

    Table  1.   Water quality characteristics of two simulated wastewater influent in wetland

    进水类型TN浓度/(mg/L)TP浓度/(mg/L)COD/(mg/L)NO3 -N浓度/(mg/L)NH4 +-N浓度/(mg/L)pHDO浓度/(mg/L)水温/°C
    NO3 -N废水12.2±1.00.4±0.339.1±3.18.4±0.52.6±0.48.4±0.55.5±0.331.4±2.3
    NH4 +-N废水14.3±0.80.6±0.141.6±4.02.9±1.510.2±2.47.9±0.25.3±1.633.7±0.7
    下载: 导出CSV
  • [1] McDONALD R I, WEBER K F, PADOWSKI J, et al. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(32):9117-9122. doi: 10.1073/pnas.1605354113
    [2] 蔡佳佩, 朱坚, 彭华, 等.有机肥施用对田面水氮磷流失风险的影响[J]. 环境科学研究,2020,33(1):210-217.

    CAI J P, ZHU J, PENG H, et al. Effects of organic fertilizer on the risk of nitrogen and phosphorus loss in soil surface water[J]. Research of Environmental Sciences,2020,33(1):210-217.
    [3] 任加国, 范坤, 陈清, 等.田埂在农业面源污染治理中的应用现状与展望[J]. 环境工程技术学报,2023,13(1):262-269. doi: 10.12153/j.issn.1674-991X.20210609

    REN J G, FAN K, CHEN Q, et al. Application status and prospect of field ridge in agricultural non-point source pollution treatment[J]. Journal of Environmental Engineering Technology,2023,13(1):262-269. doi: 10.12153/j.issn.1674-991X.20210609
    [4] 杨林章, 冯彦房, 施卫明, 等.我国农业面源污染治理技术研究进展[J]. 中国生态农业学报,2013,21(1):96-101.

    YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-agriculture,2013,21(1):96-101.
    [5] WU H M, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation[J]. Bioresource Technology,2015,175:594-601. doi: 10.1016/j.biortech.2014.10.068
    [6] JI M D, HU Z, HOU C L, et al. New insights for enhancing the performance of constructed wetlands at low temperatures[J]. Bioresource Technology,2020,301:122722. doi: 10.1016/j.biortech.2019.122722
    [7] 苑韶峰, 吕军.流域农业非点源污染研究概况[J]. 土壤通报,2004,35(4):507-511.

    YUAN S F, LÜ J. A general introduction of agricultural nonpoint source pollution in watersheds[J]. Chinese Journal of Soil Science,2004,35(4):507-511.
    [8] 薛利红, 杨林章.太湖流域稻田湿地对低污染水中氮磷的净化效果[J]. 环境科学研究,2015,28(1):117-124. doi: 10.13198/j.issn.1001-6929.2015.01.16

    XUE L H, YANG L Z. Purification of water with low concentrations of N and P in paddy wetlands in Taihu Lake region[J]. Research of Environmental Sciences,2015,28(1):117-124. doi: 10.13198/j.issn.1001-6929.2015.01.16
    [9] CAO Y S, SUN H F, LIU Y Q, et al. Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management[J]. Environmental Science and Pollution Research,2017,24(5):4841-4850. doi: 10.1007/s11356-016-8191-y
    [10] LUO P, LIU F, ZHANG S N, et al. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management[J]. Bioresource Technology,2018,258:247-254. doi: 10.1016/j.biortech.2018.03.017
    [11] ZHANG S N, LIU F, HUANG Z R, et al. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures[J]. Bioresource Technology,2020,301:122744. doi: 10.1016/j.biortech.2020.122744
    [12] 凌宇, 闫国凯, 王海燕, 等.6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学,2021,42(5):2422-2431.

    LING Y, YAN G K, WANG H Y, et al. Release mechanisms of carbon source and dissolved organic matter of six agricultural wastes in the initial stage[J]. Environmental Science,2021,42(5):2422-2431.
    [13] 张恒亮, 朱铁群, 王海燕, 等.芦苇碳源投加量对表面流人工湿地中试系统强化脱氮启动的影响[J]. 环境工程技术学报,2017,7(3):332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047

    ZHANG H L, ZHU T Q, WANG H Y, et al. Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland[J]. Journal of Environmental Engineering Technology,2017,7(3):332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047
    [14] LIANG X Q, LIN L M, YE Y S, et al. Nutrient removal efficiency in a rice-straw denitrifying bioreactor[J]. Bioresource Technology,2015,198:746-754. doi: 10.1016/j.biortech.2015.09.083
    [15] 张雯. 以农业废弃物为基料的地下水反硝化缓释碳源材料研究及应用[D]. 南京: 南京大学, 2017.
    [16] 邵留, 徐祖信, 金伟, 等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J]. 环境科学,2009,30(5):1414-1419.

    SHAO L, XU Z X, JIN W, et al. Nitrate removal from wastewater using rice straw as carbon source and biofilm carrier[J]. Environmental Science,2009,30(5):1414-1419.
    [17] YANG X L, JIANG Q, SONG H L, et al. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR[J]. Journal of Hazardous Materials,2015,283:186-192. doi: 10.1016/j.jhazmat.2014.09.036
    [18] CAI M, ZHANG X, ABDELHAFEZ A A, et al. Feasibility of improving nitrogen removal by integrating the rice straw and zeolite with drainage ditches for farmland runoff control[J]. Environmental Technology & Innovation,2021,21:101359.
    [19] KUMAR M, LEE P Y, FUKUSIHMA T, et al. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR[J]. Bioresource Technology,2012,113:148-153. doi: 10.1016/j.biortech.2011.12.102
    [20] CUI N X, CAI M, ZHANG X, et al. Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: effects of long-term chemical N fertilizer and organic manure applications[J]. Global Ecology and Conservation,2020,22:e01011. doi: 10.1016/j.gecco.2020.e01011
    [21] ZHAO D H, CHEN C, LU Q Q, et al. Combined use of cold-season and warm-season macrophytes in floating constructed wetlands to increase nitrogen removal in the early cold season[J]. Journal of Cleaner Production,2020,254:120054. doi: 10.1016/j.jclepro.2020.120054
    [22] HUA Y M, PENG L, ZHANG S H, et al. Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater[J]. Ecological Engineering,2017,108:70-77. doi: 10.1016/j.ecoleng.2017.08.007
    [23] KÖRNER S. Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel[J]. Acta Hydrochimica et Hydrobiologica,1999,27(1):27-31. doi: 10.1002/(SICI)1521-401X(199901)27:1<27::AID-AHEH27>3.0.CO;2-1
    [24] YAN L Y, ZHANG S H, LIN D, et al. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands[J]. Science of the Total Environment,2018,622/623:121-126. doi: 10.1016/j.scitotenv.2017.11.234
    [25] MA Y H, ZHENG X Y, HE S B, et al. Nitrification, denitrification and anammox process coupled to iron redox in wetlands for domestic wastewater treatment[J]. Journal of Cleaner Production,2021,300:126953. doi: 10.1016/j.jclepro.2021.126953
    [26] ZHUANG L L, YANG T, ZHANG J, et al. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: a review[J]. Bioresource Technology,2019,293:122086. doi: 10.1016/j.biortech.2019.122086
    [27] 徐兵兵, 卢峰, 黄清辉, 等.东苕溪水体氮、磷形态分析及其空间差异性[J]. 中国环境科学,2016,36(4):1181-1188. doi: 10.3969/j.issn.1000-6923.2016.04.034

    XU B B, LU F, HUANG Q H, et al. Forms of nitrogen and phosphorus and their spatial variability in East Tiaoxi River[J]. China Environmental Science,2016,36(4):1181-1188. doi: 10.3969/j.issn.1000-6923.2016.04.034
    [28] 叶斌, 吴蕾, 李春华, 等.苦草不同生命阶段对水体、底泥中氮迁移转化的影响[J]. 环境工程技术学报,2015,5(6):485-491. doi: 10.3969/j.issn.1674-991X.2015.06.076

    YE B, WU L, LI C H, et al. Effect of different life stage Vallisneria natans (lour. ) Hara on migration and transformation of nitrogen in water and sediment[J]. Journal of Environmental Engineering Technology,2015,5(6):485-491. doi: 10.3969/j.issn.1674-991X.2015.06.076
    [29] ZHANG J, SUN H M, WANG W G, et al. Enhancement of surface flow constructed wetlands performance at low temperature through seasonal plant collocation[J]. Bioresource Technology,2017,224:222-228. doi: 10.1016/j.biortech.2016.11.006
    [30] ZHANG D, WANG C A, ZHOU Q H, et al. Sediments nitrogen cycling influenced by submerged macrophytes growing in winter[J]. Water Science and Technology,2021,83(7):1728-1738. doi: 10.2166/wst.2021.081
    [31] CUI N X, ZHANG X, CAI M, et al. Does rice straw addition and/or Vallisneria natans (Lour.) planting contribute to enhancement in nitrate nitrogen and phosphorus removal in constructed wetlands under low temperature[J]. Bioresource Technology,2022,350:126896. doi: 10.1016/j.biortech.2022.126896
    [32] CHEN C, SONG Y H, YUAN Y C. The operating characteristics of partial nitrification by controlling pH and alkalinity[J]. Water,2021,13(3):286. doi: 10.3390/w13030286
    [33] CHEN D Y, CHEN X C, HUANG X B, et al. Controlling denitrification accompanied with nitrite accumulation at the sediment-water interface[J]. Ecological Engineering,2017,100:194-198. doi: 10.1016/j.ecoleng.2016.12.019
    [34] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management,2019,246:832-839.
    [35] CUI L J, LI W, ZHANG Y Q, et al. Nitrogen removal in a horizontal subsurface flow constructed wetland estimated using the first-order kinetic model[J]. Water,2016,8(11):514. ◇ doi: 10.3390/w8110514
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  131
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16

目录

    /

    返回文章
    返回