留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe2+-PDS调理-水平电场脱水工艺对疏浚底泥脱水性能的影响

朱书源 王毅力

朱书源,王毅力.Fe2+-PDS调理-水平电场脱水工艺对疏浚底泥脱水性能的影响[J].环境工程技术学报,2023,13(6):2192-2203 doi: 10.12153/j.issn.1674-991X.20230045
引用本文: 朱书源,王毅力.Fe2+-PDS调理-水平电场脱水工艺对疏浚底泥脱水性能的影响[J].环境工程技术学报,2023,13(6):2192-2203 doi: 10.12153/j.issn.1674-991X.20230045
ZHU S Y,WANG Y L.Effect of Fe2+-PDS conditioning-horizontal electro-dewatering process on dewatering performance of dredged sediment[J].Journal of Environmental Engineering Technology,2023,13(6):2192-2203 doi: 10.12153/j.issn.1674-991X.20230045
Citation: ZHU S Y,WANG Y L.Effect of Fe2+-PDS conditioning-horizontal electro-dewatering process on dewatering performance of dredged sediment[J].Journal of Environmental Engineering Technology,2023,13(6):2192-2203 doi: 10.12153/j.issn.1674-991X.20230045

Fe2+-PDS调理-水平电场脱水工艺对疏浚底泥脱水性能的影响

doi: 10.12153/j.issn.1674-991X.20230045
基金项目: 国家自然科学基金面上项目(51978054)
详细信息
    作者简介:

    朱书源(1998—),男,硕士研究生,主要从事污泥减量化研究,1352883860@qq.com

    通讯作者:

    王毅力(1972—),男,教授,研究方向为固体废物处理处置,wangyilimail@126.com

  • 中图分类号: X703

Effect of Fe2+-PDS conditioning-horizontal electro-dewatering process on dewatering performance of dredged sediment

  • 摘要:

    针对高含水率疏浚底泥限制其后续处置的问题,应用Fe2+-过二硫酸盐(PDS)调理-水平电场脱水(HED)工艺处理底泥样品,研究响应曲面法对Fe2+-PDS调理-HED工艺操作参数(Fe2+及PDS的投加量、电压、通电时间)的优化,分析调理过程底泥形貌及性质的变化以及工艺各阶段(调理、重力沉降、电脱水)底泥水分及有机组分的沿程变化。结果表明:1)Fe2+和PDS调理底泥时,最佳投加量分别为4和10 mg/g(以TSS计),HED阶段最佳通电时间为80 min,最佳电压为45 V,在上述参数下,脱水底泥含水率由原泥的88.55%降至55.15%。2)在调理阶段,底泥结合水含量由0.44 g/g(以干固体计,全文同)降至0.28 g/g,胞外聚合物(EPS)中蛋白质和多糖总量增加,黏液层(Slime)中蛋白质类物质和可溶性微生物副产物荧光强度降低,紧密附着层(TB-EPS)中总荧光强度增至12.40×107 AU·nm2;在HED阶段,电场作用导致底泥有机物的进一步释放从阴极流出,阴极区EPS各层中的可溶性微生物副产物荧光强度显著增加。3)调理过程产生的硫酸根自由基(SO4 ·)能够氧化破解底泥中的微生物细胞并将内含物释放至EPS中,同时改变底泥的水分分布与EPS组分特征,原位产生的Fe(Ⅲ)通过絮凝作用改变了底泥的絮体结构,从而有利于底泥脱水性能的提升。

     

  • 图  1  重力沉降与HED试验装置

    Figure  1.  Experimental device of gravity settling and horizontal electro-dewatering

    图  2  CST测定装置示意

    Figure  2.  Schematic diagram of CST testing device

    图  3  Fe2+和PDS投加量对底泥SCST及SRF的影响

    Figure  3.  Effect of Fe2+ and PDS dosage on SCST and SRF of the sediment

    图  4  电场条件对底泥含水率和脱水能耗的影响

    Figure  4.  Influence of the electric field conditions on the sediment water content and dewatering energy consumption

    图  5  调理前后底泥SEM图

    Figure  5.  SEM images of the sediment before and after conditioning

    图  6  Fe2+-PDS调理-HED工艺各阶段底泥的DSC热谱图

    Figure  6.  DSC thermograms of sediment at different stages of Fe2+-PDS conditioning-HED process

    图  7  Fe2+-PDS调理-HED工艺各阶段底SCOD的变化

    工艺阶段:1—原始底泥;2—调理阶段;3—重力沉降阶段;4—HED阶段(阴极区);5—HED阶段(阳极区)。

    Figure  7.  Variations of SCOD at different stages of Fe2+-PDS conditioning - HED process

    图  8  Fe2+-PDS调理-HED工艺各阶段TOC浓度的变化

    注:同图7

    Figure  8.  Variations of TOC at different stages of Fe2+-PDS conditioning - HED process

    图  9  Fe2+-PDS调理-HED工艺各阶段EPS各层中蛋白质、多糖、腐殖酸浓度变化

    注:同图7

    Figure  9.  Variations of proteins, polysaccharides and humic acids contents of EPS layers (Slime, LB-EPS, TB-EPS) at different stages of Fe2+-PDS conditioning-HED process

    图  10  不同阶段底泥EPS各层的三维荧光光谱图

    Figure  10.  EEM fluorescence spectra of each layer in sediment EPS at different stages of Fe2+-PDS conditioning - HED process

    图  11  Fe2+-PDS调理-HED工艺各阶段底泥EPS各层的荧光强度及FRI分布

    注:横轴中S为Slime;L为LB-EPS;T为TB-EPS。数字代表工艺阶段:1—原始底泥;2—调理阶段;3—重力沉降阶段;4—HED阶段(阴极区);5—HED阶段(阳极区)。

    Figure  11.  Fluorescence intensities and FRI distributions of each layer in sediment EPS at different stages of Fe2+-PDS conditioning-HED process

    表  1  试验用底泥的理化性质

    Table  1.   Physicochemical properties of experimental sediment

    底泥批次含水率/%TSS/(g/L)VSS/(g/L)pH毛细吸水时间/s电导率/(mS/cm)
    第一批87.73±0.006131.00±0.1312.50±0.086.82±0.0161.60±1.060.52±0.01
    第二批88.55±0.004116.40±0.2410.10±0.236.97±0.01125.00±2.240.54±0.01
    第三批90.70±0.01395.00±0.048.40±0.176.68±0.01137.50±2.050.55±0.01
    下载: 导出CSV

    表  2  Fe2+和PDS投加量的试验设计

    Table  2.   Experimental design of Fe2+ and PDS dosage

    试验编号Fe2+投加量/(mg/g)PDS投加量/(mg/g)
    100
    2020
    3050
    480
    5820
    6850
    7200
    82020
    92050
    下载: 导出CSV

    表  3  通电时间和电压的试验设计

    Table  3.   Experimental design of power-on time and voltage

    试验组电压/V通电时间/min
    通电时间的变化4010
    20
    30
    60
    120
    电压的变化1060
    20
    30
    40
    50
    下载: 导出CSV

    表  4  响应曲面法试验因素水平及编码

    Table  4.   Code and level of factors chosen for the trials through the response surface method (RSM)

    水平Fe2+投加量(X1)/(mg/g)PDS投加量(X2)/(mg/g)电压(X3)/V通电时间(X4)/min
    −1.412.345.868.7917.57
    −1.004.0010.0010.0030.00
    0.008.0020.0030.0060.00
    1.0012.0030.0045.0090.00
    1.4113.6634.1451.21102.43
    下载: 导出CSV

    表  5  FRI分析法中5个荧光分区

    Table  5.   Five Ex/Em regions for FRI analysis

    区域Ex/Em)/(nm/nm)荧光物质
    200~250/300~330酪氨酸
    200~250/330~380色氨酸
    200~250/380~500富里酸类物质
    250~400/300~380可溶性微生物副产物
    250~400/380~500腐殖酸类物质
    下载: 导出CSV

    表  6  中心复合设计及响应值

    Table  6.   Central composite design and response values

    序号X1
    /
    (mg/g)
    X2
    /
    (mg/g)
    X3
    /V
    X4
    /
    min
    Y1/%Y2/(kW·h/kg)
    实际值预期值实际值预期值
    18203010258.5358.970.300.35
    2430159061.4361.640.120.12
    3430153064.7162.510.100.07
    4834.14306060.3060.280.400.39
    5430453056.5457.370.320.33
    6820306058.7358.910.210.28
    7820306061.5858.910.280.28
    882051.26057.5156.890.560.55
    9410459056.2354.990.310.28
    101230159063.4363.490.140.16
    11820306059.0158.910.230.28
    128208.86063.4764.180.030.01
    131210153065.1663.950.050.07
    141230153063.4764.940.060.06
    15410159061.7661.320.050.02
    16820306057.9158.910.260.28
    171210453060.2860.300.400.35
    181230459059.4457.971.040.91
    1985.86306059.4959.600.230.16
    20430459054.0154.960.590.61
    2113.6620306058.3458.070.280.36
    22820306057.8558.910.230.28
    23410153062.0363.730.050.14
    241210459053.8555.790.460.52
    251230453060.7760.950.510.58
    26820306058.5158.910.310.28
    271210159061.5660.960.060.01
    28820301863.0962.740.320.20
    292.3420306055.4355.790.190.19
    30410453059.2658.940.150.16
    下载: 导出CSV

    表  7  回归方程的方差分析

    Table  7.   Variance analysis of regression equation

    模型相关系
    数(R2
    校正后相关
    系数(Radj2
    均值FP失拟项显著性
    Y10.874 30.757 015.900 07.450.000 20.448 2显著
    Y20.937 90.905 30.122 728.71<0.000 10.085 2显著
    下载: 导出CSV

    表  8  工艺各阶段底泥水分含量及分布

    Table  8.   Water content and distribution in sediment at different stages of Fe2+-PDS conditioning-HED process g/g 

    工艺阶段总水分自由水结合水
    原始底泥9.76±0.139.32±0.110.44±0.03
    Fe2+-PDS调理阶段9.76±0.089.48±0.040.28±0.01
    重力沉降阶段1.94±0.031.66±0.020.29±0.01
    HED阶段(阴极区)1.54±0.031.23±0.040.32±0.01
    HED阶段(阳极区)1.26±0.020.97±0.010.30±0.01
    下载: 导出CSV
  • [1] 钱旭. 活性污泥磁化调理-电脱水性能与过程机制研究[D]. 北京: 北京林业大学, 2016.
    [2] 陈雄峰, 荆一凤, 吕鑑, 等.电渗法对太湖环保疏浚底泥脱水干化研究[J]. 环境科学研究,2006,19(5):54-58. doi: 10.3321/j.issn:1001-6929.2006.05.010

    CHEN X F, JING Y F, LÜ J, et al. The research of environmental dredged sludge dewatering in Taihu Lake by electro-osmotic[J]. Research of Environmental Sciences,2006,19(5):54-58. doi: 10.3321/j.issn:1001-6929.2006.05.010
    [3] 季雪元, 王毅力, 冯晶.水平电场作用下活性污泥的脱水研究[J]. 环境科学,2012,33(12):4393-4399.

    JI X Y, WANG Y L, FENG J. Study on dewatering of activated sludge under applied electric field[J]. Environmental Science,2012,33(12):4393-4399.
    [4] MAHMOUD A, OLIVIER J, VAXELAIRE J, et al. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects[J]. Water Research,2011,45(9):2795-2810. doi: 10.1016/j.watres.2011.02.029
    [5] 李英华, 黄天赐, 钱杰, 等.基于过硫酸盐的高级氧化工艺修复有机污染土壤的研究进展[J]. 环境科学研究,2023,36(1):168-179.

    LI Y H, HUANG T C, QIAN J, et al. Persulfate based-advanced oxidation process for organic-contaminated soil remediation: a review[J]. Research of Environmental Sciences,2023,36(1):168-179.
    [6] ZHOU X, WANG Q L, JIANG G M, et al. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate[J]. Bioresource Technology,2015,185:416-420. doi: 10.1016/j.biortech.2015.02.088
    [7] LI H X, WANG Y L, ZHENG H L. Variations of moisture and organics in activated sludge during Fe0/S2O82− conditioning-horizontal electro-dewatering process[J]. Water Research,2018,129:83-93. doi: 10.1016/j.watres.2017.11.006
    [8] SHA L, WU Z X, LING Z C, et al. Investigation on the improvement of activated sludge dewaterability using different iron forms (ZVI vs. Fe(Ⅱ))/peroxydisulfate combined vertical electro-dewatering processes[J]. Chemosphere,2022,292:133416. doi: 10.1016/j.chemosphere.2021.133416
    [9] 李代魁, 何萍, 刘存歧, 等.应用多种生物类群评价白洋淀水环境质量变化[J]. 应用生态学报,2021,32(12):4488-4498.

    LI D K, HE P, LIU C Q, et al. Evaluation of eutrophication level changes in Baiyangdian Lake based on multiple biological groups[J]. Chinese Journal of Applied Ecology,2021,32(12):4488-4498.
    [10] 尹德超, 王雨山, 祁晓凡, 等. 白洋淀表层沉积物氮磷分布、储量及污染评价[J/OL]. 地质通报, 2022. (2022-03-03)[2023-01-12]. https://kns.cnki.net/kcms/detail/11.4648.P.20220301.1851.002.html.

    YIN D C, WANG Y S, QI X F, et al. Distribution, reserves and pollution evaluation of nitrogen and phosphorus in surface sediments of Baiyangdian Lake[J/OL]. Geological Bulletin of China, 2022. (2022-03-03)[2023-01-12]. https://kns.cnki.net/kcms/detail/11.4648.P.20220301.1851.002.html.
    [11] 魏伟伟, 李春华, 叶春, 等.基于底泥重金属污染及生态风险评价的星云湖疏浚深度判定[J]. 环境工程技术学报,2020,10(3):385-391.

    WEI W W, LI C H, YE C, et al. Determination of dredging depth of Xingyun Lake based on heavy metal pollution and ecological risk assessment of sediment[J]. Journal of Environmental Engineering Technology,2020,10(3):385-391.
    [12] 万雪娇. 白洋淀疏浚底泥处理及资源化利用技术研究[D]. 天津: 天津大学, 2019.
    [13] GAO Y F, ZHOU Y. Effect of vacuum degree and aeration rate on sludge dewatering behavior with the aeration-vacuum method[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering),2010,11(9):638-655. doi: 10.1631/jzus.A0900651
    [14] FAN X Y, WANG Y L, ZHANG D X, et al. Effects of acid, acid-ZVI/PMS, Fe(Ⅱ)/PMS and ZVI/PMS conditioning on the wastewater activated sludge (WAS) dewaterability and extracellular polymeric substances (EPS)[J]. Journal of Environmental Sciences,2020,91:73-84. doi: 10.1016/j.jes.2020.01.009
    [15] LI Y F, YANG F, MIAO S Z, et al. Achieved deep-dewatering of dredged sediments by Fe(Ⅱ) activating persulfate pretreatment: Filtrating performance and mechanistic insights[J]. Chemical Engineering Journal,2021,405:126847. doi: 10.1016/j.cej.2020.126847
    [16] GUO J Y, GAO Q F, CHEN Y H, et al. Insight into sludge dewatering by advanced oxidation using persulfate as oxidant and Fe2+ as activator: performance, mechanism and extracellular polymers and heavy metals behaviors[J]. Journal of Environmental Management,2021,288:112476. doi: 10.1016/j.jenvman.2021.112476
    [17] 李婷, 王毅力, 冯晶, 等.活性污泥的理化性质与絮凝调理投药量的关系[J]. 环境科学,2012,33(3):889-895.

    LI T, WANG Y L, FENG J, et al. Relationship between physicochemical characteristics of activated sludge and polymer conditioning dosage[J]. Environmental Science,2012,33(3):889-895.
    [18] NIU M Q, ZHANG W J, WANG D S, et al. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants[J]. Bioresource Technology,2013,144:337-343. doi: 10.1016/j.biortech.2013.06.126
    [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [20] LEE D J, LEE S F. Measurement of bound water content in sludge: the use of differential scanning calorimetry (DSC)[J]. Journal of Chemical Technology AND Biotechnology,1995,62(4):359-365. doi: 10.1002/jctb.280620408
    [21] YU G H, HE P J, SHAO L M, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology,2008,42(21):7944-7949.
    [22] FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology,1995,43(4):755-761. doi: 10.1007/BF00164784
    [23] 陈钧辉. 生物化学实验[M]. 3版. 北京: 科学出版社, 2003.
    [24] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [25] CHEN Y S, CHEN H P, LI J, et al. Rapid and efficient activated sludge treatment by electro-Fenton oxidation[J]. Water Research,2019,152:181-190. doi: 10.1016/j.watres.2018.12.035
    [26] QIAN X, WANG Y L, ZHENG H L. Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED)[J]. Water Research,2016,88:93-103. doi: 10.1016/j.watres.2015.10.001
    [27] HE D Q, LUO H W, HUANG B C, et al. Enhanced dewatering of excess activated sludge through decomposing its extracellular polymeric substances by a Fe@Fe2O3-based composite conditioner[J]. Bioresource Technology,2016,218:526-532. doi: 10.1016/j.biortech.2016.06.139
    [28] TUAN P A, JURATE V, MIKA S. Electro-dewatering of sludge under pressure and non-pressure conditions[J]. Environmental Technology,2008,29(10):1075-1084. doi: 10.1080/09593330802180294
    [29] DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: implication on activated sludge floc structure[J]. Water Science and Technology,1998,38(8/9):45-53.
    [30] 高诗卉. Fe0/Fe3C@CS激发PMS与peroxone-Fe(Ⅲ)调理对活性污泥脱水性能的影响研究[D]. 北京: 北京林业大学.
    [31] LIU J, YANG Q, WANG D B, et al. Enhanced dewaterability of waste activated sludge by Fe(Ⅱ)-activated peroxymonosulfate oxidation[J]. Bioresource Technology,2016,206:134-140. doi: 10.1016/j.biortech.2016.01.088
    [32] YOU G X, WANG P F, HOU J, et al. Insights into the short-term effects of CeO2 nanoparticles on sludge dewatering and related mechanism[J]. Water Research,2017,118:93-103. doi: 10.1016/j.watres.2017.04.011
    [33] GAO S H, WANG Y L, ZHANG D X, et al. Insight to peroxone-Fe(Ⅲ) joint conditioning-horizontal electro-dewatering process on water reduction in activated sludge: performance and mechanisms[J]. Journal of Hazardous Materials,2021,402:123441. ⊗ doi: 10.1016/j.jhazmat.2020.123441
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  91
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回