留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腐殖酸改良脱碱赤泥的环境风险评估

李达 徐康宁 郭飞

李达,徐康宁,郭飞.腐殖酸改良脱碱赤泥的环境风险评估[J].环境工程技术学报,2023,13(6):2213-2220 doi: 10.12153/j.issn.1674-991X.20230047
引用本文: 李达,徐康宁,郭飞.腐殖酸改良脱碱赤泥的环境风险评估[J].环境工程技术学报,2023,13(6):2213-2220 doi: 10.12153/j.issn.1674-991X.20230047
LI D,XU K N,GUO F.Environmental risk assessment of humic acid modified dealkalized red mud[J].Journal of Environmental Engineering Technology,2023,13(6):2213-2220 doi: 10.12153/j.issn.1674-991X.20230047
Citation: LI D,XU K N,GUO F.Environmental risk assessment of humic acid modified dealkalized red mud[J].Journal of Environmental Engineering Technology,2023,13(6):2213-2220 doi: 10.12153/j.issn.1674-991X.20230047

腐殖酸改良脱碱赤泥的环境风险评估

doi: 10.12153/j.issn.1674-991X.20230047
基金项目: 国家自然科学基金创新研究群体项目(2021-JY-02)
详细信息
    作者简介:

    李达(1998—),男,硕士研究生,主要研究方向为水生态风险评估与污染控制工程,1062695885@qq.com

    通讯作者:

    徐康宁(1983—),男,副教授,博士,主要研究方向为有机固废资源化处理和水污染控制,xukangning@bjfu.edu.cn

  • 中图分类号: X53

Environmental risk assessment of humic acid modified dealkalized red mud

  • 摘要:

    处理过酸性矿涌水的赤泥如果未经处理大量堆存会对环境造成严重的危害,对其进行土壤化改良是实现其大宗消纳的一种可行性方法。腐殖酸呈酸性,是自然界中广泛存在的大分子有机物质,其对土壤的修复和改良作用十分明显。为研究腐殖酸改良脱碱赤泥的环境风险,通过腐殖酸联合脱碱赤泥试验,对脱碱赤泥及其浸出液的理化性质进行了分析,并对添加腐殖酸后脱碱赤泥的浸出风险进行了评估。结果表明:添加质量百分比(腐殖酸:赤泥)为10%的腐殖酸改良脱碱赤泥效果最好。此时,脱碱赤泥pH由9.1降至7.8左右;脱碱赤泥在pH较高时电动电位(Zeta电位)绝对值由20增大到28;腐殖酸中的富里酸类物质会逐渐转变成更加稳定的胡敏酸类物质;脱碱赤泥浸出液金属离子浓度降低,对赤泥金属离子固定有一定积极作用。综上,腐殖酸改良脱碱赤泥可以降低脱碱赤泥的环境风险。

     

  • 图  1  拜耳法赤泥的XRD图谱

    Figure  1.  X-ray diffraction patterns of Bayer red mud

    图  2  腐殖酸对脱碱赤泥pH的影响

    Figure  2.  Effect of humic acid addition on pH of dealkalized red mud

    图  3  腐殖酸对脱碱赤泥电导率的影响

    Figure  3.  Effect of humic acid addition on conductivity of dealkalized red mud

    图  4  腐殖酸加入脱碱赤泥后三维荧光光谱随时间的变化

    Figure  4.  Changes of three-dimensional fluorescence spectra with time after adding humic acid to dealkalized red mud

    图  5  不同pH条件下L10-10d、L10-20d、L10-30d的Zeta电位变化情况

    Figure  5.  Zeta potential changes of L10-10d, L10-20d, L10-30d for samples under different pH conditions

    图  6  不同pH条件下原始赤泥、脱碱赤泥、L10-30d的Zeta电位变化情况

    Figure  6.  Zeta potential changes of raw red mud, dealkalized red mud, L10-30d under different pH conditions

    图  7  不同条件下脱碱赤泥重金属浸出情况

    Figure  7.  Leaching of heavy metals from dealkalized red mud under different conditions

    表  1  试验试剂规格、厂家及CAS编号

    Table  1.   Specification, manufacturer and CAS number of experimental reagent

    试剂名称纯度规格生产厂家CAS编号
    浓硫酸分析纯北京化工厂有限公司7664-93-9
    七水硫酸亚铁分析纯上海国药化学试剂有限公司7782-63-0
    硫酸锰分析纯上海麦克林生化科技有限公司7785-87-7
    硝酸分析纯北京化工厂有限公司7697-37-2
    盐酸分析纯北京化工厂有限公司7647-01-0
    腐殖酸分析纯天津市津科精细化工研究所1415-93-6
    氯化钠分析纯天津百世化工有限公司2647-14-5
    下载: 导出CSV

    表  2  荧光区域积分法区域范围及有机物类型

    Table  2.   Region range and organic type of fluorescence region integral method

    区域名称区域范围(Ex/Em)/nm有机物类型
    220~250/260~320芳香蛋白类物质Ⅰ
    220~250/320~380芳香蛋白类物质Ⅱ
    220~300/>380富里酸类物质
    250~450/280~380溶解性微生物代谢产物
    300~450/>380腐殖质类物质
    下载: 导出CSV

    表  3  重金属浸出浓度限值

    Table  3.   Metal leaching concentration limits mg/L 

    重金属浸出浓度限值
    GB 5085.3—2007GB 3838—2002
    As 5.0 0.1
    Cr 15.0 0.1
    Cu 100.0 1.0
    Pb 5.0 1.0
    Se 1.0 0.02
    Zn 100.0 2.0
    Cd 1.0 0.01
    Hg 0.1 0.001
    Ba 100.0
    Ni 5.0
    Ag 5.0
      注:—表示该标准中并无此类项目。
    下载: 导出CSV
  • [1] 肖利萍, 宋佳诺, 王睿键, 等.赤泥复合颗粒去除Fe2+、Mn2+影响因素及吸附性能[J]. 非金属矿,2017,40(6):82-84.

    XIAO L P, SONG J N, WANG R J, et al. Influencing factors and adsorption properties of Fe2+ and Mn2+ removal by red mud composite particles[J]. Non-Metallic Mines,2017,40(6):82-84.
    [2] 卢仪思, 王明明, 黄耕, 等.改性赤泥处理酸性矿井废水的试验研究[J]. 非金属矿,2018,41(6):15-18.

    LU Y S, WANG M M, HUANG G, et al. Experimental study on treatment to acid mine drainage by modified red mud[J]. Non-Metallic Mines,2018,41(6):15-18.
    [3] 王芳, 罗琳, 易建龙, 等.赤泥质陶粒吸附模拟酸性废水中铜离子的行为[J]. 环境工程学报,2016,10(5):2440-2446.

    WANG F, LUO L, YI J L, et al. Adsorption behavior of red mud ceramsite to Cu2+ from simulated acidic wastewater[J]. Chinese Journal of Environmental Engineering,2016,10(5):2440-2446.
    [4] 王春丽, 吴俊奇, 宋永会, 等.活化赤泥颗粒吸附除磷的效能与机制研究[J]. 环境工程技术学报,2015,5(2):143-148.

    WANG C L, WU J Q, SONG Y H, et al. Study on adsorption efficiency and mechanism of activated red mud particles for phosphorus removal[J]. Chinese Journal of Environmental Engineering Technology,2015,5(2):143-148.
    [5] 黄琼华. 赤泥土壤化初步研究[D]. 武汉: 华中科技大学, 2008.
    [6] ZHU F, HOU J T, XUE S G, et al. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J]. Land Degradation & Development,2017,28(7):2109-2120.
    [7] XENIDIS Y, ANGELIDES D. A fuzzy model for assessing the risk in build-operate-transfer projects[J]. European Journal of Soil Biology,2005,52(3):32-37.
    [8] 胡树翔, 吕十全, 王新, 等.生物质对赤泥壤质化改良的促进作用[J]. 环境工程学报,2022,16(10):3402-3409.

    HU S X, LÜ S Q, WANG X, et al. Effect of biomass on soil amelioration of red mud[J]. Chinese Journal of Environmental Engineering,2022,16(10):3402-3409.
    [9] LI Y W, LUO X H, LI C X, et al. Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment[J]. Journal of Central South University,2019,26(2):361-372. doi: 10.1007/s11771-019-4008-8
    [10] BELVISO C, KHARCHENKO A, AGOSTINELLI E, et al. Red mud as aluminium source for the synthesis of magnetic zeolite[J]. Microporous and Mesoporous Materials,2018,270:24-29. doi: 10.1016/j.micromeso.2018.04.038
    [11] 韩剑宏, 孙一博, 张连科, 等.生物炭与腐殖酸配施对盐碱土理化性质的影响[J]. 干旱地区农业研究,2020,38(6):121-127.

    HAN J H, SUN Y B, ZHANG L K, et al. Effect of biochar and humic acid on physical and chemical properties of saline-alkali soil[J]. Agricultural Research in the Arid Areas,2020,38(6):121-127.
    [12] WONG J W C, HO G E. Use of waste gypsum in the revegetation on red mud deposits: a greenhouse study[J]. Waste Management & Research,1993,11(3):249-256.
    [13] 董远鹏, 刘喜娟, 董梦阳, 等.腐殖质和硝酸钙对赤泥团聚体形成的促进作用[J]. 环境污染与防治,2020,42(10):1205-1210.

    DONG Y P, LIU X J, DONG M Y, et al. Improvement effect of calcium nitrate and humus on the aggregate formation in bauxite residue[J]. Environmental Pollution & Control,2020,42(10):1205-1210.
    [14] 隋志男, 郅二铨, 姚杰, 等.三维荧光光谱区域积分法解析辽河七星湿地水体DOM组成及来源[J]. 环境工程技术学报,2015,5(2):114-120.

    SUI Z N, ZHI E Q, YAO J, et al. Characterization of DOM composition and origin using three-dimensional fluorescence spectroscopy coupled with region integration method in Qixing wetland[J]. Journal of Environmental Engineering Technology,2015,5(2):114-120.
    [15] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [16] 国家环境保护总局. 固体废物 浸出毒性浸出方法 翻转法: GB 5086.1—1997[S]. 北京: 中国环境科学出版社, 1997.
    [17] 国家环境保护总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3—2007[S]. 北京: 中国环境科学出版社, 2007.
    [18] 国家环境保护总局,国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002 [S]. 北京: 中国环境科学出版社, 2002.
    [19] 国家环境保护总局. 固体废物 浸出毒性浸出方法 硫酸硝酸法: HJ/T 299—2007[S]. 北京: 中国环境科学出版社, 2007.
    [20] 韩雷, 陈娟, 杜平, 等.不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究,2018,31(7):1289-1295.

    HAN L, CHEN J, DU P, et al. Effects of different passivating agents on ecological security of Cd polluted farmland soil[J]. Research of Environmental Sciences,2018,31(7):1289-1295.
    [21] 万芹莉, 李芹, 庞茵, 等.黄腐酸用于磷石膏脱碱赤泥土壤化的可行性研究[J]. 环境工程,2022,40(7):31-37.

    WAN Q L, LI Q, PANG Y, et al. Feasibility of soilification of phosphogypsum dealkalized red mud by applying fulvic acid[J]. Environmental Engineering,2022,40(7):31-37.
    [22] PATIL R B, KADAM A S, WADJE S. Role of potassium humate on growth and yield of soybean and black gram[J]. International Journal of Pharma and Bio Sciences,2011,2(1):242-246.
    [23] ZHANG J, LV B Y, XING M Y, et al. Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation–emission matrix[J]. Waste Management,2015,39:111-118. doi: 10.1016/j.wasman.2015.02.010
    [24] 刘运惠.氧化铝生产废渣: 赤泥的综合利用[J]. 环境科学研究,1987,1(2):46-49.

    LIU Y H. Comprehensive utilization of red mud from alumina production[J]. Research of Environmental Sciences,1987,1(2):46-49.
    [25] BURKE I T, PEACOCK C L, LOCKWOOD C L, et al. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater[J]. Environmental Science & Technology,2013,47(12):6527-6535.
    [26] 朱福军, 丁方军, 吴钦泉, 等.含腐植酸土壤调理剂对盐碱土的淋洗效应[J]. 腐植酸,2017(6):17-27.

    ZHU F J, DING F J, WU Q Q, et al. Effects of soil conditioners containing humic acid on leaching of saline-alkali soil[J]. Humic Acid,2017(6):17-27.
    [27] 付保东.腐殖酸在土壤改良中的应用研究进展[J]. 防护林科技,2016(3):83-84.

    FU B D. Research progress on application of humic acid in soil improvement[J]. Protection Forest Science and Technology,2016(3):83-84.
    [28] 张一清, 王文娥, 胡明宇, 等.容重及含水率对土壤电导率的影响研究[J]. 干旱地区农业研究,2022,40(3):162-169.

    ZHANG Y Q, WANG W E, HU M Y, et al. Influence of bulk density and water content on soil electrical conductivity[J]. Agricultural Research in the Arid Areas,2022,40(3):162-169.
    [29] 王春峰, 姚丹, 陈冠飞, 等.赤泥重金属和放射性元素的毒性浸出和生物可给性[J]. 环境科学研究,2017,30(05):809-816.

    WANG C F, YAO D, CHEN G F, et al. Toxic leaching and bioavailability of heavy metals and radioactive elements from red mud[J]. Research of Environmental Sciences,2017,30(05):809-816.
    [30] ZHU X B, LI W, GUAN X M. An active dealkalization of red mud with roasting and water leaching[J]. Journal of Hazardous Materials,2015,286:85-91. doi: 10.1016/j.jhazmat.2014.12.048
    [31] BRAY A W, STEWART D I, COURTNEY R, et al. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment[J]. Environmental Science & Technology,2018,52(1):152-161.
    [32] 台德志, 余纪鑫, 张华, 等. 基于光谱学技术对生物沥浸污泥与不同辅料堆肥过程中富里酸的研究[J/OL]. 环境工程, 2022. (2022-09-06)[2022-09-11]. https://kns.cnki.net/kcms/detail/11.2097.X.20220906.1609.012.html.
    [33] 魏自民, 席北斗, 李鸣晓, 等.微生物接种堆肥胡敏酸三维荧光特性研究[J]. 光谱学与光谱分析,2008,28(12):2895-2899.

    WEI Z M, XI B D, LI M X, et al. Study on three-dimensional fluorescence spectroscopy characteristics of humic acid during composting with microbes inoculation[J]. Spectroscopy and Spectral Analysis,2008,28(12):2895-2899.
    [34] LI S C, ZHANG J, LI Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: effect of superplasticizers[J]. Construction and Building Materials,2021,267:120910. doi: 10.1016/j.conbuildmat.2020.120910
    [35] REN J, CHEN J, GUO W, et al. Physical, chemical, and surface charge properties of bauxite residue derived from a combined process[J]. Journal of Central South University,2019,26(2):373-382. doi: 10.1007/s11771-019-4009-7
    [36] 袁朝良.几种土壤胶体电荷零点(ZPC)的初步研究[J]. 土壤学报,1981,18(4):345-352.

    YUAN C L. A preliminary study on the zero point of charge (ZPC) of some soil colloids[J]. Acta Pedologica Sinica,1981,18(4):345-352.
    [37] 栾富波, 谢丽, 李俊, 等.腐殖酸的氧化还原行为及其研究进展[J]. 化学通报,2008,71(11):833-837.

    LUAN F B, XIE L, LI J, et al. Redox behavior and research progress of humic acid[J]. Chemistry,2008,71(11):833-837.
    [38] 蒋煜峰, 袁建梅, 卢子扬, 等.腐殖酸对污灌土壤中Cu、Cd、Pb、Zn形态影响的研究[J]. 西北师范大学学报(自然科学版),2005,41(6):42-46.

    JIANG Y F, YUAN J M, LU Z Y, et al. The effect of humic acid on species of Cu, Cd, Pb, Zn in sewage farm[J]. Journal of Northwest Normal University (Natural Science Edition),2005,41(6):42-46.
    [39] 赵海霞, 宋永会, 钱锋, 等.污泥中磷和氮的厌氧溶出及其改性赤泥晶种结晶法回收工艺[J]. 环境工程技术学报,2012,2(06):473-479.

    ZHAO H X, SONG Y H, QIAN F, et al. Anaerobic leaching of phosphorus and nitrogen from sludge and its recovery by modified red micrite seed crystallization method[J]. Chinese Journal of Environmental Engineering Technology,2012,2(06):473-479. □
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  143
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-05-08
  • 修回日期:  2023-02-23
  • 网络出版日期:  2023-08-01

目录

    /

    返回文章
    返回