Factors influencing the hygroscopicity of aerosols and the effects of hygroscopicity on aerosol optical properties
-
摘要:
吸湿性是气溶胶重要的理化性质之一,气溶胶吸湿增长不仅会通过大气辐射效应影响气候,还对大气能见度有重要影响。介绍了气溶胶粒径吸湿增长与散射吸湿增长的概念,总结了测量气溶胶吸湿增长的方法,分析了粒径、化学组分、污染条件和混合状态对吸湿性的影响。结果表明:气溶胶的吸湿增长会使颗粒物含水量增多,改变气溶胶消光能力,从而对大气能见度以及气溶胶辐射强迫造成影响。未来,建议着重关注高相对湿度(相对湿度大于95%)下的气溶胶吸湿增长,加强气溶胶吸湿增长的垂直观测研究,并广泛开展吸湿和脱水2种环境下的气溶胶散射吸湿增长的测量和研究。
Abstract:The hygroscopicity is one of the important physicochemical properties of aerosols, which not only affects the climate through atmospheric radiation effects, but also has an important impact on atmospheric visibility. The concepts of aerosol particle size hygroscopic growth and scattered hygroscopic growth were introduced, the methods for measuring aerosol hygroscopic growth were summarized and the effects of particle size, chemical compositions, pollution conditions and mixing state on hygroscopicity were analyzed. It was found that the hygroscopic growth of aerosols could increase the water content of particles and affect the aerosol extinction capacity, thus affecting atmospheric visibility and aerosol radiative forcing. In the future, it was recommended to focus on aerosol hygroscopic growth at high relative humidity (>95%), strengthen vertical observation research on aerosol hygroscopic growth, and widely carry out the measurement and research on aerosol scattering hygroscopic growth under both hygroscopic and dehydrated conditions.
-
Key words:
- aerosol /
- hygroscopicity /
- influencing factors /
- optical properties /
- visibility /
- radiative forcing
-
表 1 气溶胶吸湿性测量方法总结
Table 1. Summary of techniques for aerosol hygroscopicity measurements
测量方法 原理 粒径范围 测量参数 优点 缺点 数据来源 电动力学天平法 通过调节电场使单个带电粒子悬浮,令其电场力与重力平衡 1~100 μm 不同RH下悬浮颗粒质量变化 可以测量单颗粒的质量吸湿性,与样品的形态无关 对复杂混合的样品不能准确测量 文献[33] 光悬浮法 激光强度的变化使颗粒移至焦点,散射力与梯度力达到平衡 2~20 μm 不同RH下悬浮颗粒粒径变化 颗粒物呈悬浮态,减少了基底接触的影响 对复杂的实际大气不能准确测量 文献[34] 吸湿性串联差分电
迁移率分析仪测量不同RH下气溶胶电迁移率粒径的变化 <1 μm 不同RH下气溶胶粒径变化 可以得到气溶胶的粒径分布情况,广泛应用于实验室与外场观测 价格昂贵,对于低RH下难溶有机物的粒径测量不够精确 文献[29] 吸湿性浊度仪 测量不同RH下的气溶胶散射系数的变化 几μm~几nm 不同RH下气溶胶散射系数的变化 高时间分辨率,从整体上研究气溶胶吸湿增长,对评估能见度与辐射强迫有重要意义 加湿效率较低,对于非球形粒子的测量不够精确 文献[35-36] 电子显微镜 监测不同RH下颗粒物形态的高分辨率图像,分为扫描电子显微镜和透射电子显微镜 >10 nm 不同RH下颗粒物形态大小、混合状态的变化 较为直观地表征颗粒物吸湿前后形态大小的变化 不能精确测量吸水量 文献[37-38] 原子力显微镜 监测不同RH下颗粒物形态的高分辨率图像 >10 nm 不同RH下颗粒物形态大小、混合状态的变化 较为直观地表征颗粒物吸湿前后形态大小的变化,可在常压条件下监测 成像范围小,效率低,受探针影响大 文献[39] 傅里叶变换
红外光谱法测量颗粒物吸收干涉光路的能量,通过傅里叶变换得到不同RH红外光谱图 不同RH下颗粒物的红外光谱 准确表征颗粒物在吸水过程中的红外吸收光谱变化,测量速度快 不能给出定量的结果 文献[40-41] 拉曼光谱法 测量颗粒物不同RH下的拉曼光谱,对红外光谱进行补充 不同RH下颗粒物的拉曼光谱 准确表征颗粒物在吸水过程中的拉曼光谱变化,对晶体结构敏感 对低吸湿性颗粒测量不够准确 文献[42] -
[1] SEINFELD J H, PANDIS S N, NOONE K. Atmospheric chemistry and physics: from air pollution to climate change[J]. Physics Today,1998,51(10):88-90. doi: 10.1063/1.882420 [2] 关攀博, 师华定, 高庆先, 等.中国地区黑碳气溶胶的气候效应模拟[J]. 环境工程技术学报,2017,7(4):418-423.GUAN P B, SHI H D, GAO Q X, et al. Study on black carbon aerosol simulation of climate effect in China[J]. Journal of Environmental Engineering Technology,2017,7(4):418-423. [3] 李英华, 姚立英, 姚青, 等.2013—2016年天津城区大气能见度的变化特征与影响因素[J]. 环境工程技术学报,2018,8(4):349-358.LI Y H, YAO L Y, YAO Q, et al. Analysis of variation characteristics and influencing factors of atmospheric visibility in Tianjin urban area from 2013 to 2016[J]. Journal of Environmental Engineering Technology,2018,8(4):349-358. [4] 郭云, 蒋玉丹, 黄炳昭, 等.我国大气PM2.5及O3导致健康效益现状分析及未来10年预测[J]. 环境科学研究,2021,34(4):1023-1032.GUO Y, JIANG Y D, HUANG B Z, et al. Health impact of PM2.5 and O3 and forecasts for next 10 years in China[J]. Research of Environmental Sciences,2021,34(4):1023-1032. [5] ADAMS J R, MERZ A R. Hygroscopicity of fertilizer materials and mixtures[J]. Industrial & Engineering Chemistry,1929,21(4):305-307. [6] TANG M J, CZICZO D J, GRASSIAN V H. Interactions of water with mineral dust aerosol: water adsorption, hygroscopicity, cloud condensation, and ice nucleation[J]. Chemical Reviews,2016,116(7):4205-4259. doi: 10.1021/acs.chemrev.5b00529 [7] 王宗爽, 付晓, 王占山, 等.大气颗粒物吸湿性研究[J]. 环境科学研究,2013,26(4):341-349.WANG Z S, FU X, WANG Z S, et al. Research progress of the hygroscopicity of atmospheric particles[J]. Research of Environmental Sciences,2013,26(4):341-349. [8] TANG M J, WHITEHEAD J, DAVIDSON N M, et al. Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(48):32194-32203. doi: 10.1039/C5CP03795F [9] KNOPF D A, ALPERT P A, WANG B B. The role of organic aerosol in atmospheric ice nucleation: a review[J]. ACS Earth and Space Chemistry,2018,2(3):168-202. doi: 10.1021/acsearthspacechem.7b00120 [10] 钟佳利, 王炜罡, 彭超, 等.大气气溶胶吸湿性及其对环境的影响[J]. 化学进展,2022,34(4):801-814.ZHONG J L, WANG W G, PENG C, et al. Atmospheric aerosol hygroscopicity and their influence on environment[J]. Progress in Chemistry,2022,34(4):801-814. [11] 钱小东. 大气气溶胶VH-TDMA装置建立及吸湿和挥发特性研究[D]. 合肥: 中国科学技术大学, 2017. [12] TAN H B, CAI M F, FAN Q, et al. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta[J]. Science of the Total Environment,2017,579:1822-1830. doi: 10.1016/j.scitotenv.2016.11.167 [13] ZHANG S N, SHEN X J, SUN J Y, et al. Atmospheric particle hygroscopicity and the influence by oxidation state of organic aerosols in urban Beijing[J]. Journal of Environmental Sciences,2023,124:544-556. doi: 10.1016/j.jes.2021.11.019 [14] LIU X G, ZHANG Y H, CHENG Y F, et al. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign[J]. Atmospheric Environment,2012,60:59-67. doi: 10.1016/j.atmosenv.2012.06.016 [15] D'ANGELO L, ROVELLI G, CASATI M, et al. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): implications for remote sensing applications[J]. Atmospheric Research,2016,176/177:87-95. doi: 10.1016/j.atmosres.2016.02.011 [16] CUI F P, CHEN M D, MA Y, et al. An intensive study on aerosol optical properties and affecting factors in Nanjing, China[J]. Journal of Environmental Sciences (China),2016,40:35-43. doi: 10.1016/j.jes.2015.08.017 [17] TIAN P, WANG G F, ZHANG R J, et al. Impacts of aerosol chemical compositions on optical properties in urban Beijing, China[J]. Particuology,2015,18:155-164. doi: 10.1016/j.partic.2014.03.014 [18] LI L, CHEN J M, WANG L, et al. Aerosol single scattering albedo affected by chemical composition: an investigation using CRDS combined with MARGA[J]. Atmospheric Research,2013,124:149-157. doi: 10.1016/j.atmosres.2012.11.007 [19] CHEN J, ZHAO C S, MA N, et al. A parameterization of low visibilities for hazy days in the North China Plain[J]. Atmospheric Chemistry and Physics,2012,12(11):4935-4950. doi: 10.5194/acp-12-4935-2012 [20] CHENG Y F, WIEDENSOHLER A, EICHLER H, et al. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: an observation based numerical study[J]. Atmospheric Environment,2008,42(25):6373-6397. doi: 10.1016/j.atmosenv.2008.04.009 [21] LIU B Y H, PUI D Y H, WHITBY K T, et al. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols[J]. Atmospheric Environment,1978,12(1/2/3):99-104. [22] RADER D J, McMURRY P H. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation[J]. Journal of Aerosol Science,1986,17(5):771-787. doi: 10.1016/0021-8502(86)90031-5 [23] BILDE M, BARSANTI K, BOOTH M, et al. Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures[J]. Chemical Reviews,2015,115(10):4115-4156. doi: 10.1021/cr5005502 [24] CHEN J, LI Z Q, LV M, et al. Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in Northern China[J]. Atmospheric Chemistry and Physics,2019,19(2):1327-1342. doi: 10.5194/acp-19-1327-2019 [25] LIU Q F, JING B, PENG C, et al. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance[J]. Atmospheric Environment,2016,125:69-77. doi: 10.1016/j.atmosenv.2015.11.003 [26] WANG X, SHEN X J, SUN J Y, et al. Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016[J]. Atmospheric Environment,2018,194:188-197. doi: 10.1016/j.atmosenv.2018.09.041 [27] WANG X N, YE X N, CHEN H, et al. Online hygroscopicity and chemical measurement of urban aerosol in Shanghai, China[J]. Atmospheric Environment,2014,95:318-326. doi: 10.1016/j.atmosenv.2014.06.051 [28] WU Z J, ZHENG J, SHANG D J, et al. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime[J]. Atmospheric Chemistry and Physics,2016,16(2):1123-1138. doi: 10.5194/acp-16-1123-2016 [29] SWIETLICKI E, HANSSON H C, HÄMERI K, et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments: a review[J]. Tellus B,2008,60(3):432-469. doi: 10.1111/j.1600-0889.2008.00350.x [30] GYSEL M, McFIGGANS G B, COE H. Inversion of tandem differential mobility analyser (TDMA) measurements[J]. Journal of Aerosol Science,2009,40(2):134-151. doi: 10.1016/j.jaerosci.2008.07.013 [31] COVERT D S, CHARLSON R J, AHLQUIST N C. A study of the relationship of chemical composition and humidity to light scattering by aerosols[J]. Journal of Applied Meteorology,1972,11(6):968-976. doi: 10.1175/1520-0450(1972)011<0968:ASOTRO>2.0.CO;2 [32] 刘宏剑, 赵春生.高时间分辨率加湿浊度计系统设计研究[J]. 北京大学学报(自然科学版),2016,52(6):999-1004.LIU H J, ZHAO C S. Design of a humidified nephelometer system with high time resolution[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(6):999-1004. [33] CHAN M N, CHOI M Y, NG N L, et al. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species[J]. Environmental Science & Technology,2005,39(6):1555-1562. [34] WILLS J B, KNOX K J, REID J P. Optical control and characterisation of aerosol[J]. Chemical Physics Letters,2009,481(4/5/6):153-165. [35] TITOS G, CAZORLA A, ZIEGER P, et al. Effect of hygroscopic growth on the aerosol light-scattering coefficient: a review of measurements, techniques and error sources[J]. Atmospheric Environment,2016,141:494-507. doi: 10.1016/j.atmosenv.2016.07.021 [36] 孙俊英, 张璐, 沈小静, 等.大气气溶胶散射吸湿增长特性研究进展[J]. 气象学报,2016,74(5):672-682.SUN J Y, ZHANG L, SHEN X J, et al. A review of the effects of relative humidity on aerosol scattering properties[J]. Acta Meteorologica Sinica,2016,74(5):672-682. [37] GRIFFITHS P T, BORLACE J S, GALLIMORE P J, et al. Hygroscopic growth and cloud activation of pollen: a laboratory and modelling study[J]. Atmospheric Science Letters,2012,13(4):289-295. doi: 10.1002/asl.397 [38] BAI Z P, JI Y, PI Y Q, et al. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy[J]. Atmospheric Environment,2018,172:149-156. doi: 10.1016/j.atmosenv.2017.10.031 [39] RAY K K, LEE H D, Jr GUTIERREZ M A, et al. Correlating 3D morphology, phase state, and viscoelastic properties of individual substrate-deposited particles[J]. Analytical Chemistry,2019,91(12):7621-7630. doi: 10.1021/acs.analchem.9b00333 [40] GOODMAN A L, BERNARD E T, GRASSIAN V H. Spectroscopic study of nitric acid and water adsorption on oxide particles: enhanced nitric acid uptake kinetics in the presence of adsorbed water[J]. The Journal of Physical Chemistry A,2001,105(26):6443-6457. doi: 10.1021/jp003722l [41] GUSTAFSSON R J, ORLOV A, BADGER C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: drift spectroscopy, thermogravimetric analysis and aerosol growth measurements[J]. Atmospheric Chemistry and Physics,2005,5(12):3415-3421. doi: 10.5194/acp-5-3415-2005 [42] CHU Y X, SAUERWEIN M, CHAN C K. Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(30):19789-19796. doi: 10.1039/C5CP02404H [43] PETTERS M D, KREIDENWEIS S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics,2007,7(8):1961-1971. doi: 10.5194/acp-7-1961-2007 [44] CLEGG S L, SEINFELD J H. Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types[J]. The Journal of Physical Chemistry A,2004,108(6):1008-1017. doi: 10.1021/jp030827q [45] NENES A, PANDIS S N, PILINIS C. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models[J]. Atmospheric Environment,1999,33(10):1553-1560. doi: 10.1016/S1352-2310(98)00352-5 [46] WEXLER A S, CLEGG S L. Atmospheric aerosol models for systems including the ions H+, NH4 +, Na+, SO4 2−, NO3 −, Cl−, Br−, and H2O[J]. Journal of Geophysical Research:Atmospheres,2002,107(D14):ACH14-1. [47] ZUEND A, MARCOLLI C, LUO B P, et al. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients[J]. Atmospheric Chemistry and Physics,2008,8(16):4559-4593. doi: 10.5194/acp-8-4559-2008 [48] BISKOS G, RUSSELL L M, BUSECK P R, et al. Nanosize effect on the hygroscopic growth factor of aerosol particles[J]. Geophysical Research Letters,2006,33(7):L07801. [49] PARK K, KIM J S, MILLER A L. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM[J]. Journal of Nanoparticle Research,2009,11(1):175-183. doi: 10.1007/s11051-008-9462-4 [50] ZIEGER P, VÄISÄNEN O, CORBIN J C, et al. Revising the hygroscopicity of inorganic sea salt particles[J]. Nature Communications,2017,8(1):1-10. doi: 10.1038/s41467-016-0009-6 [51] HU D W, CHEN J M, YE X N, et al. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: relative humidity and size effects on the growth factor[J]. Atmospheric Environment,2011,45(14):2349-2355. doi: 10.1016/j.atmosenv.2011.02.024 [52] SHEN C Y, ZHAO G, ZHAO W L, et al. Measurement report: aerosol hygroscopic properties extended to 600 nm in the urban environment[J]. Atmospheric Chemistry and Physics,2021,21(3):1375-1388. doi: 10.5194/acp-21-1375-2021 [53] YING Z M, ZHANG Z J, ZHOU Y Y, et al. Unexpected hygroscopic behaviors of individual sub-50 nm NaNO3 nanoparticles observed by in situ atomic force microscopy[J]. The Science of the Total Environment,2022,852:158441. doi: 10.1016/j.scitotenv.2022.158441 [54] WANG Z B, CHENG Y F, MA N, et al. Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: implications for laboratory experiments, field measurements and model studies[J]. Atmospheric Chemistry and Physics Discussions, 2017: 1-33. [55] LEI T, SU H, MA N, et al. Size dependent hygroscopicity of levoglucosan and D-glucose aerosol nanoparticles[J]. Atmospheric Chemistry and Physics Discussions, 2022: 1-39. [56] GIBSON E R, HUDSON P K, GRASSIAN V H. Physicochemical properties of nitrate aerosols: implications for the atmosphere[J]. The Journal of Physical Chemistry A,2006,110(42):11785-11799. doi: 10.1021/jp063821k [57] ZHANG Q N, ZHAO L J, CHEN S H, et al. Hygroscopic property of inorganic salts in atmospheric aerosols measured with physisorption analyzer[J]. Atmospheric Environment,2021,247:118171. doi: 10.1016/j.atmosenv.2020.118171 [58] VARUTBANGKUL V, BRECHTEL F J, BAHREINI R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds[J]. Atmospheric Chemistry and Physics,2006,6(9):2367-2388. doi: 10.5194/acp-6-2367-2006 [59] CHU B W, WANG K, TAKEKAWA H, et al. Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols[J]. Journal of Environmental Sciences,2014,26(1):129-139. doi: 10.1016/S1001-0742(13)60402-7 [60] ESTILLORE A D, HETTIYADURA A P S, QIN Z, et al. Water uptake and hygroscopic growth of organosulfate aerosol[J]. Environmental Science & Technology,2016,50(8):4259-4268. [61] HAN S, HONG J, LUO Q W, et al. Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level[J]. Atmospheric Chemistry and Physics,2022,22(6):3985-4004. doi: 10.5194/acp-22-3985-2022 [62] ASADZADEH B, BOUZIDI H, BISSON R, et al. Hygroscopicity of secondary marine organic aerosols: mixtures of alkylammonium salts and inorganic components[J]. The Science of the Total Environment,2021,790:148131. doi: 10.1016/j.scitotenv.2021.148131 [63] 张淑佳, 徐亮, 郭新梅, 等.二次有机气溶胶壳对氯化钠核吸湿性的影响: 基于单颗粒微观尺度[J]. 环境科学,2020,41(5):2017-2025.ZHANG S J, XU L, GUO X M, et al. Influence of secondary organic coating on hygroscopicity of a sodium chloride core: based on mircro-scale single particle analysis[J]. Environmental Science,2020,41(5):2017-2025. [64] BOUZIDI H, FAYAD L, COEUR C, et al. Hygroscopic growth and CCN activity of secondary organic aerosol produced from dark ozonolysis of γ-terpinene[J]. The Science of the Total Environment,2022,817:153010. doi: 10.1016/j.scitotenv.2022.153010 [65] DESPRES V, HUFFMAN J, BURROWS S, et al. Primary biological particles in the atmosphere: a review[J]. Tellus B,2012,64(1):1-58. [66] LEE B, KIM S, KIM S S. Hygroscopic growth of E. coli and B. subtilis bioaerosols[J]. Journal of Aerosol Science,2002,33(12):1721-1723. doi: 10.1016/S0021-8502(02)00114-3 [67] TANG M J, GU W J, MA Q X, et al. Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature[J]. Atmospheric Chemistry and Physics,2019,19(4):2247-2258. doi: 10.5194/acp-19-2247-2019 [68] CHEN L, CHEN Y Z, CHEN L L, et al. Hygroscopic properties of eleven pollen species in China[J]. ACS Earth and Space Chemistry,2019,3(12):2678-2683. doi: 10.1021/acsearthspacechem.9b00268 [69] 贾嘉, 宋晓焱, 滕晓咪, 等.大气生物气溶胶花粉单颗粒的形貌特征及吸湿特性研究[J]. 环境科学研究,2022,35(5):1102-1109. doi: 10.13198/j.issn.1001-6929.2022.03.21JIA J, SONG X Y, TENG X M, et al. Morphological characteristics and hygroscopicity of atmospheric bioaerosol pollen single particles[J]. Research of Environmental Sciences,2022,35(5):1102-1109. doi: 10.13198/j.issn.1001-6929.2022.03.21 [70] MA Q X, LIU Y C, LIU C, et al. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles[J]. Physical Chemistry Chemical Physics:PCCP,2012,14(23):8403-8409. doi: 10.1039/c2cp40510e [71] ATTWOOD A R, GREENSLADE M E. Optical properties and associated hygroscopicity of clay aerosols[J]. Aerosol Science and Technology,2011,45(11):1350-1359. doi: 10.1080/02786826.2011.594462 [72] AL-ABADLEH H A, KRUEGER B J, ROSS J L, et al. Phase transitions in calcium nitrate thin films[J]. Chemical Communications,2003(22):2796-2797. doi: 10.1039/B308632A [73] MÜLLER A, MIYAZAKI Y, AGGARWAL S G, et al. Effects of chemical composition and mixing state on size-resolved hygroscopicity and cloud condensation nuclei activity of submicron aerosols at a suburban site in northern Japan in summer[J]. Journal of Geophysical Research:Atmospheres,2017,122(17):9301-9318. doi: 10.1002/2017JD027286 [74] HERSEY S P, CRAVEN J S, METCALF A R, et al. Composition and hygroscopicity of the los angeles aerosol: CalNex[J]. Journal of Geophysical Research:Atmospheres,2013,118(7):3016-3036. doi: 10.1002/jgrd.50307 [75] YIN Z, YE X N, JIANG S Q, et al. Size-resolved effective density of urban aerosols in Shanghai[J]. Atmospheric Environment,2015,100:133-140. doi: 10.1016/j.atmosenv.2014.10.055 [76] SARANGI B, RAMACHANDRAN S, RAJESH T A, et al. Black carbon linked aerosol hygroscopic growth: size and mixing state are crucial[J]. Atmospheric Environment,2019,200:110-118. doi: 10.1016/j.atmosenv.2018.12.001 [77] XIA C, SUN J Y, QI X F, et al. Observational study of aerosol hygroscopic growth on scattering coefficient in Beijing: a case study in March of 2018[J]. Science of the Total Environment,2019,685:239-247. doi: 10.1016/j.scitotenv.2019.05.283 [78] DING S, LIU D T, ZHAO D L, et al. Optical and hygroscopic properties of black carbon influenced by particle microphysics at the top of anthropogenically polluted boundary layer[J]. Atmospheric Chemistry and Physics,2021,21(2):681-694. doi: 10.5194/acp-21-681-2021 [79] LEE S, YOON S C, KIM S W, et al. Spectral dependency of light scattering/absorption and hygroscopicity of pollution and dust aerosols in Northeast Asia[J]. Atmospheric Environment,2012,50:246-254. doi: 10.1016/j.atmosenv.2011.12.026 [80] DING J, ZHANG Y F, ZHAO P S, et al. Comparison of size-resolved hygroscopic growth factors of urban aerosol by different methods in Tianjin during a haze episode[J]. Science of the Total Environment,2019,678:618-626. doi: 10.1016/j.scitotenv.2019.05.005 [81] YUAN L, ZHANG X L, FENG M, et al. Size-resolved hygroscopic behaviour and mixing state of submicron aerosols in a megacity of the Sichuan Basin during pollution and fireworks episodes[J]. Atmospheric Environment,2020,226:117393. doi: 10.1016/j.atmosenv.2020.117393 [82] MIE G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen der Physik,1908,330(3):377-445. doi: 10.1002/andp.19083300302 [83] MÄTZLER C. MATLAB functions for Mie scattering and absorption version 2[R]. Tübingen: Institut für Angewandte Physik, 2002. [84] WENDISCH M, YANG P. Theory of atmospheric radiative transfer: a comprehensive introduction[M]. German: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. [85] 沈毅成. 长三角西部地区气溶胶光学性质及云凝结核活化特性研究[D]. 南京: 南京大学, 2019. [86] WANG W, ROOD M J, CARRICO C M, et al. Aerosol optical properties along the northeast coast of North America during the New England air quality study: intercontinental transport and chemical transformation 2004 campaign and the influence of aerosol composition[J]. Journal of Geophysical Research: Atmospheres,2007,112(D10):D10S23. [87] FIERZ-SCHMIDHAUSER R, ZIEGER P, GYSEL M, et al. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch[J]. Atmospheric Chemistry and Physics,2010,10(5):2319-2333. doi: 10.5194/acp-10-2319-2010 [88] LIU J Y, REN C H, HUANG X, et al. Increased aerosol extinction efficiency hinders visibility improvement in Eastern China[J]. Geophysical Research Letters,2020,47(20):e2020GL090167. [89] HUANG X, DING A J, WANG Z L, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China[J]. Nature Geoscience,2020,13(6):428-434. doi: 10.1038/s41561-020-0583-4 [90] XU W Y, KUANG Y, BIAN Y X, et al. Current challenges in visibility improvement in Southern China[J]. Environmental Science & Technology Letters,2020,7(6):395-401. [91] HEINTZENBERG J, MAßLING A, BIRMILI W. The connection between hygroscopic and optical particle properties in the atmospheric aerosol[J]. Geophysical Research Letters,2001,28(19):3649-3651. doi: 10.1029/2001GL012971 [92] HEGG D A, COVERT D S, CRAHAN K, et al. The dependence of aerosol light-scattering on RH over the Pacific Ocean[J]. Geophysical Research Letters,2002,29(8):60-61. [93] LIU P F, ZHAO C S, T G, et al. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain[J]. Atmospheric Chemistry and Physics,2011,11(7):3479-3494. doi: 10.5194/acp-11-3479-2011 [94] XUE B, KUANG Y, XU W Y, et al. Joint increase of aerosol scattering efficiency and aerosol hygroscopicity aggravate visibility impairment in the North China Plain[J]. Science of the Total Environment,2022,839:156279. doi: 10.1016/j.scitotenv.2022.156279 [95] ENGELHART G J, HILDEBRANDT L, KOSTENIDOU E, et al. Water content of aged aerosol[J]. Atmospheric Chemistry and Physics,2011,11(220):911-920. [96] KITAMORI Y, MOCHIDA M, KAWAMURA K. Assessment of the aerosol water content in urban atmospheric particles by the hygroscopic growth measurements in Sapporo, Japan[J]. Atmospheric Environment,2009,43(21):3416-3423. doi: 10.1016/j.atmosenv.2009.03.037 [97] YOUNG L H, HSIAO T C, GRIFFITH S M, et al. Secondary inorganic aerosol chemistry and its impact on atmospheric visibility over an ammonia-rich urban area in Central Taiwan[J]. Environmental Pollution,2022,312:119951. doi: 10.1016/j.envpol.2022.119951 [98] DENG H, TAN H B, LI F, et al. Impact of relative humidity on visibility degradation during a haze event: a case study[J]. Science of the Total Environment,2016,569/570:1149-1158. doi: 10.1016/j.scitotenv.2016.06.190 [99] TING Y C, YOUNG L H, LIN T H, et al. Quantifying the impacts of PM2.5 constituents and relative humidity on visibility impairment in a suburban area of eastern Asia using long-term in situ measurements[J]. Science of the Total Environment,2022,818:151759. doi: 10.1016/j.scitotenv.2021.151759 [100] YANG X, ZHAO C F, ZHOU L J, et al. Distinct impact of different types of aerosols on surface solar radiation in China[J]. Journal of Geophysical Research:Atmospheres,2016,121(11):6459-6471. doi: 10.1002/2016JD024938 [101] JACOBSON M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature,2001,409:695-697. doi: 10.1038/35055518 [102] CHARLSON R J, SCHWARTZ S E, HALES J M, et al. Climate forcing by anthropogenic aerosols[J]. Science,1992,255:423-430. doi: 10.1126/science.255.5043.423 [103] BURGOS M A, ANDREWS E, TITOS G, et al. A global model-measurement evaluation of particle light scattering coefficients at elevated relative humidity[J]. Atmospheric Chemistry and Physics,2020,20(17):10231-10258. doi: 10.5194/acp-20-10231-2020 [104] XIA C, SUN J Y, HU X Y, et al. Effects of hygroscopicity on aerosol optical properties and direct radiative forcing in Beijing: based on two-year observations[J]. The Science of the Total Environment, 2023, 857(Pt 1): 159233. [105] HAYWOOD J M, SHINE K P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget[J]. Geophysical Research Letters,1995,22(5):603-606. doi: 10.1029/95GL00075 [106] GLORIA T, BURGOS MARÍA A, PAUL Z, et al. A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties[J]. Atmospheric Chemistry and Physics,2021,21(17):13031-13050. doi: 10.5194/acp-21-13031-2021 [107] TAO J C, ZHAO C S, MA N, et al. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient[J]. Atmospheric Chemistry and Physics,2014,14(11):12055-12067. [108] IM J S, SAXENA V K, WENNY B N. An assessment of hygroscopic growth factors for aerosols in the surface boundary layer for computing direct radiative forcing[J]. Journal of Geophysical Research:Atmospheres,2001,106(D17):20213-20224. doi: 10.1029/2000JD000152 [109] LUOMA K, VIRKKULA A, AALTO P, et al. Over a ten-year record of aerosol optical properties at SMEAR II[J]. Atmospheric Chemistry and Physics,2019,19(17):11363-11382. doi: 10.5194/acp-19-11363-2019 [110] YOON S C, KIM J. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia[J]. Atmospheric Environment,2006,40(23):4328-4338. doi: 10.1016/j.atmosenv.2006.03.036 [111] SHINOZUKA Y, CLARKE A D, HOWELL S G, et al. Aircraft profiles of aerosol microphysics and optical properties over North America: aerosol optical depth and its association with PM2.5 and water uptake[J]. Journal of Geophysical Research: Atmospheres,2007,112(D12):D12S20. [112] BROCK C, WAGNER N, ANDERSON B, et al. Aerosol optical properties in the southeastern United States in summer: part 2. sensitivity of aerosol optical depth to relative humidity and aerosol parameters[J]. Atmospheric Chemistry and Physics,2015,15(21):31471-31499. [113] KUANG Y, ZHAO C S, TAO J C, et al. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain[J]. Atmospheric Environment,2016,147:224-233. □ doi: 10.1016/j.atmosenv.2016.10.013
计量
- 文章访问数: 858
- HTML全文浏览量: 437
- PDF下载量: 171
- 被引次数: 0