留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气溶胶吸湿性的影响因素及其对光学特性的影响

陈建华 沈毅成 迟翔予 竹双

陈建华,沈毅成,迟翔予,等.气溶胶吸湿性的影响因素及其对光学特性的影响[J].环境工程技术学报,2023,13(6):2081-2091 doi: 10.12153/j.issn.1674-991X.20230052
引用本文: 陈建华,沈毅成,迟翔予,等.气溶胶吸湿性的影响因素及其对光学特性的影响[J].环境工程技术学报,2023,13(6):2081-2091 doi: 10.12153/j.issn.1674-991X.20230052
CHEN J H,SHEN Y C,CHI X Y,et al.Factors influencing the hygroscopicity of aerosols and the effects of hygroscopicity on aerosol optical properties[J].Journal of Environmental Engineering Technology,2023,13(6):2081-2091 doi: 10.12153/j.issn.1674-991X.20230052
Citation: CHEN J H,SHEN Y C,CHI X Y,et al.Factors influencing the hygroscopicity of aerosols and the effects of hygroscopicity on aerosol optical properties[J].Journal of Environmental Engineering Technology,2023,13(6):2081-2091 doi: 10.12153/j.issn.1674-991X.20230052

气溶胶吸湿性的影响因素及其对光学特性的影响

doi: 10.12153/j.issn.1674-991X.20230052
基金项目: 国家重点研发计划项目 (2022YFC3703400)
详细信息
    作者简介:

    陈建华(1970—),女,研究员,博士,主要从事大气环境化学研究,chenjh@craes.org.cn

    通讯作者:

    迟翔予(2000—),女,硕士研究生,主要从事大气科学研究,cxy_0211@163.com

  • 中图分类号: X51

Factors influencing the hygroscopicity of aerosols and the effects of hygroscopicity on aerosol optical properties

  • 摘要:

    吸湿性是气溶胶重要的理化性质之一,气溶胶吸湿增长不仅会通过大气辐射效应影响气候,还对大气能见度有重要影响。介绍了气溶胶粒径吸湿增长与散射吸湿增长的概念,总结了测量气溶胶吸湿增长的方法,分析了粒径、化学组分、污染条件和混合状态对吸湿性的影响。结果表明:气溶胶的吸湿增长会使颗粒物含水量增多,改变气溶胶消光能力,从而对大气能见度以及气溶胶辐射强迫造成影响。未来,建议着重关注高相对湿度(相对湿度大于95%)下的气溶胶吸湿增长,加强气溶胶吸湿增长的垂直观测研究,并广泛开展吸湿和脱水2种环境下的气溶胶散射吸湿增长的测量和研究。

     

  • 表  1  气溶胶吸湿性测量方法总结

    Table  1.   Summary of techniques for aerosol hygroscopicity measurements

    测量方法原理粒径范围测量参数优点缺点数据来源
    电动力学天平法 通过调节电场使单个带电粒子悬浮,令其电场力与重力平衡 1~100 μm 不同RH下悬浮颗粒质量变化 可以测量单颗粒的质量吸湿性,与样品的形态无关 对复杂混合的样品不能准确测量 文献[33]
    光悬浮法 激光强度的变化使颗粒移至焦点,散射力与梯度力达到平衡 2~20 μm 不同RH下悬浮颗粒粒径变化 颗粒物呈悬浮态,减少了基底接触的影响 对复杂的实际大气不能准确测量 文献[34]
    吸湿性串联差分电
    迁移率分析仪
    测量不同RH下气溶胶电迁移率粒径的变化 <1 μm 不同RH下气溶胶粒径变化 可以得到气溶胶的粒径分布情况,广泛应用于实验室与外场观测 价格昂贵,对于低RH下难溶有机物的粒径测量不够精确 文献[29]
    吸湿性浊度仪 测量不同RH下的气溶胶散射系数的变化 几μm~几nm 不同RH下气溶胶散射系数的变化 高时间分辨率,从整体上研究气溶胶吸湿增长,对评估能见度与辐射强迫有重要意义 加湿效率较低,对于非球形粒子的测量不够精确 文献[35-36]
    电子显微镜 监测不同RH下颗粒物形态的高分辨率图像,分为扫描电子显微镜和透射电子显微镜 >10 nm 不同RH下颗粒物形态大小、混合状态的变化 较为直观地表征颗粒物吸湿前后形态大小的变化 不能精确测量吸水量 文献[37-38]
    原子力显微镜 监测不同RH下颗粒物形态的高分辨率图像 >10 nm 不同RH下颗粒物形态大小、混合状态的变化 较为直观地表征颗粒物吸湿前后形态大小的变化,可在常压条件下监测 成像范围小,效率低,受探针影响大 文献[39]
    傅里叶变换
    红外光谱法
    测量颗粒物吸收干涉光路的能量,通过傅里叶变换得到不同RH红外光谱图 不同RH下颗粒物的红外光谱 准确表征颗粒物在吸水过程中的红外吸收光谱变化,测量速度快 不能给出定量的结果 文献[40-41]
    拉曼光谱法 测量颗粒物不同RH下的拉曼光谱,对红外光谱进行补充 不同RH下颗粒物的拉曼光谱 准确表征颗粒物在吸水过程中的拉曼光谱变化,对晶体结构敏感 对低吸湿性颗粒测量不够准确 文献[42]
    下载: 导出CSV
  • [1] SEINFELD J H, PANDIS S N, NOONE K. Atmospheric chemistry and physics: from air pollution to climate change[J]. Physics Today,1998,51(10):88-90. doi: 10.1063/1.882420
    [2] 关攀博, 师华定, 高庆先, 等.中国地区黑碳气溶胶的气候效应模拟[J]. 环境工程技术学报,2017,7(4):418-423.

    GUAN P B, SHI H D, GAO Q X, et al. Study on black carbon aerosol simulation of climate effect in China[J]. Journal of Environmental Engineering Technology,2017,7(4):418-423.
    [3] 李英华, 姚立英, 姚青, 等.2013—2016年天津城区大气能见度的变化特征与影响因素[J]. 环境工程技术学报,2018,8(4):349-358.

    LI Y H, YAO L Y, YAO Q, et al. Analysis of variation characteristics and influencing factors of atmospheric visibility in Tianjin urban area from 2013 to 2016[J]. Journal of Environmental Engineering Technology,2018,8(4):349-358.
    [4] 郭云, 蒋玉丹, 黄炳昭, 等.我国大气PM2.5及O3导致健康效益现状分析及未来10年预测[J]. 环境科学研究,2021,34(4):1023-1032.

    GUO Y, JIANG Y D, HUANG B Z, et al. Health impact of PM2.5 and O3 and forecasts for next 10 years in China[J]. Research of Environmental Sciences,2021,34(4):1023-1032.
    [5] ADAMS J R, MERZ A R. Hygroscopicity of fertilizer materials and mixtures[J]. Industrial & Engineering Chemistry,1929,21(4):305-307.
    [6] TANG M J, CZICZO D J, GRASSIAN V H. Interactions of water with mineral dust aerosol: water adsorption, hygroscopicity, cloud condensation, and ice nucleation[J]. Chemical Reviews,2016,116(7):4205-4259. doi: 10.1021/acs.chemrev.5b00529
    [7] 王宗爽, 付晓, 王占山, 等.大气颗粒物吸湿性研究[J]. 环境科学研究,2013,26(4):341-349.

    WANG Z S, FU X, WANG Z S, et al. Research progress of the hygroscopicity of atmospheric particles[J]. Research of Environmental Sciences,2013,26(4):341-349.
    [8] TANG M J, WHITEHEAD J, DAVIDSON N M, et al. Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(48):32194-32203. doi: 10.1039/C5CP03795F
    [9] KNOPF D A, ALPERT P A, WANG B B. The role of organic aerosol in atmospheric ice nucleation: a review[J]. ACS Earth and Space Chemistry,2018,2(3):168-202. doi: 10.1021/acsearthspacechem.7b00120
    [10] 钟佳利, 王炜罡, 彭超, 等.大气气溶胶吸湿性及其对环境的影响[J]. 化学进展,2022,34(4):801-814.

    ZHONG J L, WANG W G, PENG C, et al. Atmospheric aerosol hygroscopicity and their influence on environment[J]. Progress in Chemistry,2022,34(4):801-814.
    [11] 钱小东. 大气气溶胶VH-TDMA装置建立及吸湿和挥发特性研究[D]. 合肥: 中国科学技术大学, 2017.
    [12] TAN H B, CAI M F, FAN Q, et al. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta[J]. Science of the Total Environment,2017,579:1822-1830. doi: 10.1016/j.scitotenv.2016.11.167
    [13] ZHANG S N, SHEN X J, SUN J Y, et al. Atmospheric particle hygroscopicity and the influence by oxidation state of organic aerosols in urban Beijing[J]. Journal of Environmental Sciences,2023,124:544-556. doi: 10.1016/j.jes.2021.11.019
    [14] LIU X G, ZHANG Y H, CHENG Y F, et al. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign[J]. Atmospheric Environment,2012,60:59-67. doi: 10.1016/j.atmosenv.2012.06.016
    [15] D'ANGELO L, ROVELLI G, CASATI M, et al. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): implications for remote sensing applications[J]. Atmospheric Research,2016,176/177:87-95. doi: 10.1016/j.atmosres.2016.02.011
    [16] CUI F P, CHEN M D, MA Y, et al. An intensive study on aerosol optical properties and affecting factors in Nanjing, China[J]. Journal of Environmental Sciences (China),2016,40:35-43. doi: 10.1016/j.jes.2015.08.017
    [17] TIAN P, WANG G F, ZHANG R J, et al. Impacts of aerosol chemical compositions on optical properties in urban Beijing, China[J]. Particuology,2015,18:155-164. doi: 10.1016/j.partic.2014.03.014
    [18] LI L, CHEN J M, WANG L, et al. Aerosol single scattering albedo affected by chemical composition: an investigation using CRDS combined with MARGA[J]. Atmospheric Research,2013,124:149-157. doi: 10.1016/j.atmosres.2012.11.007
    [19] CHEN J, ZHAO C S, MA N, et al. A parameterization of low visibilities for hazy days in the North China Plain[J]. Atmospheric Chemistry and Physics,2012,12(11):4935-4950. doi: 10.5194/acp-12-4935-2012
    [20] CHENG Y F, WIEDENSOHLER A, EICHLER H, et al. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: an observation based numerical study[J]. Atmospheric Environment,2008,42(25):6373-6397. doi: 10.1016/j.atmosenv.2008.04.009
    [21] LIU B Y H, PUI D Y H, WHITBY K T, et al. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols[J]. Atmospheric Environment,1978,12(1/2/3):99-104.
    [22] RADER D J, McMURRY P H. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation[J]. Journal of Aerosol Science,1986,17(5):771-787. doi: 10.1016/0021-8502(86)90031-5
    [23] BILDE M, BARSANTI K, BOOTH M, et al. Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures[J]. Chemical Reviews,2015,115(10):4115-4156. doi: 10.1021/cr5005502
    [24] CHEN J, LI Z Q, LV M, et al. Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in Northern China[J]. Atmospheric Chemistry and Physics,2019,19(2):1327-1342. doi: 10.5194/acp-19-1327-2019
    [25] LIU Q F, JING B, PENG C, et al. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance[J]. Atmospheric Environment,2016,125:69-77. doi: 10.1016/j.atmosenv.2015.11.003
    [26] WANG X, SHEN X J, SUN J Y, et al. Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016[J]. Atmospheric Environment,2018,194:188-197. doi: 10.1016/j.atmosenv.2018.09.041
    [27] WANG X N, YE X N, CHEN H, et al. Online hygroscopicity and chemical measurement of urban aerosol in Shanghai, China[J]. Atmospheric Environment,2014,95:318-326. doi: 10.1016/j.atmosenv.2014.06.051
    [28] WU Z J, ZHENG J, SHANG D J, et al. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime[J]. Atmospheric Chemistry and Physics,2016,16(2):1123-1138. doi: 10.5194/acp-16-1123-2016
    [29] SWIETLICKI E, HANSSON H C, HÄMERI K, et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments: a review[J]. Tellus B,2008,60(3):432-469. doi: 10.1111/j.1600-0889.2008.00350.x
    [30] GYSEL M, McFIGGANS G B, COE H. Inversion of tandem differential mobility analyser (TDMA) measurements[J]. Journal of Aerosol Science,2009,40(2):134-151. doi: 10.1016/j.jaerosci.2008.07.013
    [31] COVERT D S, CHARLSON R J, AHLQUIST N C. A study of the relationship of chemical composition and humidity to light scattering by aerosols[J]. Journal of Applied Meteorology,1972,11(6):968-976. doi: 10.1175/1520-0450(1972)011<0968:ASOTRO>2.0.CO;2
    [32] 刘宏剑, 赵春生.高时间分辨率加湿浊度计系统设计研究[J]. 北京大学学报(自然科学版),2016,52(6):999-1004.

    LIU H J, ZHAO C S. Design of a humidified nephelometer system with high time resolution[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(6):999-1004.
    [33] CHAN M N, CHOI M Y, NG N L, et al. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species[J]. Environmental Science & Technology,2005,39(6):1555-1562.
    [34] WILLS J B, KNOX K J, REID J P. Optical control and characterisation of aerosol[J]. Chemical Physics Letters,2009,481(4/5/6):153-165.
    [35] TITOS G, CAZORLA A, ZIEGER P, et al. Effect of hygroscopic growth on the aerosol light-scattering coefficient: a review of measurements, techniques and error sources[J]. Atmospheric Environment,2016,141:494-507. doi: 10.1016/j.atmosenv.2016.07.021
    [36] 孙俊英, 张璐, 沈小静, 等.大气气溶胶散射吸湿增长特性研究进展[J]. 气象学报,2016,74(5):672-682.

    SUN J Y, ZHANG L, SHEN X J, et al. A review of the effects of relative humidity on aerosol scattering properties[J]. Acta Meteorologica Sinica,2016,74(5):672-682.
    [37] GRIFFITHS P T, BORLACE J S, GALLIMORE P J, et al. Hygroscopic growth and cloud activation of pollen: a laboratory and modelling study[J]. Atmospheric Science Letters,2012,13(4):289-295. doi: 10.1002/asl.397
    [38] BAI Z P, JI Y, PI Y Q, et al. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy[J]. Atmospheric Environment,2018,172:149-156. doi: 10.1016/j.atmosenv.2017.10.031
    [39] RAY K K, LEE H D, Jr GUTIERREZ M A, et al. Correlating 3D morphology, phase state, and viscoelastic properties of individual substrate-deposited particles[J]. Analytical Chemistry,2019,91(12):7621-7630. doi: 10.1021/acs.analchem.9b00333
    [40] GOODMAN A L, BERNARD E T, GRASSIAN V H. Spectroscopic study of nitric acid and water adsorption on oxide particles:   enhanced nitric acid uptake kinetics in the presence of adsorbed water[J]. The Journal of Physical Chemistry A,2001,105(26):6443-6457. doi: 10.1021/jp003722l
    [41] GUSTAFSSON R J, ORLOV A, BADGER C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: drift spectroscopy, thermogravimetric analysis and aerosol growth measurements[J]. Atmospheric Chemistry and Physics,2005,5(12):3415-3421. doi: 10.5194/acp-5-3415-2005
    [42] CHU Y X, SAUERWEIN M, CHAN C K. Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(30):19789-19796. doi: 10.1039/C5CP02404H
    [43] PETTERS M D, KREIDENWEIS S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics,2007,7(8):1961-1971. doi: 10.5194/acp-7-1961-2007
    [44] CLEGG S L, SEINFELD J H. Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types[J]. The Journal of Physical Chemistry A,2004,108(6):1008-1017. doi: 10.1021/jp030827q
    [45] NENES A, PANDIS S N, PILINIS C. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models[J]. Atmospheric Environment,1999,33(10):1553-1560. doi: 10.1016/S1352-2310(98)00352-5
    [46] WEXLER A S, CLEGG S L. Atmospheric aerosol models for systems including the ions H+, NH4 +, Na+, SO4 2−, NO3 , Cl, Br, and H2O[J]. Journal of Geophysical Research:Atmospheres,2002,107(D14):ACH14-1.
    [47] ZUEND A, MARCOLLI C, LUO B P, et al. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients[J]. Atmospheric Chemistry and Physics,2008,8(16):4559-4593. doi: 10.5194/acp-8-4559-2008
    [48] BISKOS G, RUSSELL L M, BUSECK P R, et al. Nanosize effect on the hygroscopic growth factor of aerosol particles[J]. Geophysical Research Letters,2006,33(7):L07801.
    [49] PARK K, KIM J S, MILLER A L. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM[J]. Journal of Nanoparticle Research,2009,11(1):175-183. doi: 10.1007/s11051-008-9462-4
    [50] ZIEGER P, VÄISÄNEN O, CORBIN J C, et al. Revising the hygroscopicity of inorganic sea salt particles[J]. Nature Communications,2017,8(1):1-10. doi: 10.1038/s41467-016-0009-6
    [51] HU D W, CHEN J M, YE X N, et al. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: relative humidity and size effects on the growth factor[J]. Atmospheric Environment,2011,45(14):2349-2355. doi: 10.1016/j.atmosenv.2011.02.024
    [52] SHEN C Y, ZHAO G, ZHAO W L, et al. Measurement report: aerosol hygroscopic properties extended to 600 nm in the urban environment[J]. Atmospheric Chemistry and Physics,2021,21(3):1375-1388. doi: 10.5194/acp-21-1375-2021
    [53] YING Z M, ZHANG Z J, ZHOU Y Y, et al. Unexpected hygroscopic behaviors of individual sub-50 nm NaNO3 nanoparticles observed by in situ atomic force microscopy[J]. The Science of the Total Environment,2022,852:158441. doi: 10.1016/j.scitotenv.2022.158441
    [54] WANG Z B, CHENG Y F, MA N, et al. Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: implications for laboratory experiments, field measurements and model studies[J]. Atmospheric Chemistry and Physics Discussions, 2017: 1-33.
    [55] LEI T, SU H, MA N, et al. Size dependent hygroscopicity of levoglucosan and D-glucose aerosol nanoparticles[J]. Atmospheric Chemistry and Physics Discussions, 2022: 1-39.
    [56] GIBSON E R, HUDSON P K, GRASSIAN V H. Physicochemical properties of nitrate aerosols: implications for the atmosphere[J]. The Journal of Physical Chemistry A,2006,110(42):11785-11799. doi: 10.1021/jp063821k
    [57] ZHANG Q N, ZHAO L J, CHEN S H, et al. Hygroscopic property of inorganic salts in atmospheric aerosols measured with physisorption analyzer[J]. Atmospheric Environment,2021,247:118171. doi: 10.1016/j.atmosenv.2020.118171
    [58] VARUTBANGKUL V, BRECHTEL F J, BAHREINI R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds[J]. Atmospheric Chemistry and Physics,2006,6(9):2367-2388. doi: 10.5194/acp-6-2367-2006
    [59] CHU B W, WANG K, TAKEKAWA H, et al. Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols[J]. Journal of Environmental Sciences,2014,26(1):129-139. doi: 10.1016/S1001-0742(13)60402-7
    [60] ESTILLORE A D, HETTIYADURA A P S, QIN Z, et al. Water uptake and hygroscopic growth of organosulfate aerosol[J]. Environmental Science & Technology,2016,50(8):4259-4268.
    [61] HAN S, HONG J, LUO Q W, et al. Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level[J]. Atmospheric Chemistry and Physics,2022,22(6):3985-4004. doi: 10.5194/acp-22-3985-2022
    [62] ASADZADEH B, BOUZIDI H, BISSON R, et al. Hygroscopicity of secondary marine organic aerosols: mixtures of alkylammonium salts and inorganic components[J]. The Science of the Total Environment,2021,790:148131. doi: 10.1016/j.scitotenv.2021.148131
    [63] 张淑佳, 徐亮, 郭新梅, 等.二次有机气溶胶壳对氯化钠核吸湿性的影响: 基于单颗粒微观尺度[J]. 环境科学,2020,41(5):2017-2025.

    ZHANG S J, XU L, GUO X M, et al. Influence of secondary organic coating on hygroscopicity of a sodium chloride core: based on mircro-scale single particle analysis[J]. Environmental Science,2020,41(5):2017-2025.
    [64] BOUZIDI H, FAYAD L, COEUR C, et al. Hygroscopic growth and CCN activity of secondary organic aerosol produced from dark ozonolysis of γ-terpinene[J]. The Science of the Total Environment,2022,817:153010. doi: 10.1016/j.scitotenv.2022.153010
    [65] DESPRES V, HUFFMAN J, BURROWS S, et al. Primary biological particles in the atmosphere: a review[J]. Tellus B,2012,64(1):1-58.
    [66] LEE B, KIM S, KIM S S. Hygroscopic growth of E. coli and B. subtilis bioaerosols[J]. Journal of Aerosol Science,2002,33(12):1721-1723. doi: 10.1016/S0021-8502(02)00114-3
    [67] TANG M J, GU W J, MA Q X, et al. Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature[J]. Atmospheric Chemistry and Physics,2019,19(4):2247-2258. doi: 10.5194/acp-19-2247-2019
    [68] CHEN L, CHEN Y Z, CHEN L L, et al. Hygroscopic properties of eleven pollen species in China[J]. ACS Earth and Space Chemistry,2019,3(12):2678-2683. doi: 10.1021/acsearthspacechem.9b00268
    [69] 贾嘉, 宋晓焱, 滕晓咪, 等.大气生物气溶胶花粉单颗粒的形貌特征及吸湿特性研究[J]. 环境科学研究,2022,35(5):1102-1109. doi: 10.13198/j.issn.1001-6929.2022.03.21

    JIA J, SONG X Y, TENG X M, et al. Morphological characteristics and hygroscopicity of atmospheric bioaerosol pollen single particles[J]. Research of Environmental Sciences,2022,35(5):1102-1109. doi: 10.13198/j.issn.1001-6929.2022.03.21
    [70] MA Q X, LIU Y C, LIU C, et al. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles[J]. Physical Chemistry Chemical Physics:PCCP,2012,14(23):8403-8409. doi: 10.1039/c2cp40510e
    [71] ATTWOOD A R, GREENSLADE M E. Optical properties and associated hygroscopicity of clay aerosols[J]. Aerosol Science and Technology,2011,45(11):1350-1359. doi: 10.1080/02786826.2011.594462
    [72] AL-ABADLEH H A, KRUEGER B J, ROSS J L, et al. Phase transitions in calcium nitrate thin films[J]. Chemical Communications,2003(22):2796-2797. doi: 10.1039/B308632A
    [73] MÜLLER A, MIYAZAKI Y, AGGARWAL S G, et al. Effects of chemical composition and mixing state on size-resolved hygroscopicity and cloud condensation nuclei activity of submicron aerosols at a suburban site in northern Japan in summer[J]. Journal of Geophysical Research:Atmospheres,2017,122(17):9301-9318. doi: 10.1002/2017JD027286
    [74] HERSEY S P, CRAVEN J S, METCALF A R, et al. Composition and hygroscopicity of the los angeles aerosol: CalNex[J]. Journal of Geophysical Research:Atmospheres,2013,118(7):3016-3036. doi: 10.1002/jgrd.50307
    [75] YIN Z, YE X N, JIANG S Q, et al. Size-resolved effective density of urban aerosols in Shanghai[J]. Atmospheric Environment,2015,100:133-140. doi: 10.1016/j.atmosenv.2014.10.055
    [76] SARANGI B, RAMACHANDRAN S, RAJESH T A, et al. Black carbon linked aerosol hygroscopic growth: size and mixing state are crucial[J]. Atmospheric Environment,2019,200:110-118. doi: 10.1016/j.atmosenv.2018.12.001
    [77] XIA C, SUN J Y, QI X F, et al. Observational study of aerosol hygroscopic growth on scattering coefficient in Beijing: a case study in March of 2018[J]. Science of the Total Environment,2019,685:239-247. doi: 10.1016/j.scitotenv.2019.05.283
    [78] DING S, LIU D T, ZHAO D L, et al. Optical and hygroscopic properties of black carbon influenced by particle microphysics at the top of anthropogenically polluted boundary layer[J]. Atmospheric Chemistry and Physics,2021,21(2):681-694. doi: 10.5194/acp-21-681-2021
    [79] LEE S, YOON S C, KIM S W, et al. Spectral dependency of light scattering/absorption and hygroscopicity of pollution and dust aerosols in Northeast Asia[J]. Atmospheric Environment,2012,50:246-254. doi: 10.1016/j.atmosenv.2011.12.026
    [80] DING J, ZHANG Y F, ZHAO P S, et al. Comparison of size-resolved hygroscopic growth factors of urban aerosol by different methods in Tianjin during a haze episode[J]. Science of the Total Environment,2019,678:618-626. doi: 10.1016/j.scitotenv.2019.05.005
    [81] YUAN L, ZHANG X L, FENG M, et al. Size-resolved hygroscopic behaviour and mixing state of submicron aerosols in a megacity of the Sichuan Basin during pollution and fireworks episodes[J]. Atmospheric Environment,2020,226:117393. doi: 10.1016/j.atmosenv.2020.117393
    [82] MIE G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen der Physik,1908,330(3):377-445. doi: 10.1002/andp.19083300302
    [83] MÄTZLER C. MATLAB functions for Mie scattering and absorption version 2[R]. Tübingen: Institut für Angewandte Physik, 2002.
    [84] WENDISCH M, YANG P. Theory of atmospheric radiative transfer: a comprehensive introduction[M]. German: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
    [85] 沈毅成. 长三角西部地区气溶胶光学性质及云凝结核活化特性研究[D]. 南京: 南京大学, 2019.
    [86] WANG W, ROOD M J, CARRICO C M, et al. Aerosol optical properties along the northeast coast of North America during the New England air quality study: intercontinental transport and chemical transformation 2004 campaign and the influence of aerosol composition[J]. Journal of Geophysical Research: Atmospheres,2007,112(D10):D10S23.
    [87] FIERZ-SCHMIDHAUSER R, ZIEGER P, GYSEL M, et al. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch[J]. Atmospheric Chemistry and Physics,2010,10(5):2319-2333. doi: 10.5194/acp-10-2319-2010
    [88] LIU J Y, REN C H, HUANG X, et al. Increased aerosol extinction efficiency hinders visibility improvement in Eastern China[J]. Geophysical Research Letters,2020,47(20):e2020GL090167.
    [89] HUANG X, DING A J, WANG Z L, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China[J]. Nature Geoscience,2020,13(6):428-434. doi: 10.1038/s41561-020-0583-4
    [90] XU W Y, KUANG Y, BIAN Y X, et al. Current challenges in visibility improvement in Southern China[J]. Environmental Science & Technology Letters,2020,7(6):395-401.
    [91] HEINTZENBERG J, MAßLING A, BIRMILI W. The connection between hygroscopic and optical particle properties in the atmospheric aerosol[J]. Geophysical Research Letters,2001,28(19):3649-3651. doi: 10.1029/2001GL012971
    [92] HEGG D A, COVERT D S, CRAHAN K, et al. The dependence of aerosol light-scattering on RH over the Pacific Ocean[J]. Geophysical Research Letters,2002,29(8):60-61.
    [93] LIU P F, ZHAO C S, T G, et al. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain[J]. Atmospheric Chemistry and Physics,2011,11(7):3479-3494. doi: 10.5194/acp-11-3479-2011
    [94] XUE B, KUANG Y, XU W Y, et al. Joint increase of aerosol scattering efficiency and aerosol hygroscopicity aggravate visibility impairment in the North China Plain[J]. Science of the Total Environment,2022,839:156279. doi: 10.1016/j.scitotenv.2022.156279
    [95] ENGELHART G J, HILDEBRANDT L, KOSTENIDOU E, et al. Water content of aged aerosol[J]. Atmospheric Chemistry and Physics,2011,11(220):911-920.
    [96] KITAMORI Y, MOCHIDA M, KAWAMURA K. Assessment of the aerosol water content in urban atmospheric particles by the hygroscopic growth measurements in Sapporo, Japan[J]. Atmospheric Environment,2009,43(21):3416-3423. doi: 10.1016/j.atmosenv.2009.03.037
    [97] YOUNG L H, HSIAO T C, GRIFFITH S M, et al. Secondary inorganic aerosol chemistry and its impact on atmospheric visibility over an ammonia-rich urban area in Central Taiwan[J]. Environmental Pollution,2022,312:119951. doi: 10.1016/j.envpol.2022.119951
    [98] DENG H, TAN H B, LI F, et al. Impact of relative humidity on visibility degradation during a haze event: a case study[J]. Science of the Total Environment,2016,569/570:1149-1158. doi: 10.1016/j.scitotenv.2016.06.190
    [99] TING Y C, YOUNG L H, LIN T H, et al. Quantifying the impacts of PM2.5 constituents and relative humidity on visibility impairment in a suburban area of eastern Asia using long-term in situ measurements[J]. Science of the Total Environment,2022,818:151759. doi: 10.1016/j.scitotenv.2021.151759
    [100] YANG X, ZHAO C F, ZHOU L J, et al. Distinct impact of different types of aerosols on surface solar radiation in China[J]. Journal of Geophysical Research:Atmospheres,2016,121(11):6459-6471. doi: 10.1002/2016JD024938
    [101] JACOBSON M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature,2001,409:695-697. doi: 10.1038/35055518
    [102] CHARLSON R J, SCHWARTZ S E, HALES J M, et al. Climate forcing by anthropogenic aerosols[J]. Science,1992,255:423-430. doi: 10.1126/science.255.5043.423
    [103] BURGOS M A, ANDREWS E, TITOS G, et al. A global model-measurement evaluation of particle light scattering coefficients at elevated relative humidity[J]. Atmospheric Chemistry and Physics,2020,20(17):10231-10258. doi: 10.5194/acp-20-10231-2020
    [104] XIA C, SUN J Y, HU X Y, et al. Effects of hygroscopicity on aerosol optical properties and direct radiative forcing in Beijing: based on two-year observations[J]. The Science of the Total Environment, 2023, 857(Pt 1): 159233.
    [105] HAYWOOD J M, SHINE K P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget[J]. Geophysical Research Letters,1995,22(5):603-606. doi: 10.1029/95GL00075
    [106] GLORIA T, BURGOS MARÍA A, PAUL Z, et al. A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties[J]. Atmospheric Chemistry and Physics,2021,21(17):13031-13050. doi: 10.5194/acp-21-13031-2021
    [107] TAO J C, ZHAO C S, MA N, et al. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient[J]. Atmospheric Chemistry and Physics,2014,14(11):12055-12067.
    [108] IM J S, SAXENA V K, WENNY B N. An assessment of hygroscopic growth factors for aerosols in the surface boundary layer for computing direct radiative forcing[J]. Journal of Geophysical Research:Atmospheres,2001,106(D17):20213-20224. doi: 10.1029/2000JD000152
    [109] LUOMA K, VIRKKULA A, AALTO P, et al. Over a ten-year record of aerosol optical properties at SMEAR II[J]. Atmospheric Chemistry and Physics,2019,19(17):11363-11382. doi: 10.5194/acp-19-11363-2019
    [110] YOON S C, KIM J. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia[J]. Atmospheric Environment,2006,40(23):4328-4338. doi: 10.1016/j.atmosenv.2006.03.036
    [111] SHINOZUKA Y, CLARKE A D, HOWELL S G, et al. Aircraft profiles of aerosol microphysics and optical properties over North America: aerosol optical depth and its association with PM2.5 and water uptake[J]. Journal of Geophysical Research: Atmospheres,2007,112(D12):D12S20.
    [112] BROCK C, WAGNER N, ANDERSON B, et al. Aerosol optical properties in the southeastern United States in summer: part 2. sensitivity of aerosol optical depth to relative humidity and aerosol parameters[J]. Atmospheric Chemistry and Physics,2015,15(21):31471-31499.
    [113] KUANG Y, ZHAO C S, TAO J C, et al. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain[J]. Atmospheric Environment,2016,147:224-233. □ doi: 10.1016/j.atmosenv.2016.10.013
  • 加载中
表(1)
计量
  • 文章访问数:  858
  • HTML全文浏览量:  437
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-19
  • 录用日期:  2023-06-12
  • 修回日期:  2023-02-03
  • 网络出版日期:  2023-08-01

目录

    /

    返回文章
    返回