留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种固定化生物填料的制备及应用

李萍 刘佳 鲁少杰 陶敏 韩月阳 梁文俊

李萍,刘佳,鲁少杰,等.一种固定化生物填料的制备及应用[J].环境工程技术学报,2023,13(6):2240-2247 doi: 10.12153/j.issn.1674-991X.20230054
引用本文: 李萍,刘佳,鲁少杰,等.一种固定化生物填料的制备及应用[J].环境工程技术学报,2023,13(6):2240-2247 doi: 10.12153/j.issn.1674-991X.20230054
LI P,LIU J,LU S J,et al.Preparation and application of an immobilized bio-filler[J].Journal of Environmental Engineering Technology,2023,13(6):2240-2247 doi: 10.12153/j.issn.1674-991X.20230054
Citation: LI P,LIU J,LU S J,et al.Preparation and application of an immobilized bio-filler[J].Journal of Environmental Engineering Technology,2023,13(6):2240-2247 doi: 10.12153/j.issn.1674-991X.20230054

一种固定化生物填料的制备及应用

doi: 10.12153/j.issn.1674-991X.20230054
基金项目: 北京市教委科技计划一般项目(KM201810005034)
详细信息
    作者简介:

    李萍(1996—),女,硕士研究生,主要从事生物法净化VOCs研究,1141044947@qq.com

    通讯作者:

    刘佳(1979—),女,副教授,博士,主要从事生物法净化VOCs研究,jialiu@bjut.edu.cn

  • 中图分类号: X701

Preparation and application of an immobilized bio-filler

  • 摘要:

    采用固定化技术,以聚乙烯醇(PVA)、海藻酸钠(SA)联合构筑凝胶骨架,引入活性炭(AC)、CaCO3和复合菌粉制备一种固定化生物填料(BM填料),对添加到BM填料中的AC进行粒径优化;以乙苯作为目标污染物,考察装填该填料的生物滴滤塔(BTF)对其去除效果。结果表明:当添加的AC为100目时,BM填料的比表面积达到57.46 m2/g,机械强度最高,对乙苯的去除效果最好。理化性质分析表明,该填料内部为致密的三维网状结构,具有较好的亲水性与吸附性,表面存在大量—OH、—COO等亲水基团,相同条件下对乙苯吸附量是聚氨酯海绵填料(PU填料)的2.9倍。同时该填料具有较好耐酸性,在pH降至1时依然保持高降解活性。装填BM填料的BTF可在6 d内完成挂膜;经过7 d停滞,去除率5 d可以恢复至100%;在进气乙苯浓度为800~900 mg/m3,停留时间(EBRT)为33 s时,仍可将乙苯完全去除。相较于PU填料,以BM为填料的BTF性能更优。

     

  • 图  1  生物滴滤塔工艺流程示意

    Figure  1.  Schematic diagram of bio-trickling filter

    图  2  AC粒径对BM填料降解性能的影响

    Figure  2.  Effect of AC particle size on the degradation performance of BM filler

    图  3  BM填料机械强度测试

    Figure  3.  Mechanical strength test of BM fillers

    图  4  BM填料的扫描电子显微镜图

    Figure  4.  Scanning electron microscopy images of BM filler

    图  5  BM填料的红外光谱

    Figure  5.  FT-IR spectrum of BM filler

    图  6  BM填料对乙苯的吸附效果

    Figure  6.  Adsorption effect of BM filler on ethylbenzene

    图  7  pH对BM填料和复合菌种降解乙苯的影响

    Figure  7.  Effect of pH on the degradation of ethylbenzene by BM filler and composite bacteria

    图  8  挂膜启动阶段BTF运行性能曲线

    Figure  8.  Operating performance of bio-trickling filter during the start-up stage

    图  9  冲击负荷对乙苯去除率的影响

    Figure  9.  Effect of shock loading on removal efficiency of ethylbenzene

    图  10  BTF停滞恢复性能

    Figure  10.  Restart performance after stagnation of BTF

    图  11  停留时间对生物滴滤塔运行性能的影响

    注:图中数字为停留时间。

    Figure  11.  Effect of EBRT on operational performance of bio-trickling filter

    图  12  BTF内压降的变化

    Figure  12.  Changes of pressure drop in bio-trickling filter

    图  13  营养液pH变化

    Figure  13.  Changes in the pH of nutrient solution

    表  1  生物滴滤塔运行条件

    Table  1.   Operating conditions for bio-trickling filter

    阶段状态天数/d进气浓度/(mg/m3)EBRT/s
    挂膜1~12800~90072
    短期冲击负荷13~27800~1 20072
    停滞28~340
    稳定运行35~75800~90027~72
    下载: 导出CSV

    表  2  不同粒径AC的BM填料比表面积对比

    Table  2.   Comparison of specific surface area of BM filler with different particle sizes of AC

    AC粒径/目比表面积/(m2/g)孔容/(cm3/g)孔径/nm
    未添加AC 9.58 0.01 6.77
    5031.130.022.81
    7046.960.042.81
    10057.461.153.74
    20015.680.026.01
    下载: 导出CSV

    表  3  不同填料吸附性能对比

    Table  3.   Comparison of adsorption performance of different fillers

    填料平衡时间/h平衡吸附量/(mg/g)
    BM 6 5.2
    PU0.11.8
    陶粒0.51.1
    下载: 导出CSV
  • [1] MEENA M, SONIGRA P, YADAV G. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals[J]. Environmental Science and Pollution Research,2021,28(3):2485-2508. doi: 10.1007/s11356-020-11112-4
    [2] RYBARCZYK P, SZULCZYŃSKI B, GĘBICKI J, et al. Treatment of malodorous air in biotrickling filters: a review[J]. Biochemical Engineering Journal,2019,141:146-162. doi: 10.1016/j.bej.2018.10.014
    [3] WU H, YAN H Y, QUAN Y, et al. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment[J]. Journal of Environmental Management,2018,222:409-419.
    [4] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment: a review[J]. Journal of Cleaner Production,2017,152:223-241. doi: 10.1016/j.jclepro.2017.03.093
    [5] MANCZARSKI P, LELICIŃSKA-SERAFIN K, ROLEWICZ-KALIŃSKA A. Assessment of the efficiency of biological treatment of gases from municipal waste processing[J]. Ecological Chemistry and Engineering S,2019,26(4):687-696. doi: 10.1515/eces-2019-0049
    [6] CHENG Y, HE H J, YANG C P, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances,2016,34(6):1091-1102. doi: 10.1016/j.biotechadv.2016.06.007
    [7] 李林洲, 颜玉玺, 金博强, 等.净化挥发性有机物生物滤塔填料研究进展[J]. 环境科学与技术,2020,43(9):52-58.

    LI L Z, YAN Y X, JIN B Q, et al. Review in filler of biofilter for the volatile organic compounds purification[J]. Environmental Science & Technology,2020,43(9):52-58.
    [8] LEE S H, KURADE M B, JEON B H, et al. Water condition in biotrickling filtration for the efficient removal of gaseous contaminants[J]. Critical Reviews in Biotechnology,2021,41(8):1279-1296. doi: 10.1080/07388551.2021.1917506
    [9] BU H, CARVALHO G, HUANG C, et al. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter[J]. Chemosphere,2022,291:132723. doi: 10.1016/j.chemosphere.2021.132723
    [10] 于承泽, 李鸣晓, 孟繁华, 等.生物滤池去除恶臭气体工艺填料优选研究[J]. 环境科学研究,2021,34(8):1876-1885.

    YU C Z, LI M X, MENG F F, et al. Optimization of packing material in biofilter for removingodors[J]. Research of Environmental Sciences,2021,34(8):1876-1885.
    [11] DOU X N, LIU J, QI H Y, et al. Synergistic removal of m-xylene and its corresponding mechanism in a biotrickling filter[J]. Process Biochemistry,2022,118:404-412. doi: 10.1016/j.procbio.2022.05.010
    [12] ZHU R C, LI S Y, WU Z J, et al. Performance evaluation of a slow-release packing material-embedded functional microorganisms for biofiltration[J]. Environmental Technology,2017,38(8):945-955. doi: 10.1080/09593330.2016.1214624
    [13] 刘春敬, 李坚, 刘佳, 等.分期布液生物滴滤床净化H2S废气性能研究[J]. 环境科学,2012,33(9):2987-2992.

    LIU C J, LI J, LIU J, et al. Performance of cross flow trickling filter for H2S gas treatment[J]. Environmental Science,2012,33(9):2987-2992.
    [14] LEE S H, LI C N, HEBER A J, et al. Ethylene removal using biotrickling filters: part I. experimental description[J]. Chemical Engineering Journal,2010,158(2):79-88. doi: 10.1016/j.cej.2009.12.033
    [15] LIU J W, YUE P, HUANG L H, et al. Styrene removal with an acidic biofilter with four packing materials: performance and fungal bioaerosol emissions[J]. Environmental Research,2020,191:110154. doi: 10.1016/j.envres.2020.110154
    [16] 刘强, 马广大, 贾立岩, 等.生物滴滤床净化二甲苯废气的性能研究[J]. 环境科学研究,2002,15(6):35-38.

    LIU Q, MA G D, JIA L Y, et al. Study on the performance of trickling biofilter in purifying xylene in waste gas[J]. Research of Environmental Sciences,2002,15(6):35-38.
    [17] SAN-VALERO P, GABALDÓN C, PENYA-ROJA J M, et al. Enhanced styrene removal in a two-phase partitioning bioreactor operated as a biotrickling filter: towards full-scale applications[J]. Chemical Engineering Journal,2017,309:588-595. doi: 10.1016/j.cej.2016.10.054
    [18] YANG N Y, WANG C, HAN M F. Gel-encapsulated microorganisms used as a strategy to rapidly recover biofilters after starvation interruption[J]. Journal of Environmental Management,2020,261:110237. doi: 10.1016/j.jenvman.2020.110237
    [19] CHENG Z W, FENG K, XU D H, et al. An innovative nutritional slow-release packing material with functional microorganisms for biofiltration: characterization and performance evaluation[J]. Journal of Hazardous Materials,2019,366:16-26. doi: 10.1016/j.jhazmat.2018.11.070
    [20] LI T, REN Y, WEI C H. Study on preparation and properties of PVA-SA-PHB-AC composite carrier for microorganism immobilization[J]. Journal of Applied Polymer Science,2014,131(3):1-10.
    [21] 黄良仙, 韩星星, 牛育华, 等.聚乙烯醇/海藻酸钠双交联凝胶球的制备及其应用[J]. 精细化工,2021,38(7):1459-1472.

    HUANG L X, HAN X X, NIU Y H, et al. Preparation and application of polyvinyl alcohol/sodium alginate double cross-linked gel beads[J]. Fine Chemicals,2021,38(7):1459-1472.
    [22] GONG H J, CHEN Z Z, FAN Y M, et al. Surface modification of activated carbon for siloxane adsorption[J]. Renewable Energy,2015,83:144-150. doi: 10.1016/j.renene.2015.04.004
    [23] 杜青平, 陈展明, 李彦旭, 等.活性炭含量对PVA-SA固定化小球处理氯苯微污染废水的影响[J]. 广东工业大学学报,2017,34(4):22-26.

    DU Q P, CHEN Z M, LI Y X, et al. Effects of activated carbon in sodium alginate and polyvinylacohol immobilization pellets of Penicillium sp. on chlorobenzene removal[J]. Journal of Guangdong University of Technology,2017,34(4):22-26.
    [24] YANG N Y, WANG C, HAN M F, et al. Performance improvement of a biofilter by using gel-encapsulated microorganisms assembled in a 3D mesh material[J]. Chemosphere,2020,251:126618. doi: 10.1016/j.chemosphere.2020.126618
    [25] ASADI S, ERIS S, AZIZIAN S. Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions[J]. ACS Omega,2018,3(11):15140-15148. doi: 10.1021/acsomega.8b02498
    [26] KONG Y, ZHUANG Y, HAN Z Y, et al. Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites[J]. Journal of Environmental Sciences,2019,78:81-91. doi: 10.1016/j.jes.2018.07.006
    [27] ZHUANG Y, KONG Y, HAN K, et al. A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial[J]. New Journal of Chemistry,2017,41(24):15127-15135. doi: 10.1039/C7NJ03392C
    [28] 王淑雅, 刘灵婕, 王芬, 等.低温等离子体技术改性填料前后Anammox工艺运行及微生物群落变化[J]. 环境工程学报,2020,14(2):285-294.

    WANG S Y, LIU L J, WANG F, et al. Variation of operating and microbial community of Anammox process with convertional and modified filler by low temperature plasma technology[J]. Chinese Journal of Environmental Engineering,2020,14(2):285-294.
    [29] MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours: a review[J]. Journal of Environmental Management,2010,91(5):1039-1054. doi: 10.1016/j.jenvman.2010.01.006
    [30] 黄强, 张明强.固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环境工程技术学报,2012,2(3):247-252.

    HUANG Q, ZHANG M Q. Biodegradation of p-Nitrophenol by immobilized cells of Pseudomonas aeruginosa[J]. Journal of Environmental Engineering Technology,2012,2(3):247-252.
    [31] 张瑞斌, 潘卓兮, 王乐阳, 等.固定化菌藻填料强化人工湿地脱氮除磷效果研究[J]. 环境工程技术学报,2021,11(1):91-96.

    ZHANG R B, PAN Z X, WANG L Y, et al. Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland[J]. Journal of Environmental Engineering Technology,2021,11(1):91-96.
    [32] 卢仁钵, 杜青平, 许燕滨, 等.降解乙苯生物滴滤塔稳定运行期生物膜特征及微生物多样性研究[J]. 环境科学学报,2016,36(10):3561-3568.

    LU R B, DU Q P, XU Y B, et al. Biofilm characteristics and microbial diversity in ethylbenzene degradation BTF during the stable operation periods[J]. Acta Scientiae Circumstantiae,2016,36(10):3561-3568.
    [33] de VELA R J L, GOSTOMSKI P A. Minimising biomass accumulation in biotrickling filters[J]. Reviews in Environmental Science and Bio/Technology,2018,17(3):417-430. doi: 10.1007/s11157-018-9471-4
    [34] HERNÁNDEZ J, LAFUENTE J, PRADO Ó J, et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3[J]. Journal of the Air & Waste Management Association,2013,63(4):462-471. □
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  126
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-26
  • 录用日期:  2023-07-17
  • 网络出版日期:  2023-08-01

目录

    /

    返回文章
    返回