Analysis of phytoplankton community characteristics and water quality health status in an estuarine composite ecological purification system
-
摘要:
针对阳澄湖某入湖河口复合生态净化系统实际工程,在探究各净化单元水体浮游植物群落季节性构成特征的基础上,采用综合营养状态指数和浮游植物多样性指数对水质健康状况进行综合评价及分析。结果表明:复合生态净化系统中共鉴定浮游植物8门97属143种,种类组成以硅藻门、绿藻门和蓝藻门为主;系统进、出水浮游植物密度分别为5.81×105 ~1.76×107、4.96×105 ~1.65×107 个/L,进、出水生物量分别为0.292~5.21、0.194~4.66 mg/L,净化系统对水体浮游植物生长具有较好的控制效应;按照浮游植物功能群(functional group,FG)分类方法,净化系统浮游植物可划分为26个功能群,其中B、D、MP、P、S1、W1、X2、Y、G、J、LO和M为优势功能群;各单元优势功能群的演替与水温、CODMn、DO和TN等水质指标具有良好相关性。研究期间复合生态净化系统水体处于中营养到轻度富营养状态,净化系统有效地提升了入湖水体的生态健康水平。
Abstract:In view of the actual project of the composite ecological purification system in an estuary of Yangcheng Lake, based on exploring the seasonal composition characteristics of the phytoplankton community in each purification unit, comprehensive evaluation and analysis of water quality health status were carried out by using comprehensive trophic level index (TLI) and phytoplankton diversity index. The results showed that a total of 143 species of phytoplankton from 97 genera and 8 phyla were identified in the purification system, with Diatoma, Chlorophyta, and Cyanophyta dominating the species composition. The phytoplankton intensities of the influent and effluent of the system were 5.81×105-1.76×107 cells/L and 4.96×105-1.65×107 cells/L, respectively, and the biomass ranges were 0.292-5.21 mg/L and 0.194-4.66 mg/L, respectively. The system had an effective control over phytoplankton growth in the water body. According to FG functional group classification method, the phytoplankton in the purification system could be divided into 26 functional groups, among which B, D, MP, P, S1, W1, X2, Y, G, J, LO, and M were the dominant functional groups. The succession of dominant functional groups in each unit correlated well with water quality indices such as water temperature, CODMn, DO, and TN. The water body of the composite purification system was in mesotrophic to slightly eutrophic state during the research period, indicating that the system effectively improved the ecological health of the water entering the lake.
-
Key words:
- lake-inlet estuarine /
- ecological restoration /
- phytoplankton /
- nutritional status
-
表 1 入湖河口复合生态净化系统水环境指标
Table 1. Water environment indicators of composite ecological purification system at the estuary of the lake
时间(年-月) 点位 水温/
℃DO浓度/
(mg/L)pH SD/
cmChla浓度/
(mg/L)TP浓度/
(mg/L)TN浓度/
(mg/L)CODMn/
(mg/L)2020-12 S1 9.1±0.3 8.32±0.11 7.82±0.14 45±3 11.12±2.26 0.136±0.013 1.83±0.12 7.2±0.2 S2 7.5±0.2 7.93±0.14 7.57±0.05 52±5 10.89±1.42 0.112±0.016 1.75±0.05 6.8±0.3 S3 6.9±0.1 7.84±0.24 7.48±0.08 47±2 7.82±0.92 0.092±0.006 1.62±0.14 6.3±0.2 S4 6.5±0.2 8.51±0.06 7.75±0.06 50±2 7.78±0.85 0.078±0.011 1.41±0.12 4.8±0.1 S5 8.5±0.4 8.42±0.08 7.84±0.08 53±6 9.20±1.36 0.072±0.015 1.32±0.08 4.3±0.3 平均值 7.7±0.2d 8.20±0.13a 7.69±0.08b 49±4b 9.36±1.36c 0.098±0.012a 1.59±0.10a 5.9±0.2a 2021-03 S1 16.0±0.3 7.68±0.16 8.27±0.07 62±3 28.20±2.18 0.121±0.022 2.04±0.06 5.5±0.2 S2 15.6±0.2 6.28±0.18 7.88±0.13 73±1 30.10±1.46 0.092±0.018 1.92±0.17 5.3±0.2 S3 16.5±0.2 7.35±0.21 8.13±0.17 75±2 26.23±0.87 0.068±0.013 1.66±0.07 4.5±0.3 S4 16.7±0.3 7.93±0.06 8.04±0.05 78±6 22.31±0.93 0.045±0.008 1.24±0.08 3.6±0.4 S5 15.9±0.3 8.29±0.13 7.93±0.08 76±4 24.82±1.48 0.032±0.009 1.18±0.05 3.4±0.3 平均值 16.1±0.3c 7.51±0.15ab 8.05±0.10a 73±3a 26.33±1.38b 0.072±0.014a 1.61±0.09a 4.47±0.3b 2021-06 S1 25.6±0.3 6.32±0.08 8.35±0.12 64±3 48.17±2.46 0.098±0.021 1.35±0.12 4.5±0.3 S2 25.3±0.2 5.92±0.15 7.82±0.11 78±1 47.26±4.13 0.078±0.019 1.31±0.11 4.1±0.3 S3 26.2±0.2 7.23±0.08 8.21±0.07 75±2 40.56±2.27 0.062±0.013 1.12±0.05 3.8±0.3 S4 27.9±0.1 6.58±0.24 8.14±0.06 81±3 38.14±3.11 0.052±0.012 0.61±0.07 2.9±0.2 S5 28.4±0.2 7.76±0.23 8.37±0.03 83±2 44.23±0.86 0.049±0.011 0.68±0.06 3.2±0.2 平均值 26.7±0.2a 6.76±0.16b 8.18±0.08a 76±2a 43.67±2.57a 0.068±0.015a 1.01±0.08b 3.7±0.3b 2021-09 S1 23.6±0.3 7.46±0.14 7.48±0.14 70±3 36.62±0.74 0.120±0.023 1.21±0.02 4.2±0.1 S2 24.2±0.3 7.32±0.15 7.37±0.12 77±5 32.14±1.45 0.100±0.015 1.17±0.04 4.0±0.2 S3 22.9±0.2 8.13±0.16 7.74±0.20 78±1 26.32±1.83 0.078±0.018 1.01±0.12 3.7±0.3 S4 24.1±0.1 7.57±0.07 7.53±0.18 82±6 20.54±0.92 0.052±0.011 0.62±0.10 2.9±0.1 S5 22.6±0.4 8.48±0.17 8.19±0.06 95±2 18.37±1.48 0.042±0.008 0.61±0.06 2.7±0.2 平均值 23.5±0.3b 7.79±0.14a 7.66±0.14b 80±3a 26.80±1.28b 0.078±0.015a 0.92±0.07b 3.5±0.2b 注:水环境指标数值为平均值±标准差;同一列上标不同小写字母代表组间季节性差异显著(P<0.05)。 表 2 复合生态净化系统环境因子与水质健康指标的Pearson相关性分析
Table 2. Pearson correlation analysis of environmental factors and water quality health indicators of the composite ecological purification system
项目 水温 DO pH SD Chla TP TN CODMn TLI Shannon-Wiener指数 J 水温 1 DO −0.53* 1 pH 0.34* −0.16 1 SD 0.81* −0.26 0.32 1 Chla 0.86* −0.75* 0.44 0.56* 1 TP −0.34 −0.10 −0.35 −0.66* −0.12 1 TN −0.67* −0.05 −0.12 −0.70* −0.29 0.70 1 CODMn −0.73 0.09 −0.29 −0.86* −0.45* 0.80* 0.86* 1 TLI −0.32 −0.32 −0.13 −0.64* 0.08 0.88* 0.86* 0.81* 1 Shannon-Wiener指数 −0.91* 0.60* −0.20 −0.68* −0.87* 0.09 0.41 0.52* 0.03 1 J −0.79* 0.70* −0.13 −0.35 −0.84* −0.02 0.27 0.27 −0.20 0.87* 1 注:*表示在0.05水平相关性显著。 -
[1] 曾一恒, 沈旭舟, 张佳磊, 等.分层异重流对香溪河浮游植物叶绿素a空间分布的影响[J]. 环境工程技术学报,2022,12(2):426-435.ZENG Y H, SHEN X Z, ZHANG J L, et al. Effects of stratified density flow on the spatial distribution of chlorophyll-a in phytoplankton in Xiangxi River[J]. Journal of Environmental Engineering Technology,2022,12(2):426-435. [2] YANG M, XIA J, CAI W, et al. Seasonal and spatial distributions of morpho-functional phytoplankton groups and the role of environmental factors in a subtropical river-type reservoir[J]. Water Science and Technology,2020,82(11):2316-2330. doi: 10.2166/wst.2020.489 [3] 杨萌卓, 夏继红, 蔡旺炜, 等.饮水型水库浮游植物功能群分布特征及环境驱动因子[J]. 水生态学杂志,2022,43(2):37-44.YANG M Z, XIA J H, CAI W W, et al. Distribution of phytoplankton functional groups in a drinking water reservoir and analysis of environmental driving factors[J]. Journal of Hydroecology,2022,43(2):37-44. [4] 杨雅兰, 过龙根, 尹成杰, 等.云南大理洱源西湖浮游植物功能群季节演替特征[J]. 环境工程技术学报,2023,13(2):625-631.YANG Y L, GUO L G, YIN C J, et al. Study on the seasonal succession of phytoplankton functional groups in Eryuan West Lake of Dali City, Yunnan Province[J]. Journal of Environmental Engineering Technology,2023,13(2):625-631. [5] 胡旻琪, 张玉超, 马荣华, 等.巢湖2016年蓝藻水华时空分布及环境驱动力分析[J]. 环境科学,2018,39(11):4925-4937.HU M Q, ZHANG Y C, MA R H, et al. Spatial and temporal dynamics of floating algal blooms in Lake Chaohu in 2016 and their environmental drivers[J]. Environmental Science,2018,39(11):4925-4937. [6] 蒋尖尖, 胡文, 叶春, 等.近60年滇池水生态系统演替及驱动因子[J]. 环境工程技术学报,2023,13(2):541-551.JIANG J J, HU W, YE C, et al. Succession and driving factors of Lake Dianchi aquatic ecosystem in the past 60 years[J]. Journal of Environmental Engineering Technology,2023,13(2):541-551. [7] 郑丙辉, 张佳磊, 王丽婧, 等.大宁河水华敏感期浮游植物与环境因子关系[J]. 环境科学,2011,32(3):641-648.ZHENG B H, ZHANG J L, WANG L J, et al. Exploration of relationships between phytoplankton and related environmental factors in the Daning River during sensitive period of algal blooms[J]. Chinese Journal of Environmental Science,2011,32(3):641-648. [8] 张欢, 张佳磊, 刘德富, 等.三峡水库水温对浮游植物群落演替和多样性的影响[J]. 环境工程技术学报,2017,7(2):134-139.ZHANG H, ZHANG J L, LIU D F, et al. The influence of water temperature on phytoplankton community succession and diversity in Three Gorges Reservoir[J]. Journal of Environmental Engineering Technology,2017,7(2):134-139. [9] 陈克峰, 叶麟, 谭路, 等.2015年三峡水库典型支流库湾的浮游植物功能群组成和生态状况[J]. 湿地科学,2022,20(2):268-276.CHEN K F, YE L, TAN L, et al. Composition of phytoplankton functional groups and ecological status of typical tributaries of the Three Gorges Reservoir in 2015[J]. Wetland Science,2022,20(2):268-276. [10] 杜红春, 王晓宁, 吴虎, 等.汉江中下游浮游植物群落结构、功能群特征及水质评价[J]. 长江流域资源与环境,2021,30(8):1839-1847.DU H C, WANG X N, WU H, et al. Community structure and functional groups of phytoplankton and water quality evaluation in the middle and lower Hanjiang River[J]. Resources and Environment in the Yangtze Basin,2021,30(8):1839-1847. [11] 杨威, 张菲云, 孙雨琛, 等.淮北南湖浮游植物功能群的季节演替及影响因子研究[J]. 中国环境科学,2020,40(7):3079-3086.YANG W, ZHANG F Y, SUN Y C, et al. Seasonal succession and influencing factors of phytoplankton functional groups in Lake Nanhu, Huaibei City[J]. China Environmental Science,2020,40(7):3079-3086. [12] 李艳蓉, 马杰, 邱小琮.宁夏太阳山国家湿地公园湖泊中的浮游植物群落物种多样性研究[J]. 湿地科学,2021,19(3):375-383.LI Y R, MA J, QIU X C. Species diversity of phytoplankton community in the lakes in Ningxia Taiyangshan National Wetland Park[J]. Wetland Science,2021,19(3):375-383. [13] 王敏, 张建云, 陈求稳, 等.太湖西北湖区2003—2012年间氮磷浓度及浮游植物主要类群变化趋势分析[J]. 生态学报,2019,39(1):164-172.WANG M, ZHANG J Y, CHEN Q W, et al. Variations in nitrogen and phosphorous concentrations and major phytoplankton species in the northwestern Lake Taihu between 2003-2012[J]. Acta Ecologica Sinica,2019,39(1):164-172. [14] 王晨旭, 黄廷林, 李楠, 等.人工强制混合对金盆水库水体藻类群落结构时空演替的影响[J]. 环境科学,2020,41(5):2166-2176.WANG C X, HUANG T L, LI N, et al. Effect of artificial mixing on temporal and spatial succession of algae community structure in Jinpen Reservoir[J]. Environmental Science,2020,41(5):2166-2176. [15] TSAI C H, MIKI T, CHANG C W, et al. Phytoplankton functional group dynamics explain species abundance distribution in a directionally changing environment[J]. Ecology,2014,95(12):3335-3343. doi: 10.1890/13-1946.1 [16] SHEN H L, LI B, CAI Q H, et al. Phytoplankton functional groups in a high spatial heterogeneity subtropical reservoir in China[J]. Journal of Great Lakes Research,2014,40(4):859-869. doi: 10.1016/j.jglr.2014.09.007 [17] 严广寒, 殷雪妍, 汪星, 等. 基于种群、功能群对比分析洞庭湖浮游植物群落驱动因素及水质评价[J/OL]. 环境科学.[2023-01-05].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HJKZ2023021301D&DbName=CAPJ2023.YAN G H, YIN X Y, WANG X, et al. Driving factors of phytoplankton population and function group change in Dongting Lake and evaluation of water quality applicability[J/OL]. Environmental Science.[2023-01-05].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HJKZ2023021301D&DbName=CAPJ2023. [18] 肖玉娜, 程靖华, 莫晓聪, 等. 丹江口水库浮游植物群落时空变化及其与环境因子的关系[J]. 湖泊科学, 2023,35(3):821-832.XIAO Y N, CHENG J H, MO X C, et al. Spatio-temporal variation of phytoplankton community and its relationship with environmental factors in Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2023,35(3):821-832. [19] 王雅雯, 李迎鹤, 张博, 等.嘉兴南湖不同湖区浮游动植物群落结构特征与环境因子关系[J]. 环境科学,2022,43(6):3106-3117.WANG Y W, LI Y H, ZHANG B, et al. Structural characteristics of zooplankton and phytoplankton communities and its relationship with environmental factors in different regions of Nanhu Lake in Jiaxing City[J]. Environmental Science,2022,43(6):3106-3117. [20] 王莲, 李璇, 马卫星, 等.盐龙湖水源生态净化系统FG和MBFG演替特征及水质响应性评价[J]. 环境科学,2020,41(3):1265-1275.WANG L, LI X, MA W X, et al. Succession characteristics and water quality responsiveness evaluation of FG and MBFG in Yanlong Lake water source ecological purification system[J]. Environmental Science,2020,41(3):1265-1275. [21] 魏复盛. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [22] 胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006. [23] 赵文. 水生生物学[M]. 北京: 中国农业出版社, 2005. [24] MUYLAERT K, SABBE K, VYVERMAN W. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium)[J]. Estuarine, Coastal and Shelf Science,2000,50(5):673-687. doi: 10.1006/ecss.2000.0590 [25] DEVERCELLI M. Phytoplankton of the Middle Paraná River during an anomalous hydrological period: a morphological and functional approach[J]. Hydrobiologia,2006,563(1):465-478. doi: 10.1007/s10750-006-0036-0 [26] REYNOLDS C, HUSZAR V, KRUK C, et al. Towards a functional classification of the freshwater phytoplankton[J]. Journal of Plankton Research, 2002, 24: 417-428. [27] PADISÁK J, CROSSETTI L O, NASELLI-FLORES L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates[J]. Hydrobiologia, 2009, 621(1): 1-19. [28] 李磊, 张莹, 陈宁, 等.大庆龙凤湿地浮游植物功能类群季节变化及其驱动因子[J]. 生态学杂志,2021,40(9):2850-2859.LI L, ZHANG Y, CHEN N, ET al. Seasonal variations and driving factors of phytoplankton functional groups in the Longfeng wetland, Daqing City[J]. Chinese Journal of Ecology,2021,40(9):2850-2859. [29] 张俊芳, 胡晓红, 马沛明, 等.汤浦水库浮游植物功能群季节演替及关键驱动因子[J]. 水生态学杂志,2021,42(3):55-62.ZHANG J F, HU X H, MA P M, et al. Seasonal succession of phytoplankton functional groups and key driving factors in Tangpu Reservoir[J]. Journal of Hydroecology,2021,42(3):55-62. [30] 张辉, 彭宇琼, 邹贤妮, 等.新丰江水库浮游植物功能分组特征及其与环境因子的关系[J]. 中国环境科学,2022,42(1):380-392.ZHANG H, PENG Y Q, ZOU X N, et al. Characteristics of phytoplankton functional groups and their relationships with environmental factors in Xinfengjiang Reservoir[J]. China Environmental Science,2022,42(1):380-392. [31] 赵璐, 欧阳添, 纪璐璐, 等.三峡水库蓄水对支流浮游植物功能群的影响及与资源利用效率的关系[J]. 环境科学,2023,44(2):857-867.ZHAO L, OUYANG T, JI L L, et al. Impounding impacts of the Three Gorges Reservoir on phytoplankton function groups and its relationship with resource use efficiency[J]. Environmental Science,2023,44(2):857-867. [32] ALLENDE L, TELL G, ZAGARESE H, et al. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the Pampa Plain (Argentina)[J]. Hydrobiologia,2009,624(1):45-60. doi: 10.1007/s10750-008-9665-9 [33] 李磊, 李秋华, 焦树林, 等.阿哈水库浮游植物功能群时空分布特征及其影响因子分析[J]. 环境科学学报,2015,35(11):3604-3611.LI L, LI Q H, JIAO S L, et al. Spatial and temporal distribution characteristics of phytoplankton functional groups in aha reservoir and their influencing factors[J]. Acta Scientiae Circumstantiae,2015,35(11):3604-3611. [34] ZHU K, BI Y, HU Z. Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China[J]. Science of the Total Environment,2013,450-451:169-177. doi: 10.1016/j.scitotenv.2013.01.101 [35] BLINN D W. Diatom community structure along physicochemical gradients in Saline Lakes[J]. Ecology (Durham),1993,74(4):1246-1263. doi: 10.2307/1940494 [36] NALEWAJKO C, MURPHY T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J]. Limnology,2001,2(1):45-48. doi: 10.1007/s102010170015 [37] KIM J S, SEO I W, LYU S, et al. Modeling water temperature effect in diatom (Stephanodiscus hantzschii) prediction in eutrophic rivers using a 2D contaminant transport model[J]. Journal of Hydro-environment Research,2018,19:41-55. doi: 10.1016/j.jher.2018.01.003 [38] 韩丽彬, 王星, 李秋华, 等.贵州高原百花水库浮游植物功能群的动态变化及驱动因子[J]. 湖泊科学,2022,34(4):1102-1114. doi: 10.18307/2022.0405HAN L B, WANG X, LI Q H, et al. Dynamic changes and driving factors of phytoplankton functional groups in Baihua Reser-voir, Guizhou Plateau[J]. Journal of Lake Sciences,2022,34(4):1102-1114. doi: 10.18307/2022.0405 [39] GONZÁLEZOLALLA J M, MEDINASÁNCHEZ J M, CARRILLO P. Fluctuation at high temperature combined with nutrients alters the thermal dependence of phytoplankton[J]. Microbial Ecology,2022,83(3):555-567. doi: 10.1007/s00248-021-01787-8 [40] 丁瑞睿, 郭匿春, 马友华.巢湖双桥河底泥疏浚过程中浮游植物功能群分类研究[J]. 生态学报,2020,40(7):2427-2438.DING R R, GUO N C, MA Y H. A study of the phytoplankton functional classification of the Shuangqiao River in the Chaohu Basin during a sediment dredging period[J]. Acta Ecologica Sinica,2020,40(7):2427-2438. [41] 高健, 周敏, 闵婷婷, 等.惠州西湖生态修复对浮游植物功能类群的影响[J]. 生态科学,2013,32(5):540-545.GAO J, ZHOU M, MIN T T, et al. Response of the phytoplankton functional groups to ecological restoration in Huizhou Lake[J]. Ecological Science,2013,32(5):540-545. ⊕