Removal efficiency of nitrobenzene and electricity generation by microbial fuel cell with algal biochar modified electrode
-
摘要:
开发利于微生物富集和优异导电性能的电极是提高微生物燃料电池(MFC)性能的关键。通过碱活化和酸活化方式制备螺旋藻生物炭(简称藻炭)并将其修饰于阳极炭毡(CF),以硝基苯为难降解污染物代表,通过检测电极电化学性能和污染物降解过程,探究基于藻碳MFC产电及转化污染物的性能。结果表明:在700 ℃-NaOH改性藻炭修饰炭毡的电极体系(NaOH-AC700/CF),MFC电压最高可达670 mV,比CF体系高26%,且驯化时间由7 d缩短至2 d。修饰电极体系产电的同时高效降解污染物,阴极对硝基苯的去除率最高可达99.9%;相比于CF体系,NaOH-AC700/CF体系的降解效率提高了22.1%,苯胺生成率提高了123.3%。微生物种类分析结果表明,电极表面的产电菌主要为弧形杆菌属(Arcobacter)和铜绿假单胞菌属(Pseudomonas),且在NaOH-AC700/CF阳极表面产电菌丰度最高,因而利于MFC产电以及硝基苯的还原。
-
关键词:
- 微生物燃料电池(MFC) /
- 藻炭 /
- 改性电极 /
- 硝基苯 /
- 弧形杆菌属
Abstract:Development of electrodes that facilitate microbial enrichment and excellent electrical conductivity is the key to improving the performance of microbial fuel cell (MFC). By acid and base activation way, the anode carbon felt (CF) with spirulina biochar (one type of algal biochar) was modified. The performance of MFC based on modified electrodes for electricity generation and pollutant conversion was explored with nitrobenzene as a representative of refractory pollutants, by detecting the electrochemical performance of the electrode and the pollutant degradation process. The results showed that the maximum MFC voltage in the modified CF electrode system (NaOH-AC700, 700 ℃ and modified by NaOH) could reach up to 670 mV, which was 26% higher than CF system, and the acclimation time was reduced from 7 days to 2 days. The modified electrode system could efficiently generate electricity while also degrading pollutants. The removal of nitrobenzene by the cathode in the modified CF electrode system was 99.9%, which was 22.1% higher than the unmodified CF electrode system, and the aniline production was increased by 123.3%. Microbial community analysis showed that the electrogenic microorganisms on the electrode surface were mainly Arcobacter and Pseudomonas, and the highest abundance of electrogenic microorganisms was found on the surface of NaOH-AC700/CF anode, thus facilitating the electrogenesis of MFC and the reduction of nitrobenzene.
-
Key words:
- microbial fuel cell (MFC) /
- algal biochar /
- modified electrode /
- nitrobenzene /
- Arcobacter
-
表 1 不同电极的MFC反应器名称
Table 1. MFC reactor with different electrodes
编号 阳极 阴极 反应器名称 1 CF 泡沫镍 CF- MFC 2 BC700/CF 泡沫镍 BC700/CF-MFC 3 HCl-AC700/CF 泡沫镍 HCl-AC700/CF-MFC 4 NaOH-AC700/CF 泡沫镍 NaOH-AC700/CF-MFC 表 2 不同类型藻炭比表面积
Table 2. Specific surface area of different types of algal biochar
藻炭活化方式及名称 比表面积/(m2/g) 未活化 BC500 0.846 6 BC700 0.762 0 酸活化 HCl-AC500 0.481 3 HCl-AC700 0.158 3 碱活化 NaOH-AC500 46.726 4 NaOH-AC700 664.203 4 表 3 生物种群Alpha多样性分析
Table 3. Alpha diversity analysis of biological population
样品 Ace
指数Chao1
指数Shannon
指数Simpson
指数覆盖率 接种污泥 148.794 146.5 5.14 0.938 1 CF 139.000 139 5.819 0.969 1 BC700/CF 133.237 138.5 4.863 0.925 1 HCl-AC700/CF 137.743 138 3.822 0.835 1 NaOH-AC700/CF 129.693 129 2.553 0.559 1 -
[1] XU P, XU H, SHI Z. A novel bio-electro-Fenton process with FeVO4/CF cathode on advanced treatment of coal gasification wastewater[J]. Separation and Purification Technology,2018,194:457-461. doi: 10.1016/j.seppur.2017.11.073 [2] BOND D R, LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555. doi: 10.1128/AEM.69.3.1548-1555.2003 [3] MODESTRA J A, CHIRANJEEVI P, MOHAN S V. Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment[J]. Renewable Energy,2016,98:178-187. doi: 10.1016/j.renene.2016.03.066 [4] CHAKRABORTY I, SATHE S M, DUBEY B K, et al. Waste-derived biochar: applications and future perspective in microbial fuel cells[J]. Bioresource Technology,2020,312:123587. doi: 10.1016/j.biortech.2020.123587 [5] BOND D R, HOLMES D E, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science,2002,295(5554):483-485. doi: 10.1126/science.1066771 [6] WU Y N, WANG L, JIN M, et al. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts[J]. Bioresource Technology,2020,305:123166. doi: 10.1016/j.biortech.2020.123166 [7] OON Y S, ONG S A, HO L N, et al. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation[J]. Journal of Hazardous Materials,2017,325:170-177. doi: 10.1016/j.jhazmat.2016.11.074 [8] PUIG S, SERRA M, VILAR-SANZ A, et al. Autotrophic nitrite removal in the cathode of microbial fuel cells[J]. Bioresource Technology,2011,102(6):4462-4467. doi: 10.1016/j.biortech.2010.12.100 [9] LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Applied Microbiology and Biotechnology,2010,85(6):1665-1671. doi: 10.1007/s00253-009-2378-9 [10] 李朝明, 许丹, 黄铭意, 等.不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J]. 环境工程技术学报,2023,13(1):205-213.LI C M, XU D, HUANG M Y, et al. Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J]. Journal of Environmental Engineering Technology,2023,13(1):205-213. [11] ALI YAQOOB A, IBRAHIM M N M, RODRÍGUEZ-COUTO S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview[J]. Biochemical Engineering Journal,2020,164:107779. doi: 10.1016/j.bej.2020.107779 [12] KIM M, KIM H W, NAM J Y, et al. Recent progress of nanostructure modified anodes in microbial fuel cells[J]. Journal of Nanoscience and Nanotechnology,2015,15(9):6891-6899. doi: 10.1166/jnn.2015.10723 [13] CAI T, MENG L J, CHEN G, et al. Application of advanced anodes in microbial fuel cells for power generation: a review[J]. Chemosphere,2020,248:125985. doi: 10.1016/j.chemosphere.2020.125985 [14] HOJJATI-NAJAFABADI A, DAVAR F, ENTESHARI Z, et al. Antibacterial and photocatalytic behaviour of green synthesis of Zn0.95Ag0.05O nanoparticles using herbal medicine extract[J]. Ceramics International,2021,47(22):31617-31624. doi: 10.1016/j.ceramint.2021.08.042 [15] GURAV R, BHATIA S K, CHOI T R, et al. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids[J]. Science of the Total Environment,2021,781:146636. doi: 10.1016/j.scitotenv.2021.146636 [16] 熊江磊, 罗嘉豪, 严群.改性蓝藻生物炭促进生物电化学系统阴极氢自养反硝化过程研究[J]. 环境工程技术学报,2022,12(5):1640-1646.XIONG J L, LUO J H, YAN Q. Research on modified cyanobacterial biochar promoting cathodic hydrogen autotrophic denitrification in bioelectrochemical system[J]. Journal of Environmental Engineering Technology,2022,12(5):1640-1646. [17] 李怡冰, 李涵, 黄文轩, 等.生物炭的制备及其在强化电子传递和催化性能等方面的研究进展[J]. 环境科学研究,2021,34(5):1157-1167.LI Y B, LI H, HUANG W X, et al. Research progress on the biochar production and its applications in enhancing electron transport and catalysis performance[J]. Research of Environmental Sciences,2021,34(5):1157-1167. [18] WANG B W, WANG Z F, JIANG Y, et al. Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system[J]. Bioresource Technology,2017,241:841-848. doi: 10.1016/j.biortech.2017.05.155 [19] LAN L H, LI J, FENG Q, et al. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells[J]. International Journal of Hydrogen Energy,2020,45(6):3833-3839. doi: 10.1016/j.ijhydene.2019.06.199 [20] LIN Y Z, YIN J, WANG J H, et al. Performance and microbial community in hybrid anaerobic baffled reactor-constructed wetland for nitrobenzene wastewater[J]. Bioresource Technology,2012,118:128-135. doi: 10.1016/j.biortech.2012.05.056 [21] DONG X Q, ZHANG Y N, XU Y W, et al. Catalytic mechanism study on manganese oxide in the catalytic supercritical water oxidation of nitrobenzene[J]. RSC Advances,2015,5(59):47488-47497. doi: 10.1039/C5RA04322K [22] KUŞÇU Ö S, SPONZA D T. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system[J]. Journal of Hazardous Materials,2009,168(1):390-399. doi: 10.1016/j.jhazmat.2009.02.060 [23] WEI W, SUN R, JIN Z, et al. Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution[J]. Applied Surface Science,2014,292:1020-1029. doi: 10.1016/j.apsusc.2013.12.127 [24] 夏甫, 杨昱, 万朔阳, 等.预处理方式对氧化-还原联合技术修复硝基苯污染地下水的影响[J]. 环境科学研究,2020,33(9):2001-2010.XIA F, YANG Y, WAN S Y, et al. Influence of pre-treatment on remediation of nitrobenzene contaminated groundwater by combined oxidation-reduction techniques[J]. Research of Environmental Sciences,2020,33(9):2001-2010. [25] ZHANG W, CHEN L, CHEN H, et al. The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge[J]. Journal of Hazardous Materials,2007,143(1/2):57-64. [26] LU Y, XIE Q Q, TANG L, et al. The reduction of nitrobenzene by extracellular electron transfer facilitated by Fe-bearing biochar derived from sewage sludge[J]. Journal of Hazardous Materials,2021,403:123682. doi: 10.1016/j.jhazmat.2020.123682 [27] 刘荣华. 微生物燃料电池中污染物的强化降解[D]. 合肥: 中国科学技术大学, 2014. [28] 侯俊先. 微生物燃料电池阳极改性及生物膜内部传递现象的研究[D]. 北京: 北京工业大学, 2018. [29] 刘昊佳. 基于二维层状电极的高性能微生物燃料电池[D]. 南京: 东南大学, 2020. [30] LIU G L, YATES M D, CHENG S A, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresource Technology,2011,102(15):7301-7306. doi: 10.1016/j.biortech.2011.04.087 [31] 彭本齐. 基于纳米硅藻材料的MFC阳极制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [32] HUGGINS T, WANG H M, KEARNS J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells[J]. Bioresource Technology,2014,157:114-119. doi: 10.1016/j.biortech.2014.01.058 [33] 程浩毅. 生物电化学系统定向还原硝基苯及能量循环补偿模式研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [34] HARWOOD W H, HURD R M, JORDAN W H Jr. Electrochemical reduction of nitrobenzene at controlled potentials[J]. Industrial & Engineering Chemistry Process Design and Development,1963,2(1):72-77. [35] 李婉君. 藻/菌微生物燃料电池pH自中和、降解偶氮染料与产电研究[D]. 广州: 华南理工大学, 2014. [36] 徐文英, 樊金红, 高廷耀.硝基苯类物质在铜电极上的电还原特性及pH的影响[J]. 环境科学,2005,26(2):102-107.XU W Y, FAN J H, GAO T Y. Electrochemical reduction characteristics of nitro-benzene compounds at the copper electrode and the influence of pH on reduction[J]. Environmental Science,2005,26(2):102-107. [37] 黄子安, 李陵岚, 刘辉.氧化偶氮苯类化合物合成研究进展[J]. 化学试剂,2020,42(11):1318-1326.HUANG Z A, LI L L, LIU H. Progress in the synthesis of azoxybenzene compound[J]. Chemical Reagents,2020,42(11):1318-1326. [38] JIN M, LIU Y Y, ZHANG X, et al. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: experimental and theoretical studies[J]. Applied Catalysis B:Environmental,2021,298:120545. doi: 10.1016/j.apcatb.2021.120545 [39] 庞绍婕. 改性电极微生物燃料电池处理硝基苯废水的性能研究[D]. 太原: 太原理工大学, 2021. [40] MU Y, ROZENDAL R A, RABAEY K, et al. Nitrobenzene removal in bioelectrochemical systems[J]. Environmental Science & Technology,2009,43(22):8690-8695. [41] YATES M D, KIELY P D, CALL D F, et al. Convergent development of anodic bacterial communities in microbial fuel cells[J]. The ISME Journal,2012,6(11):2002-2013. doi: 10.1038/ismej.2012.42 [42] 杨思霞, 邵琼丽, 许坤德, 等.电化学参数影响下微生物电解池阳极膜上电活性微生物群落的变化[J]. 化学研究与应用,2022,34(3):549-557.YANG S X, SHAO Q L, XU K D, et al. Community evolution of exoelectrogens on anodic biofilm in microbial electrolysis cells: influence of electrochemical parameters[J]. Chemical Research and Application,2022,34(3):549-557. [43] 高崇洋, 吴唯民, 王爱杰, 等.平行启动的微生物燃料电池阳极微生物群落差异性解析[J]. 哈尔滨工业大学学报,2016,48(2):15-20.GAO C Y, WU W M, WANG A J, et al. Comparison of anodic microbial communities in parallel-operated microbial fuel cells[J]. Journal of Harbin Institute of Technology,2016,48(2):15-20. [44] 谢丽, 马玉龙.微生物燃料电池中产电微生物的研究进展[J]. 宁夏农林科技,2011,52(7):104-107.XIE L, MA Y L. Progress in research of electricigens in microbial fuel cell[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2011,52(7):104-107. ⊗