留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeS2强化微生物燃料电池阳极反硝化脱氮与产电特性

葛丹丹 吴兵党 杨晶晶 许晓毅 吴玮 黄天寅

葛丹丹,吴兵党,杨晶晶,等.FeS2强化微生物燃料电池阳极反硝化脱氮与产电特性[J].环境工程技术学报,2023,13(6):2105-2116 doi: 10.12153/j.issn.1674-991X.20230093
引用本文: 葛丹丹,吴兵党,杨晶晶,等.FeS2强化微生物燃料电池阳极反硝化脱氮与产电特性[J].环境工程技术学报,2023,13(6):2105-2116 doi: 10.12153/j.issn.1674-991X.20230093
GE D D,WU B D,YANG J J,et al.FeS2 enhanced microbial fuel cell anode denitrification and electricity generation characteristics[J].Journal of Environmental Engineering Technology,2023,13(6):2105-2116 doi: 10.12153/j.issn.1674-991X.20230093
Citation: GE D D,WU B D,YANG J J,et al.FeS2 enhanced microbial fuel cell anode denitrification and electricity generation characteristics[J].Journal of Environmental Engineering Technology,2023,13(6):2105-2116 doi: 10.12153/j.issn.1674-991X.20230093

FeS2强化微生物燃料电池阳极反硝化脱氮与产电特性

doi: 10.12153/j.issn.1674-991X.20230093
基金项目: 国家自然科学基金面上项目(52070137);国家自然科学基金青年科学基金项目(21906078);苏州市社会发展科技创新项目(SS202107);苏州市姑苏创新创业领军人才计划(ZXL2022500);江苏省研究生科研与实践创新计划项目(KYCX20_2765)
详细信息
    作者简介:

    葛丹丹(1997—),女,硕士研究生,研究方向为水污染控制工程,2216192512@qq.com

    通讯作者:

    黄天寅(1975—),男,教授,博士,研究方向为水环境治理与水生态修复,huangtianyin111@163.com

  • 中图分类号: X703

FeS2 enhanced microbial fuel cell anode denitrification and electricity generation characteristics

  • 摘要:

    针对不同碳氮比(C/N)的含氮废水,将FeS2引入微生物燃料电池(MFC)阳极构建FeS2强化的微生物燃料电池(Pyr-MFC)体系,以不加FeS2的空白对照组(C-MFC)为对照,探究其对体系脱氮与产电的影响;采用高通量测序、X射线光电子能谱和扫描电子显微镜探究该体系中微生物丰度、硫和铁元素变化规律,解析FeS2强化体系低C/N下的脱氮机理。结果表明:1)Pyr-MFC的反硝化脱氮效率和产电功率密度均高于C-MFC,硝态氮去除率提高近15.7%,最高电压提高量可达0.274 V。2)C/N分别为4、3、2和1时Pyr-MFC对NO3-N的去除率为100%、97.8%、58.4%和49.7%,均高于C-MFC,表明FeS2有效降低体系对碳源的依赖。3)微生物群落检测结果表明,FeS2将产电微生物(ThaueraThiobacillusGeobacter)的物种丰度提高9.43%。4)物质转移分析结果表明,S为反硝化过程提供电子,Fe2+作为电子穿梭体强化了电子传递,提高了体系的产电性能。

     

  • 图  1  MFC试验装置

    1—磁力搅拌器;2—阳极室;3—阴极室;4—外电阻;5—阳离子交换膜;6—碳刷电极;7—数据采集系统;8—电脑。

    Figure  1.  MFC experimental setup

    图  2  FeS2材料XRD图

    Figure  2.  XRD diagram of FeS2 material

    图  3  不同MFC脱氮效果对比

    Figure  3.  Comparison of nitrogen removal effect of different MFCs

    图  4  不同MFC产电效果对比

    Figure  4.  Comparison of different MFC power production effects

    图  5  C/N对不同MFC脱氮效果的影响

    Figure  5.  Effect of C/N ratio on the denitrification effect of different MFCs

    图  6  C/N对不同MFC产电效果影响

    Figure  6.  Effect of C/N ratio on the electricity production effect of different MFCs

    图  7  阳极碳刷表面微生物SEM

    Figure  7.  SEM of microorganisms on the surface of anode carbon brush

    图  8  微生物不同物种分类学水平的相对丰度

    Figure  8.  Relative abundance of microorganisms at the taxonomic level of different species

    图  9  FeS2反应前后XPS图

    Figure  9.  XPS diagram before and after FeS2 reaction

    图  10  不同价态铁或硫在MFC中的微生物相对丰度

    Figure  10.  Relative microbial abundance of different valence states of iron or sulfur in MFC

    图  11  Pyr-MFC反应机理示意

    Figure  11.  Schematic diagram of Pyr-MFC reaction mechanism

    表  1  微量元素溶液组成

    Table  1.   Composition of trace element solution

    试剂名称浓度/(g/L)
    CaCl21.00
    MgCl2·6H2O2.00
    NaCl0.20
    FeCl2·4H2O0.50
    CoCl2·6H2O0.10
    MnCl2·4H2O0.10
    AlCl3·6H2O0.05
    (NH4)6Mo7O24·4H2O0.30
    H3BO30.10
    NiCl2·6H2O0.01
    CuSO4·5H2O0.10
    ZnCl20.10
    EDTA0.50
    下载: 导出CSV
  • [1] ZHANG Q G, HU J J, LEE D J. Microbial fuel cells as pollutant treatment units: research updates[J]. Bioresource Technology,2016,217:121-128. doi: 10.1016/j.biortech.2016.02.006
    [2] 林莉莉, 鲁汭, 龙忆年, 等.MFC处理人工湿地生物堵塞物及同步产电研究[J]. 环境科学研究,2020,33(6):1504-1513.

    LIN L L, LU R, LONG Y N, et al. MFC treating bio-clogging matter of constructed wetland and synchronous electricity generation[J]. Research of Environmental Sciences,2020,33(6):1504-1513.
    [3] 王琳, 李雪, 王丽.复合生物阴极型微生物燃料电池处理废水及同步产电性能[J]. 环境科学研究,2017,30(7):1098-1104.

    WANG L, LI X, WANG L. Performance of a hybrid biocathode microbial fuel cell for wastewater treatment and electricity generation[J]. Research of Environmental Sciences,2017,30(7):1098-1104.
    [4] 李朝明, 许丹, 黄铭意, 等.不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J]. 环境工程技术学报,2023,13(1):205-213.

    LI C M, XU D, HUANG M Y, et al. Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J]. Journal of Environmental Engineering Technology,2023,13(1):205-213.
    [5] ZHENG D C, GU W Z, ZHOU Q M, et al. Ammonia oxidation and denitrification in a bio-anode single-chambered microbial electrolysis cell[J]. Bioresource Technology,2020,310:123466. doi: 10.1016/j.biortech.2020.123466
    [6] 李文英, 刘玉香, 任瑞鹏, 等.微生物燃料电池在水与废水脱氮方面的研究进展[J]. 化工进展,2019,38(2):1097-1106.

    LI W Y, LIU Y X, REN R P, et al. Research progress on removal of nitrogen in water and wastewater by microbial fuel cell[J]. Chemical Industry and Engineering Progress,2019,38(2):1097-1106.
    [7] SHI S H, FAN X, HE X J, et al. Enhanced nitritation/denitritation and potential mechanism in an electrochemically assisted sequencing batch biofilm reactor treating sludge digester liquor with extremely low C/N ratios[J]. Bioresource Technology,2022,363:127936. doi: 10.1016/j.biortech.2022.127936
    [8] 郑力, 李志勇, 黄剑, 等.竹刨花-铁耦合体系对低碳氮比污水的脱氮性能[J]. 环境工程技术学报,2023,13(1):214-221.

    ZHENG L, LI Z Y, HUANG J, et al. Denitrification performance of bamboo shavings-iron coupled system for low C/N ratio wastewater[J]. Journal of Environmental Engineering Technology,2023,13(1):214-221.
    [9] ZHOU Q M, YANG N, ZHENG D C, et al. Electrode-dependent ammonium oxidation with different low C/N ratios in single-chambered microbial electrolysis cells[J]. Bioelectrochemistry,2021,142:107889. doi: 10.1016/j.bioelechem.2021.107889
    [10] TONG S, ZHANG B G, FENG C P, et al. Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater[J]. Bioresource Technology,2013,148:121-127. doi: 10.1016/j.biortech.2013.08.146
    [11] LIU H Y, CHEN N, FENG C P, et al. Impact of electro-stimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio-electrochemical denitrification reactor[J]. Bioresource Technology,2017,232:344-353. doi: 10.1016/j.biortech.2017.02.064
    [12] AI T, ZHAN H, ZOU L Z, et al. Potential applications of endogenous sulfide for enhanced denitrification of low C/N domestic wastewater in anodic mixotrophic denitrification microbial fuel cell: the mechanism of electrons transfer and microbial community[J]. Science of the Total Environment,2020,722:137830. doi: 10.1016/j.scitotenv.2020.137830
    [13] GE X Y, CAO X, SONG X S, et al. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell[J]. Bioresource Technology,2020,296:122350. doi: 10.1016/j.biortech.2019.122350
    [14] WANG Y M, LIN Z Y, WANG Y, et al. Sulfur and iron cycles promoted nitrogen and phosphorus removal in electrochemically assisted vertical flow constructed wetland treating wastewater treatment plant effluent with high S/N ratio[J]. Water Research,2019,151:20-30. doi: 10.1016/j.watres.2018.12.005
    [15] WANG R W, YAN M, LI H D, et al. FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density[J]. Advanced Materials,2018,30(22):1800618. doi: 10.1002/adma.201800618
    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17] 周昱宏. 微生物燃料电池处理含氮废水的研究[D]. 杭州: 浙江大学, 2018.
    [18] PANG Y M, WANG J L. Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS2) as electron donor[J]. Bioresource Technology,2020,318:124105. doi: 10.1016/j.biortech.2020.124105
    [19] PU J Y, FENG C P, LIU Y, et al. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater[J]. Bioresource Technology,2014,173:117-123. doi: 10.1016/j.biortech.2014.09.092
    [20] Di CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal,2019,362:922-937. doi: 10.1016/j.cej.2019.01.069
    [21] JU W J, JHO E H, NAM K. Effect of initial pH, operating temperature, and dissolved oxygen concentrations on performance of pyrite-fuel cells in the presence of Acidithiobacillus ferrooxidans[J]. Journal of Hazardous Materials,2018,360:512-519. doi: 10.1016/j.jhazmat.2018.08.034
    [22] TORRENTÓ C, URMENETA J, OTERO N, et al. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology,2011,287(1/2):90-101.
    [23] 周娅, 买文宁, 代吉华, 等.硫代硫酸钠联合硫铁矿自养反硝化脱氮性能[J]. 中国环境科学,2020,40(5):2081-2086.

    ZHOU Y, MAI W N, DAI J H, et al. Study on autotrophic denitrification performance of sodium thiosulfate combined with pyrite system[J]. China Environmental Science,2020,40(5):2081-2086.
    [24] WU W Z, YANG L H, WANG J L. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor[J]. Environmental Science and Pollution Research,2013,20(1):333-339. doi: 10.1007/s11356-012-0926-9
    [25] WAGNER M, AMANN R, LEMMER H, et al. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure[J]. Applied and Environmental Microbiology,1993,59(5):1520-1525. doi: 10.1128/aem.59.5.1520-1525.1993
    [26] 朱春燕. 基于氢自养反硝化的生物电化学系统脱氮性能研究[D]. 无锡: 江南大学, 2017.
    [27] 褚雨秋. 基于铁自养反硝化微生物的市政污水深度脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
    [28] 谢作甫, 郑平, 张吉强, 等.产电微生物及其生理生化特性[J]. 科技通报,2013,29(7):56-63. doi: 10.3969/j.issn.1001-7119.2013.03.008

    XIE Z F, ZHENG P, ZHANG J Q, et al. The electricigens and their physiological and biochemical characteristics[J]. Bulletin of Science and Technology,2013,29(7):56-63. doi: 10.3969/j.issn.1001-7119.2013.03.008
    [29] SHEN Z Q, ZHOU Y X, WANG J L. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal[J]. Bioresource Technology,2013,131:33-39. doi: 10.1016/j.biortech.2012.12.169
    [30] 刘双, 赵剑强, 王莎, 等.硫自养与异养混合亚硝酸盐反硝化过程铵生成机制[J]. 环境工程学报,2019,13(6):1366-1373. doi: 10.12030/j.cjee.201810064

    LIU S, ZHAO J Q, WANG S, et al. Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process[J]. Chinese Journal of Environmental Engineering,2019,13(6):1366-1373. doi: 10.12030/j.cjee.201810064
    [31] KŁODOWSKA I, RODZIEWICZ J, JANCZUKOWICZ W, et al. Effect of citric acid on the efficiency of the removal of nitrogen and phosphorus compounds during simultaneous heterotrophic-autotrophic denitrification (HAD) and electrocoagulation[J]. Ecological Engineering,2016,95:30-35. doi: 10.1016/j.ecoleng.2016.06.076
    [32] YANG Y, GERRITY S, COLLINS G, et al. Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal[J]. Process Biochemistry,2018,68:165-170. doi: 10.1016/j.procbio.2018.02.017
    [33] LEANG C, COPPI M V, LOVLEY D R. OmcB, a c-type polyheme cytochrome, involved in Fe(Ⅲ) reduction in Geobacter sulfurreducens[J]. Journal of Bacteriology,2003,185(7):2096-2103. doi: 10.1128/JB.185.7.2096-2103.2003
    [34] 陆圆. 反硝化滤池耦合电极生物膜反应器(DF-BER)深度脱氮试验研究[D]. 南京: 东南大学, 2019.
    [35] DENG S H, LI D S, YANG X, et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology,2016,219:677-686. doi: 10.1016/j.biortech.2016.08.014
    [36] WANG R, YANG C, ZHANG M, et al. Chemoautotrophic denitrification based on ferrous iron oxidation: reactor performance and sludge characteristics[J]. Chemical Engineering Journal,2017,313:693-701. doi: 10.1016/j.cej.2016.12.052
    [37] KASHEFI K, TOR J M, NEVIN K P, et al. Reductive precipitation of gold by dissimilatory Fe(Ⅲ)-reducing bacteria and Archaea[J]. Applied and Environmental Microbiology,2001,67(7):3275-3279. doi: 10.1128/AEM.67.7.3275-3279.2001
    [38] FLYNN T, O'LOUGHLIN E, MISHRA B, et al. Sulfur-mediated electron shuttling during bacterial iron reduction[J]. Science,2014,344:1039-1042. ⊗ doi: 10.1126/science.1252066
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  136
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回