留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超效率SBM模型的航空企业碳排放效率研究

杨扬 郭挂梅

杨扬,郭挂梅.基于超效率SBM模型的航空企业碳排放效率研究[J].环境工程技术学报,2023,13(5):1779-1786 doi: 10.12153/j.issn.1674-991X.20230095
引用本文: 杨扬,郭挂梅.基于超效率SBM模型的航空企业碳排放效率研究[J].环境工程技术学报,2023,13(5):1779-1786 doi: 10.12153/j.issn.1674-991X.20230095
YANG Y,GUO G M.Research on carbon emission efficiency of aviation enterprises based on super efficiency SBM model[J].Journal of Environmental Engineering Technology,2023,13(5):1779-1786 doi: 10.12153/j.issn.1674-991X.20230095
Citation: YANG Y,GUO G M.Research on carbon emission efficiency of aviation enterprises based on super efficiency SBM model[J].Journal of Environmental Engineering Technology,2023,13(5):1779-1786 doi: 10.12153/j.issn.1674-991X.20230095

基于超效率SBM模型的航空企业碳排放效率研究

doi: 10.12153/j.issn.1674-991X.20230095
详细信息
    作者简介:

    杨扬(1974—),男,教授,博士,主要从事区域与城市物流规划、跨境运输与国际物流研究,yytongji@163.com

    通讯作者:

    郭挂梅(1996—),女,硕士研究生,主要从事区域与城市物流规划研究,1046717292@qq.com

  • 中图分类号: X51

Research on carbon emission efficiency of aviation enterprises based on super efficiency SBM model

  • 摘要:

    为识别航空企业碳排放管控水平,采用超效率SBM模型和GML指数模型,研究我国6家航空企业2011—2019年的碳排放效率及其动态变化,并构建面板回归模型探究航空企业碳排放效率的影响因素。结果表明:我国航空企业的碳排放效率在样本年间呈现先下降后上升的“U”形变化趋势;相较于2016年,2019年行业碳排放效率增长6.38%,企业碳排放控制水平有明显提高。碳排放效率变化方面,技术进步与碳排放生产率指数呈现出同方向变化,是碳排放效率提升的主要驱动力;不同企业碳排放效率变化存在较大差异。影响因素方面,客座利用率和燃油成本规制对航空企业碳排放效率有显著的正向影响,当客座利用率和燃油成本规制分别提升1%,碳排放效率分别提升1.524%和0.166%;环境规制对碳排放效率的提升具有积极的影响,现阶段资本结构对碳排放效率具有显著的负向影响,优化企业运营和调整企业资本结构能够在很大程度上促进企业可持续发展。

     

  • 图  1  2011—2019年碳排放效率行业均值

    Figure  1.  Industrial average of carbon emission efficiency from 2011 to 2019

    图  2  2011—2019年的航空企业碳排放效率

    Figure  2.  Carbon emission efficiency of aviation enterprises from 2011 to 2019

    图  3  航空企业碳排放GML指数及其分解

    Figure  3.  Carbon emission GML index and decomposition of aviation enterprises

    表  1  2011—2019年南方航空公司5个窗口的碳排放效率

    Table  1.   Carbon emission efficiency of China Southern Airlines in 5 windows from 2011 to 2019

    年份w1w2w3w4w5均值
    20110.887    0.887
    20121.0021.001   1.001
    20130.8120.8160.852  0.827
    20141.0000.8930.8870.840 0.905
    20151.0170.8760.8510.7970.7840.865
    2016 1.0120.8460.8050.7970.865
    2017  1.0410.8590.8580.919
    2018   1.0490.9330.991
    2019    1.0491.049
    下载: 导出CSV

    表  2  2011—2019年我国航空公司碳排放效率

    Table  2.   Carbon emission efficiency of Chinese airlines from 2011 to 2019

    年份国航东航南航海航春秋
    航空
    吉祥
    航空
    行业
    均值
    20111.0180.8950.8870.9821.1381.3291.041
    20121.0170.8571.0010.9751.0911.0340.996
    20130.9820.8670.8271.0390.9700.8950.930
    20140.9990.8410.9051.0270.9620.8450.930
    20150.9410.8360.8651.0611.0240.8910.936
    20160.9480.8160.8651.1170.8590.9710.929
    20170.9750.7750.9191.0670.8971.0230.943
    20181.0480.8260.9911.0660.9711.0230.988
    20191.0020.8251.0491.0421.0031.0100.988
    历史均值0.9920.8370.9231.0420.9911.0020.965
    排名365142
    下载: 导出CSV

    表  3  航空企业碳排放GML指数及分解

    Table  3.   Carbon emission GML index and decomposition of aviation enterprises

    年份GMLECTC
    2011—20120.8901.0210.872
    2012—20130.9470.9760.973
    2013—20140.9910.9901.002
    2014—20151.0380.9991.040
    2015—20161.0051.0180.985
    2016—20171.0340.9641.074
    2017—20181.0561.0081.047
    2018—20191.0370.9961.041
    均值1.0000.9971.004
    下载: 导出CSV

    表  4  不同航空企业碳排放GML指数及分解(2011—2019年)

    Table  4.   Carbon emission GML index and decomposition of different aviation enterprises (2011-2019)

    航空公司GMLECTC
    国航1.0000.9891.011
    南航1.0241.0310.994
    东航0.9890.9950.994
    海航1.0080.9961.016
    春秋航空0.9900.9841.005
    吉祥航空0.9870.9841.005
    下载: 导出CSV

    表  5  面板回归结果

    Table  5.   Panel regression results

    解释变量变量含义系数TProb.
    c常数项−7.013−2.5090.016
    $\ln {\rm{util}}$客座利用率1.524**2.4690.018
    $ \ln {\text{cap}} $资本结构−0.106**−2.4540.018
    $\ln {\rm{env}}$环境规制0.048**2.0290.049
    $\ln {\rm{fue}}$燃油成本规制0.166***3.4120.001
      注:***、**分别表示在1%、5%水平显著。R2为0.664;F检验值为9.665。
    下载: 导出CSV
  • [1] CUI Q, LI Y. Evaluating energy efficiency for airlines: an application of VFB-DEA[J]. Journal of Air Transport Management,2015,44/45:34-41. doi: 10.1016/j.jairtraman.2015.02.008
    [2] LIN B Q, ZHU J P. The role of renewable energy technological innovation on climate change: empirical evidence from China[J]. Science of the Total Environment,2019,659:1505-1512. doi: 10.1016/j.scitotenv.2018.12.449
    [3] 赵宇哲, 周晶淼, 匡海波.欧盟ETS下航空运输企业的能源效率评价研究: 基于时间窗的非径向DEA模型[J]. 管理评论,2015,27(5):38-47.

    ZHAO Y Z, ZHOU J M, KUANG H B. Research on airlines enterprises energy efficiency evaluation under EU ETS: based on a non-radial DEA windows model[J]. Management Review,2015,27(5):38-47.
    [4] 张军峰, 方虹, 方思然.环境约束下的中国航空企业环境效率研究[J]. 交通运输系统工程与信息,2017,17(3):243-248.

    ZHANG J F, FANG H, FANG S R. Environmental efficiency of China's airlines under environmental constrains[J]. Journal of Transportation Systems Engineering and Information Technology,2017,17(3):243-248.
    [5] 黄赶祥, 景崇毅, 王红岩.碳排放约束下我国航空公司全要素生产率研究[J]. 交通运输系统工程与信息,2018,18(4):19-24.

    HUANG G X, JING C Y, WANG H Y. Total factor productivity of China airlines under carbon emission constraints[J]. Journal of Transportation Systems Engineering and Information Technology,2018,18(4):19-24.
    [6] CHEN Y F, CHENG S Y, ZHU Z T. Exploring the operational and environmental performance of Chinese airlines: a two-stage undesirable SBM-NDEA approach[J]. Journal of Cleaner Production,2021,289:125711. doi: 10.1016/j.jclepro.2020.125711
    [7] CUI Q, LI Y. Airline energy efficiency measures considering carbon abatement: a new strategic framework[J]. Transportation Research Part D:Transport and Environment,2016,49:246-258. doi: 10.1016/j.trd.2016.10.003
    [8] WANG Z L, XU X D, ZHU Y F, et al. Evaluation of carbon emission efficiency in China's airlines[J]. Journal of Cleaner Production,2020,243:118500. doi: 10.1016/j.jclepro.2019.118500
    [9] 巩彦峰, 范换利, 刘丹.碳排放约束和技术异质下中国航空公司运输效率研究[J]. 武汉理工大学学报(信息与管理工程版),2018,40(3):289-294.

    GONG Y F, FAN H L, LIU D. Research on transport efficiency of Chinese airlines under the restriction of carbon emissions and technology heterogeneity[J]. Journal of Wuhan University of Technology (Information & Management Engineering),2018,40(3):289-294.
    [10] 解文华, 方虹, 张军峰, 等.基于SBM-DEA模型及Malmquist指数的中国与欧盟航空运输企业能源效率比较研究[J]. 数学的实践与认识,2017,47(17):194-201.

    XIE W H, FANG H, ZHANG J F, et al. Study on the energy efficiency of China and EU aviation transportation enterprises based on SBM-DEA model and malmquist index[J]. Mathematics in Practice and Theory,2017,47(17):194-201.
    [11] HADI-VENCHEH A, WANKE P, JAMSHIDI A, et al. Sustainability of Chinese airlines: a modified slack-based measure model for CO2 emissions[J]. Expert Systems,2020,37(3):e12302.
    [12] XU Y, PARK Y S, PARK J D, et al. Evaluating the environmental efficiency of the US airline industry using a directional distance function DEA approach[J]. Journal of Management Analytics,2021,8(1):1-18. doi: 10.1080/23270012.2020.1832925
    [13] WU Y Q, HE C Z, CAO X F. The impact of environmental variables on the efficiency of Chinese and other non-Chinese airlines[J]. Journal of Air Transport Management,2013,29:35-38. doi: 10.1016/j.jairtraman.2013.02.004
    [14] LO P L, MARTINI G, PORTA F, et al. The determinants of CO2 emissions of air transport passenger traffic: an analysis of Lombardy (Italy)[J]. Transport Policy,2020,91:108-119. doi: 10.1016/j.tranpol.2018.11.010
    [15] TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research,2001,130(3):498-509. doi: 10.1016/S0377-2217(99)00407-5
    [16] TONE K, TOLOO M, IZADIKHAH M. A modified slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research,2020,287(2):560-571. doi: 10.1016/j.ejor.2020.04.019
    [17] ZHANG Y, WANG W, LIANG L W, et al. Spatial-temporal pattern evolution and driving factors of China's energy efficiency under low-carbon economy[J]. Science of the Total Environment,2020,739:140197. doi: 10.1016/j.scitotenv.2020.140197
    [18] ZHAO X Y, WANG J W, FU X, et al. Spatial-temporal characteristics and regional differences of the freight transport industry's carbon emission efficiency in China[J]. Environmental Science and Pollution Research,2022,29(50):75851-75869. doi: 10.1007/s11356-022-21101-4
    [19] 刘燕, 张慧.基于偏序集的省际碳排放效率评价[J]. 环境工程技术学报,2022,12(3):937-942. doi: 10.12153/j.issn.1674-991X.20210199

    LIU Y, ZHANG H. Evaluation of provincial carbon emission efficiency based on partial order set[J]. Journal of Environmental Engineering Technology,2022,12(3):937-942. doi: 10.12153/j.issn.1674-991X.20210199
    [20] AVKIRAN N K. Decomposing technical efficiency and window analysis[J]. Studies in Economics and Finance,2004,22(1):61-91. doi: 10.1108/eb043383
    [21] WU D D, WANG Y H, QIAN W Y. Efficiency evaluation and dynamic evolution of China's regional green economy: a method based on the Super-PEBM model and DEA window analysis[J]. Journal of Cleaner Production,2020,264:121630. doi: 10.1016/j.jclepro.2020.121630
    [22] YE T F, ZHENG H, GE X Y, et al. Pathway of green development of Yangtze River Economics Belt from the perspective of green technological innovation and environmental regulation[J]. International Journal of Environmental Research and Public Health,2021,18(19):10471. doi: 10.3390/ijerph181910471
    [23] CHEN X H, GAO Y Y, AN Q X, et al. Energy efficiency measurement of Chinese Yangtze River Delta's cities transportation: a DEA window analysis approach[J]. Energy Efficiency,2018,11(8):1941-1953. doi: 10.1007/s12053-018-9635-7
    [24] LONG R Y, OUYANG H Z, GUO H Y. Super-slack-based measuring data envelopment analysis on the spatial-temporal patterns of logistics ecological efficiency using global Malmquist Index model[J]. Environmental Technology & Innovation,2020,18:100770.
    [25] WU J, XIA Q, LI Z Y. Green innovation and enterprise green total factor productivity at a micro level: a perspective of technical distance[J]. Journal of Cleaner Production,2022,344:131070. doi: 10.1016/j.jclepro.2022.131070
    [26] CUI Q. Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA[J]. Energy,2019,180:763-771. doi: 10.1016/j.energy.2019.05.159
    [27] ZHENG Z L. Energy efficiency evaluation model based on DEA-SBM-Malmquist index[J]. Energy Reports,2021,7:397-409. doi: 10.1016/j.egyr.2021.10.020
    [28] HILEMAN J I, deLa ROSA BLANCO E, BONNEFOY P A, et al. The carbon dioxide challenge facing aviation[J]. Progress in Aerospace Sciences,2013,63:84-95. doi: 10.1016/j.paerosci.2013.07.003
    [29] RYERSON M S, HANSEN M, BONN J. Time to burn: flight delay, terminal efficiency, and fuel consumption in the National Airspace System[J]. Transportation Research Part A:Policy and Practice,2014,69:286-298. doi: 10.1016/j.tra.2014.08.024
    [30] CHAO H, AGUSDINATA D B, DeLAURENTIS D, et al. Carbon offsetting and reduction scheme with sustainable aviation fuel options: fleet-level carbon emissions impacts for US airlines[J]. Transportation Research Part D:Transport and Environment,2019,75:42-56. ⊗ doi: 10.1016/j.trd.2019.08.015
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  1268
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 录用日期:  2023-06-27
  • 网络出版日期:  2023-07-03

目录

    /

    返回文章
    返回