Evaluation on ecological restoration effect of gate-controlled river in plain river network area
-
摘要:
针对城市河道治理后反复出现水华现象的问题,以上海市青浦区小涞港河段为研究区域,基于层次分析法和熵权法的组合赋权法,参考相关研究并结合实地调查,优化选取水质、底泥、护岸等相关指标建立评价指标体系,进行河道生态修复效果评价。结果表明:较高的硝酸盐浓度〔NO3 −-N浓度为(3.055±2.863)mg/L,其与叶绿素a浓度显著相关,r=0.36,P<0.05〕是闸控型平原河网水系河流重要的水华潜在风险因素,建议结合现有闸泵工程活水畅流技术,进一步优化曝气方式,创造合适的缺氧微环境以及通过硫、铁元素耦合强化总氮去除;河道底泥以营养盐污染〔内源氮浓度为(2 171.99±1 664.40)mg/kg〕为主,现有沉水植物种类较为单一,易产生丝状藻华孳生现象,建议增加沉水植物的种类并进行合理配置,降低底泥营养盐污染,增强以沉水植物为核心的水生生态系统稳定性;采用的浆砌混凝土硬质护岸对雨水径流污染的净化拦截能力严重不足,建议适当拓宽河道,对护岸进行生态化改造,选择合理的填料基质和植被配置,以强化护岸对面源污染的截留功能。
Abstract:To confront the problem of repeated bloom after urban river control, the Xiaolaigang reach in Qingpu District of Shanghai was taken as the research area and the river ecological restoration effect was evaluated. Based on the combination of analytic hierarchy process and entropy weight methods, referring to relevant studies and field investigations, the evaluation index system was established by optimizing and selecting relevant indicators such as water quality, sediment, and bank protection. The results showed high nitrate content of (3.055±2.863) mg/L, which was significantly correlated with chlorophyll a (r=0.36, P<0.05), was an important potential risk factor for blooms in the gate-controlled plain river network. The aeration mode could be further optimized to create a suitable anoxic microenvironment and enhance total nitrogen removal by coupling sulfur and iron elements, in combination with the existing sluice pump engineering live water smooth flow technology. The sediment of river channel was mainly polluted by nutrient salt with the endogenous nitrogen content of (2171.99±1 664.40) mg/kg. The existing submerged plant species were relatively simple, which was easy to produce filamentous algal blooms. The species of submerged plants could be increased, and the rational allocation could reduce the nutrient salt pollution of the sediment and enhance the stability of the aquatic ecosystem with submerged plants as the core. The purification and interception ability of rainwater runoff pollution by the slurry concrete rigid bank revetment was seriously insufficient. Therefore, the river channel could be properly widened, the ecological transformation of the bank revetment could be carried out, and reasonable filler matrix and vegetation allocation could be selected to strengthen the interception function of the bank revetment on non-point source pollution.
-
表 1 小涞港河段健康评价指标体系
Table 1. Health evaluation index system of Xiaolaigang reach
目标层 准则层 细化准则层 指标层 组合赋权权重 A(河流健康)
A1(水)B1〔水文完整性[22]
(物理)〕C1 (流量) 0.054 6 C2 (流速) 0.071 5 B2〔水质(化学)〕 C3 (综合水质标识指数[23-24]) 0.067 4 C4 〔综合营养状态指数(TLI)[25]〕 0.077 9
A2(河岸)B3(河岸带[20]) C5 (河岸稳定性) 0.060 8 C6 (河岸带人工干扰程度) 0.040 5 C7 (河岸带植被覆盖度) 0.043 0
A3(底泥)B4(底泥) C8 〔综合污染指数(FF)[26-28]〕 0.070 2 C9 〔污染负荷指数(PLI)[29]〕 0.038 6 C10〔潜在生态风险指数(RI)[30]〕 0.040 9
A4(生物)B5(大型底栖无脊椎动物[31]) C11 〔Shannon指数(He)〕 0.047 7 C12 〔Simpson指数(D)〕 0.046 2 C13 〔Pielou指数(Je)〕 0.048 8 B6(鱼类[31]) C14 (He) 0.125 3 C15 (D) 0.124 8 C16 (Je) 0.041 7 注:A4(生物)赋分标准如表2所示,其余指标赋分方法及标准取自参考文献;大型底栖无脊椎动物,下文简称底栖。 表 2 生物指标赋分标准
Table 2. Scoring criteria for biological indicators
赋分标准 He D Je 0~20 0≤He≤0.2×ln Si 0≤D≤0.2×(1−1/Si) 0<Je≤0.2 20~40 0.2×ln Si<He≤0.4×ln Si 0.2×(1−1/Si)<D≤0.4× (1−1/ Si) 0.2<Je≤0.4 40~60 0.4×ln Si<He≤0.6×ln Si 0.4×(1−1/ Si)<D≤0.6× (1−1/ Si) 0.4<Je≤0.6 60~80 0.6×ln Si<He≤0.8×ln Si 0.6×(1−1/ Si)<D≤0.8×(1−1/ Si) 0.6<Je≤0.8 80~100 0.8×ln Si<He≤ln Si 0.8×(1−1/ Si)<D≤(1−1/ Si) 0.8<Je≤1 注:He为Shannon指数;D为Simpson指数;Je为Pielou指数;Si为第i个物种的物种数目,i=1,2,…,n。 表 3 底泥污染风险评价
Table 3. Risk assessment of sediment pollution
采样点 FF PLI RI 数值 等级 数值 等级 数值 等级 XLG-1 2.717 重度污染,Ⅳ类 1.194 中等污染,Ⅱ类 118.577 中等生态风险,Ⅱ类 XLG-2 2.503 重度污染,Ⅳ类 0.974 无污染,Ⅰ类 95.405 中等生态风险,Ⅱ类 XLG-3 3.289 重度污染,Ⅳ类 1.173 中等污染,Ⅱ类 128.725 中等生态风险,Ⅱ类 XLG-4 3.886 重度污染,Ⅳ类 1.185 中等污染,Ⅱ类 109.966 中等生态风险,Ⅱ类 XLG-5 3.449 重度污染,Ⅳ类 1.555 中等污染,Ⅱ类 164.161 中等生态风险,Ⅱ类 表 4 四季河流健康状态综合评价指数(RHI)
Table 4. Comprehensive evaluation index RHI of river health status in four seasons
点位名称 春 夏 秋 冬 XLG-1 74.9 54.1 80.5 67.4 XLG-2 83.8 56.0 80.8 71.1 XLG-3 61.0 52.9 79.4 71.4 XLG-4 61.7 50.7 77.5 72.1 XLG-5 47.9 43.4 56.8 63.8 RHI综合分值 65.9 51.4 75.0 69.2 健康等级 健康 亚健康 健康 健康 -
[1] 上海市生态环境局. 2021年上海市生态环境状况公报[R]. 上海:上海市生态环境局, 2022. [2] 金鑫, 郝彩莲, 严登华, 等.河流健康及其综合评价研究: 以承德市武烈河为例[J]. 水利水电技术,2012,43(1):38-43.JIN X, HAO C L, YAN D H, et al. Study on river health and its comprehensive assessment: a case of Wuliehe River in Chengde[J]. Water Resources and Hydropower Engineering,2012,43(1):38-43. [3] 柳超, 钱彬杰, 王莉元, 等.城市河流黑臭水体综合评价体系的建立及应用[J]. 中国给水排水,2018,34(11):73-77.LIU C, QIANG B J, WANG L Y, et al. Establishment and application of comprehensive evaluation system of urban black and odorous rivers[J]. China Water & Wastewater,2018,34(11):73-77. [4] SHAN C J, DONG Z C, LU D B, et al. Study on river health assessment based on a fuzzy matter-element extension model[J]. Ecological Indicators,2021,127:107742. doi: 10.1016/j.ecolind.2021.107742 [5] CHEN L L, MA L, JIJI J M, et al. River ecosystem health assessment using a combination weighting method: a case study of Beijing section of Yongding River in China[J]. International Journal of Environmental Research and Public Health,2022,19(21):14433. doi: 10.3390/ijerph192114433 [6] 李海霞, 韩丽华, 蔚青, 等.基于灰色关联分析法的辽河保护区河流水生态健康评价[J]. 环境工程技术学报,2020,10(4):553-561. doi: 10.12153/j.issn.1674-991X.20200034LI H X, HAN L H, WEI Q, et al. Assessment on river water ecological health based on grey relation analysis in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2020,10(4):553-561. doi: 10.12153/j.issn.1674-991X.20200034 [7] 李海霞, 王育鹏, 徐笠, 等.基于五元联系数法的辽河保护区沈阳段河流健康评价[J]. 环境工程技术学报,2020,10(4):562-571.LI H X, WANG Y P, XU L, et al. River health evaluation in Shenyang Section of Liaohe Conservation Area based on five-element relation number method[J]. Journal of Environmental Engineering Technology,2020,10(4):562-571. [8] 常珊. 河流健康评价指标体系初步构建研究[C]//2022(第十届)中国水利信息化技术论坛论文集.莆田:福建省水利学会, 2022: 20-23. [9] YI X J, SHI Y H, JIANG L, et al. River health assessment method based on water quality indices for the Dagujia River in China[J]. Frontiers in Physics, 2022, 10: 852538. [10] JARGAL N, MAMUN M, CHOI C Y, et al. Combining functional diversity of lotic fish communities with river health assessment based on multi-metric chemical pollution and biological integrity index models[J]. Frontiers in Environmental Science,2022,10:1012420. doi: 10.3389/fenvs.2022.1012420 [11] 卢振园, 唐德善, 郑斌, 等.黑河下游调水及近期治理生态影响后评价[J]. 环境科学学报,2011,31(7):1556-1561. doi: 10.13671/j.hjkxxb.2011.07.028LU Z Y, TANG D S, ZHENG B, et al. Post-evaluation of the ecological impact of water diversion and recent management in the downstream Heihe River[J]. Acta Scientiae Circumstantiae,2011,31(7):1556-1561. doi: 10.13671/j.hjkxxb.2011.07.028 [12] 杨丽. 重庆地区中小河流综合治理后评价研究[D]. 重庆: 重庆交通大学, 2017. [13] 王仕晗. 辽河铁岭段生态治理效果后评价[D]. 沈阳: 沈阳农业大学, 2022. [14] 郑志宏, 魏明华.基于组合赋权的河流健康模糊评价研究[J]. 水利水电技术,2013,44(2):28-31.ZHENG Z H, WEI M H. Study on combined weight based fuzzy evaluation of river health[J]. Water Resources and Hydropower Engineering,2013,44(2):28-31. [15] 山成菊, 董增川, 樊孔明, 等.组合赋权法在河流健康评价权重计算中的应用[J]. 河海大学学报:自然科学版,2012,40(6):622-628.SHAN C J, DONG Z C, FAN K M, et al. Application of combination weighting method to weight calculation in river health evaluation[J]. Journal of Hohai University (Natural Science),2012,40(6):622-628. [16] 车霏霏, 姜霞, 王书航, 等.嘉兴城区河网水系水环境问题识别与治理对策[J]. 环境工程技术学报,2022,12(2):529-37.CHE F F, JIANG X, WANG S H, et al. Water environment problem identification and treatment countermeasure in Jiaxing urban river network[J]. Journal of Environmental Engineering Technology,2022,12(2):529-37. [17] 韩璐, 李庆龙, 曾萍, 等.长江流域典型城市河段黑臭水体生态整治案例分析[J]. 环境工程技术学报,2022,12(2):546-552. doi: 10.12153/j.issn.1674-991X.20210672HAN L, LI Q L, ZENG P, et al. Case study on water ecological regulation of black and odorous water in typical urban sections of the Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2022,12(2):546-552. doi: 10.12153/j.issn.1674-991X.20210672 [18] 陈庆江, 丁瑞, 王维维.进博会区域河网水环境提升与效果评估[J]. 水利水运工程学报,2020(3):122-128. doi: 10.12170/20200325001CHEN Q J, DING R, WANG W W. River network water environment improvement and effect evaluation on China International Import Expo (CIIE) area[J]. Hydro-Science and Engineering,2020(3):122-128. doi: 10.12170/20200325001 [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] 水利部河湖管理司. 河湖健康评估技术导则: SL/T 793—2020[S]. 北京: 中国水利水电出版社, 2020. [21] NIU L H, LI Y, WANG P F, et al. Development of a microbial community-based index of biotic integrity (MC-IBI) for the assessment of ecological status of rivers in the Taihu Basin, China[J]. Ecological Indicators, 2018, 85: 204 − 213. [22] 彭玲敏, 李建华, 何荷, 等.河流健康综合评价指标体系的构建及应用研究: 以上海市城镇河道为例[J]. 环境科学与管理,2021,46(2):174-179.PENG L M, LI J H, HE H, et al. Construction and application of river health comprehensive evaluation index system: taking urban river in Shanghai as an example[J]. Environmental Science and Management,2021,46(2):174-179. [23] 徐祖信.我国河流综合水质标识指数评价方法研究[J]. 同济大学学报:自然科学版,2005(4):482-488.XU Z X. Study on evaluation method of comprehensive water quality identification index of rivers in China[J]. Journal of Tongji University (Natural Science),2005(4):482-488. [24] 徐祖信.我国河流单因子水质标识指数评价方法研究[J]. 同济大学学报:自然科学版,2005(3):321-325.XU Z X. Study on evaluation method of single factor water quality identification index of rivers in China[J]. Journal of Tongji University (Natural Science),2005(3):321-325. [25] 李林衡, 郑飞, 何春花, 等.综合营养状态指数法评价鄞州区水库富营养化程度[J]. 中国给水排水,2016,32(13):75-78.LI L H, ZHENG F, HE C H, et al. Evaluation of reservoir eutrophication in Yinzhou District based on comprehensive eutrophication state index method[J]. China Water & Wastewater,2016,32(13):75-78. [26] 徐彬, 林灿尧, 毛新伟.内梅罗水污染指数法在太湖水质评价中的适用性分析[J]. 水资源保护,2014,30(2):38-40.XU B, LIN C Y, MAO X W. Analysis of applicability of Nemerow pollution index to evaluation of water quality of Taihu Lake[J]. Water Resources Protection,2014,30(2):38-40. [27] 陈体达, 崔丹, 袁育鑫, 等.上海环城绿带水体水质与土地利用结构的响应研究[J]. 华东师范大学学报:自然科学版,2021(4):81-89.CHEN T D, CUI D, YUAN Y X, et al. Changes in water quality and land use structure in the green-belt area around Shanghai[J]. Journal of East China Normal University (Natural Science),2021(4):81-89. [28] 王佩, 卢少勇, 王殿武, 等.太湖湖滨带底泥氮、磷、有机质分布与污染评价[J]. 中国环境科学,2012,32(4):703-709.WANG P, LU S Y, WANG D W, et al. Nitrogen, phosphorous and organic matter spatial distribution characteristics and their pollution status evaluation of sediments nutrients in lakeside zones of Taihu Lake[J]. China Environmental Science,2012,32(4):703-709. [29] 张国涵, 苏涛, 杨耀雷, 等.昆明市主城区主要入滇河道重金属污染评价[J]. 环境科学导刊,2022,41(3):74-79.ZHANG G H, SU T, YANG Y L, et al. Assessment of heavy metal pollution in the main river entering Yunnan in the main urban area of Kunming City[J]. Environmental Science Survey,2022,41(3):74-79. [30] 马建华, 韩昌序, 姜玉玲.潜在生态风险指数法应用中的一些问题[J]. 地理研究,2020,39(6):1233-1241.MA J H, HAN C X, JIANG Y L. Some problems in the application of potential ecological risk index method[J]. Geographical Research,2020,39(6):1233-1241. [31] 孔凡洲, 于仁成, 徐子钧, 等.应用Excel软件计算生物多样性指数[J]. 海洋科学,2012,36(4):57-62.KONG F Z, YU R C, XU Z J, et al. Application of Excel software in the biodiversity index caculation[J]. Marine Sciences,2012,36(4):57-62. [32] 唐登勇, 张聪, 杨爱辉, 等.太湖流域企业的水风险评估体系[J]. 中国环境科学,2018,38(2):766-775.TANG D Y, ZHANG C, YANG A H, et al. Enterprise water risk assessment system in Taihu Lake Basin[J]. China Environmental Science,2018,38(2):766-775. [33] 崔宇. 水体叶绿素a浓度高光谱遥感估算研究[D]. 济南: 山东建筑大学, 2022. [34] 李志洪. 曝气扰动模式对黑臭河道底泥内源营养盐行为的影响作用及氮转化功能菌群响应规律研究[D]. 上海: 华东师范大学, 2015. [35] ZHU J, HE Y, ZHU Y S, et al. Biogeochemical sulfur cycling coupling with dissimilatory nitrate reduction processes in freshwater sediments[J]. Ecology Environment & Conservation,2018,26(2):121-132. [36] 李文超. 曝气扰动下城市黑臭河道底泥内源硫、铁行为与氮循环耦合作用研究[D]. 上海: 华东师范大学, 2016. [37] 闵奋力, 左进城, 张义, 等. 苦草生物量和生理指标对附着藻和水体中不同浓度硝酸盐氮的响应[C]// 2017中国环境科学学会科学与技术年会论文集(第二卷). 厦门:中国环境科学学会, 2017: 1221-1227. [38] 徐盼盼, 何培民, 邵留, 等.人工沉床技术引导沉水植物恢复的生态工程实践[J]. 湿地科学,2022,20(4):554-564.XU P P, HE P M, SHAO L, et al. Ecological engineering practice of artificial sinking bed technology guiding submerged plant restoration[J]. Wetland Science,2022,20(4):554-564. [39] 董芮, 王玉玉, 吕偲, 等.水文连通性对西洞庭湖大型底栖动物群落结构的影响[J]. 生态学报,2020,40(22):8336-8346.DONG R, WANG Y Y, LÜ C, et al. Effects of hydrological connectivity on macrobenthic community structure in West Dongting Lake[J]. Acta Ecologica Sinica,2020,40(22):8336-8346. [40] WANG P C, DING J Q, HE Y, et al. Ecological revetments for enhanced interception of nonpoint source pollutants: a review[J]. Ecology Environment & Conservation,2020,28(3):262-268. ⊕