留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温制备土霉素菌渣生物炭对铀尾矿库渗排水中铀的吸附效果与机理

牛子铭 曹欣然 彭国文 李梁 代立春

牛子铭,曹欣然,彭国文,等.高温制备土霉素菌渣生物炭对铀尾矿库渗排水中铀的吸附效果与机理[J].环境工程技术学报,2023,13(6):2221-2228 doi: 10.12153/j.issn.1674-991X.20230133
引用本文: 牛子铭,曹欣然,彭国文,等.高温制备土霉素菌渣生物炭对铀尾矿库渗排水中铀的吸附效果与机理[J].环境工程技术学报,2023,13(6):2221-2228 doi: 10.12153/j.issn.1674-991X.20230133
NIU Z M,CAO X R,PENG G W,et al.Adsorption efficiency and mechanism of uranium in seepage of uranium tailing pond using biochar prepared from oxytetracycline fermentation residues at high temperature[J].Journal of Environmental Engineering Technology,2023,13(6):2221-2228 doi: 10.12153/j.issn.1674-991X.20230133
Citation: NIU Z M,CAO X R,PENG G W,et al.Adsorption efficiency and mechanism of uranium in seepage of uranium tailing pond using biochar prepared from oxytetracycline fermentation residues at high temperature[J].Journal of Environmental Engineering Technology,2023,13(6):2221-2228 doi: 10.12153/j.issn.1674-991X.20230133

高温制备土霉素菌渣生物炭对铀尾矿库渗排水中铀的吸附效果与机理

doi: 10.12153/j.issn.1674-991X.20230133
基金项目: 中国铀业-东华理工大学联合基金项目(NRE2021-11)
详细信息
    作者简介:

    牛子铭(1998—),男,硕士研究生,主要从事放射性废物处理,nzm_usc@163.com

    通讯作者:

    李梁( 1985—),男,正高级工程师,博士,主要从事生物质材料对铀矿冶污染的控制与修复研究,liliang@bricem.com.cn

  • 中图分类号: X591

Adsorption efficiency and mechanism of uranium in seepage of uranium tailing pond using biochar prepared from oxytetracycline fermentation residues at high temperature

  • 摘要:

    以土霉素菌渣(oxytetracycline fermentation residue,OFR)为原料,在300~900 ℃(间隔100 ℃)条件下制备生物炭,研究高温(800~900 ℃)制备OFR生物炭对废水中铀的吸附效果与机理。结果表明:对于不同温度下制备的生物炭,随着温度的升高,OFR生物炭表面功能基团逐渐减少,Ca晶体形态由CaC2O4(300~400 ℃)转变为CaCO3(500~700 ℃)、CaO(800~900 ℃),而这也导致了吸附效果的变化。当制备温度升至800~900 ℃时,OFR生物炭10 min吸附即可对南方某铀尾矿库渗排水中的铀达到98%以上去除率,且高温制备的OFR生物炭在较宽的pH范围(4.0~9.0)与铀初始浓度(0.8~3.0 mg/L)下,均能稳定达到大于98%的去除率,处理后上清液中铀浓度远低于铀矿冶辐射防护和辐射环境保护规定的排放标准。因此,高温制备OFR生物炭在铀尾矿库渗排水原位处理方面,展示了较好的应用前景。

     

  • 图  1  不同温度条件下制备的OFR生物炭的表面形貌

    Figure  1.  Surface morphologies of OFR biochar prepared at different temperatures

    图  2  制备温度对OFR生物炭表面官能团的影响

    Figure  2.  Effect of preparation temperature on surface functional groups of OFR biochar

    图  3  制备温度对OFR生物炭晶体形态的影响

    Figure  3.  Effect of preparation temperature on crystal morphology of OFR biochar

    图  4  制备温度对OFR生物炭吸附铀效果的影响

    Figure  4.  Effect of preparation temperature on uranium adsorption of OFR biochar

    图  5  OFR生物炭使用量对铀去除效果的影响

    Figure  5.  Effect of the amount used of OFR biochar on the removal of uranium

    图  6  吸附时间对OFR生物炭去除铀效果的影响

    Figure  6.  Effect of adsorption time on removal of uranium from OFR biochar

    图  7  铀初始浓度与pH对OFR生物炭去除铀效果的影响

    Figure  7.  Effect of initial concentration of uranium and pH on removal of uranium from OFR biochar

    图  8  OFR生物炭吸附铀后的模拟释放过程

    Figure  8.  Simulated release process of OFR biochar after uranium adsorption

    表  1  OFR与不同温度下制备的生物炭的元素含量和得率

    Table  1.   Element contents and yields of OFR biochar prepared at different temperatures % 

    制备
    温度/℃
    CNHS灰分CaO生物炭
    得率
    OFR1)39.926.034.070.21713.670.8836.09
    30048.328.054.000.5116.831.3420.9553.78
    40049.906.483.200.2421.841.6016.7450.44
    50052.846.492.860.2327.152.138.3043.73
    60051.994.851.840.30629.471.789.7744.17
    70053.573.391.290.3631.672.387.3542.49
    80056.162.641.120.4734.972.532.1239.04
    90056.941.630.760.4134.763.342.1739.13
      1)为未碳化前的原始OFR。
    下载: 导出CSV

    表  2  OFR与不同温度下制备的生物炭的微孔结构

    Table  2.   Microporous structure of OFR biochar prepared at different temperatures

    制备
    温度/℃
    比表面积 /
    (m²/g)
    微孔面积/
    (m²/g)
    介孔面积/
    (m²/g)
    总孔体积/
    (cm³/g)
    平均微孔
    孔径/nm
    OFR1)2.235 60.41761.81800.002 752.559 2
    3002.655 51.223 91.431 60.010 047.733 2
    4002.805 71.743 61.062 10.005 053.717 1
    50021.363 68.499 012.864 60.016 023.309 7
    60024.774 211.342 013.432 20.017 113.312 4
    70030.487 518.793 311.694 20.017 823.241 3
    80039.426 226.210 313.215 90.018 643.179 2
    90040.026 325.810 914.215 40.018 533.232 8
      1)为未碳化前的原始OFR。
    下载: 导出CSV

    表  3  原水理化指标检测结果

    Table  3.   Results of physical and chemical indexes in raw water

    pHNH4 +-N/
    (mg/L)
    COD/
    (mg/L)
    Cl/
    (mg/L)
    NO3 /
    (g/L)
    Cd/
    (μg/L)
    铀/
    (μg/L)
    Fe/
    (μg/L)
    Mg/
    (mg/L)
    Zn/
    (mg/L)
    5.821.66.533596.0438.58201071221.29
    下载: 导出CSV

    表  4  低温制备生物炭对铀吸附的最佳pH条件

    Table  4.   Optimal pH for uranium adsorption using biochar prepared at low temperature

    生物炭类型最佳pH生物炭类型最佳pH
    麦秸秆热解炭[8]5.0~6.0松针水热炭[11]6.0
    木片热解炭[8]5.0~6.0柳枝稷水热炭[12]4.0
    牛粪(硝酸氧化)[9]4.5麦秸秆热解炭[16]4.5
    玉米秸秆烘焙炭[9]5.0麦秸秆热解炭
    (硝酸氧化)[17]
    4.5
    玉米棒热空气
    改性炭[10]
    6.0牛粪[17]4.5
    活性污泥热
    空气改性炭[10]
    6.0
    下载: 导出CSV
  • [1] 章求才, 娄亚龙, 刘永, 等.某铀尾矿库渗水中铀的化学形态和影响因素模拟分析[J]. 工业安全与环保,2018,44(6):1-4. doi: 10.3969/j.issn.1001-425X.2018.06.001

    ZHANG Q C, LOU Y L, LIU Y, et al. Chemical species and influence factors analysis of uranium in the seepage of one uranium tailings pond[J]. Industrial Safety and Environmental Protection,2018,44(6):1-4. doi: 10.3969/j.issn.1001-425X.2018.06.001
    [2] BERGMANN M, SOBRAL O, PRATAS J, et al. Uranium toxicity to aquatic invertebrates: a laboratory assay[J]. Environmental Pollution,2018,239:359-366. doi: 10.1016/j.envpol.2018.04.007
    [3] 王宏洋, 王旭, 陈海燕, 等.尾矿库环境风险管控相关政策分析及建议[J]. 环境科学研究,2023,36(5):1052-1060.

    WANG H Y, WANG X, CHEN H Y, et al. Analysis and suggestions of environmental risk control strategy for tailings ponds[J]. Research of Environmental Sciences,2023,36(5):1052-1060.
    [4] TROYER L D, MAILLOT F, WANG Z M, et al. Effect of phosphate on U(Ⅵ) sorption to montmorillonite: ternary complexation and precipitation barriers[J]. Geochimica et Cosmochimica Acta,2016,175:86-99. doi: 10.1016/j.gca.2015.11.029
    [5] ZOU Y D, LIU Y, WANG X X, et al. Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended X-ray absorption fine structure technique and density functional theory calculation[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):3583-3595.
    [6] REGMI P, MOSCOSO J L G, KUMAR S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management,2012,109:61-69.
    [7] INYANG M, GAO B, PULLAMMANAPPALLIL P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology,2010,101(22):8868-8872. doi: 10.1016/j.biortech.2010.06.088
    [8] ALAM M S, GORMAN-LEWIS D, CHEN N, et al. Mechanisms of the removal of U(Ⅵ) from aqueous solution using biochar: a combined spectroscopic and modeling approach[J]. Environmental Science & Technology,2018,52(22):13057-13067.
    [9] LI L, YANG M, LU Q, et al. Oxygen-rich biochar from torrefaction: a versatile adsorbent for water pollution control[J]. Bioresource Technology,2019,294:122142. doi: 10.1016/j.biortech.2019.122142
    [10] DAI L C, LI L, ZHU W K, et al. Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(Ⅵ) adsorption[J]. Bioresource Technology,2020,298:122576. doi: 10.1016/j.biortech.2019.122576
    [11] ZHANG Z B, CAO X H, LIANG P, et al. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization[J]. Journal of Radioanalytical and Nuclear Chemistry,2013,295(2):1201-1208. doi: 10.1007/s10967-012-2017-2
    [12] KUMAR S, LOGANATHAN V A, GUPTA R B, et al. An assessment of U(Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management,2011,92(10):2504-2512. doi: 10.1016/j.jenvman.2011.05.013
    [13] SUN Y B, YANG S B, CHEN Y E, et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environmental Science & Technology,2015,49(7):4255-4262.
    [14] CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology,2009,43(9):3285-3291.
    [15] ALAM M S, COSSIO M, ROBINSON L, et al. Removal of organic acids from water using biochar and petroleum coke[J]. Environmental Technology & Innovation,2016,6:141-151.
    [16] UCHIMIYA M, CHANG S, KLASSON K T. Screening biochars for heavy metal retention in soil: role of oxygen functional groups[J]. Journal of Hazardous Materials,2011,190(1/2/3):432-441.
    [17] JIN J, LI S W, PENG X Q, et al. HNO3 modified biochars for uranium (Ⅵ) removal from aqueous solution[J]. Bioresource Technology,2018,256:247-253. doi: 10.1016/j.biortech.2018.02.022
    [18] SUN Y B, WU Z Y, WANG X X, et al. Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J]. Environmental Science & Technology,2016,50(8):4459-4467.
    [19] 王娟, 郭亚丹, 曾华, 等.羟基磷灰石复合材料对地下水中铀吸附去除研究进展[J]. 有色金属(冶炼部分),2021(8):37-45.

    WANG J, GUO Y D, ZENG H, et al. Progress of hydroxyapatite composites for adsorption and removal of uranium from groundwater[J]. Nonferrous Metals (Extractive Metallurgy),2021(8):37-45.
    [20] 秦坤, 李佳乐, 王章鸿, 等.富Ca香菇菌渣基生物炭对含磷废水处理性能的研究[J]. 化工学报,2022,73(11):5263-5274.

    QIN K, LI J L, WANG Z H, et al. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment[J]. CIESC Journal,2022,73(11):5263-5274.
    [21] 王胜丹. 负载钙生物炭回收水中磷酸盐及其产物对铀(Ⅵ)固定的特性研究[D]. 广州: 广州大学, 2018.
    [22] YING G G, HE L Y, YING A J, et al. China must reduce its antibiotic use[J]. Environmental Science & Technology,2017,51(3):1072-1073.
    [23] 姚光远, 刘玉强, 刘景财, 等.我国医药制造业危险废物产生特性及污染防治分析[J]. 环境工程技术学报,2021,11(6):1258-1265.

    YAO G Y, LIU Y Q, LIU J C, et al. Research on the generation properties and pollution control of pharmaceutical manufacturing industry in China[J]. Journal of Environmental Engineering Technology,2021,11(6):1258-1265.
    [24] 彭燕, 陈迪云, 陈南, 等.磷酸钙对铀矿下游水系沉积物中铀的钝化效果[J]. 环境工程,2021,39(4):13-19. doi: 10.13205/j.hjgc.202104003

    PENG Y, CHEN D Y, CHEN N, et al. Passivation effect of calcium phosphate on uranium in sediments in downstream waters of a uranium mine[J]. Environmental Engineering,2021,39(4):13-19. doi: 10.13205/j.hjgc.202104003
    [25] 林升, 付映文, 那兵, 等.磷酸氢钙原位矿化铀酰离子性能及机制研究[J]. 东华理工大学学报(自然科学版),2022,45(3):275-281.

    LIN S, FU Y W, NA B, et al. Property and mechanism of in situ mineralization of uranyl ions with calcium hydrogen phosphate[J]. Journal of East China University of Technology (Natural Science),2022,45(3):275-281.
    [26] 环境保护部. 水质 65种元素的测定 电感耦合等离子体质谱法: HJ 700—2014[S]. 北京: 中国环境科学出版社, 2014.
    [27] 卫生部, 国家标准化管理委员会. 生活饮用水标准检验方法 无机非金属指标: GB/T 5750.5—2006[S]. 北京: 中国标准出版社, 2007.
    [28] 王晖, 郭霄, 马翔, 等.模拟酸雨对耐冬山茶生理生态学特征的影响[J]. 青岛农业大学学报(自然科学版),2022,39(1):43-50.

    WANG H, GUO X, MA X, et al. Effects of simulated acid rain on the ecophysiological characteristics of Camellia japonica (NaiDong)[J]. Journal of Qingdao Agricultural University (Natural Science),2022,39(1):43-50.
    [29] LU Q, DAI L C, LI L, et al. Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control[J]. Journal of Environmental Chemical Engineering,2021,9(4):105397. doi: 10.1016/j.jece.2021.105397
    [30] CHEN B L, CHEN Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere,2009,76(1):127-133. doi: 10.1016/j.chemosphere.2009.02.004
    [31] 生态环境部, 国家市场监督管理总局. 铀矿冶辐射防护和辐射环境保护规定: GB 23727—2020[S]. 北京: 中国环境科学出版社, 2020.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  75
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回