留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多物质联用对磷石膏中磷的固定效果与机理分析

张晨燕 付甫刚 谭文超 杨艺琳 柳听义

张晨燕,付甫刚,谭文超,等.多物质联用对磷石膏中磷的固定效果与机理分析[J].环境工程技术学报,2024,14(1):194-203 doi: 10.12153/j.issn.1674-991X.20230135
引用本文: 张晨燕,付甫刚,谭文超,等.多物质联用对磷石膏中磷的固定效果与机理分析[J].环境工程技术学报,2024,14(1):194-203 doi: 10.12153/j.issn.1674-991X.20230135
ZHANG C Y,FU F G,TAN W C,et al.Analysis of fixation effect and mechanism of phosphorus in phosphogypsum by multiple substances combination[J].Journal of Environmental Engineering Technology,2024,14(1):194-203 doi: 10.12153/j.issn.1674-991X.20230135
Citation: ZHANG C Y,FU F G,TAN W C,et al.Analysis of fixation effect and mechanism of phosphorus in phosphogypsum by multiple substances combination[J].Journal of Environmental Engineering Technology,2024,14(1):194-203 doi: 10.12153/j.issn.1674-991X.20230135

多物质联用对磷石膏中磷的固定效果与机理分析

doi: 10.12153/j.issn.1674-991X.20230135
基金项目: 天津市自然科学基金项目(18JCYBJC96600)
详细信息
    作者简介:

    张晨燕(1999—),女,硕士研究生,主要从事环境变化与生态修复研究,yanstudy123@163.com

    通讯作者:

    杨艺琳(1991—),女,助理研究员,博士,主要从事水环境污染与修复技术研究,282876176@qq.com

    柳听义(1982—),男,研究员,博士,主要从事纳米材料修复污水中重金属研究,liutingyi@tjnu.edu.cn

  • 中图分类号: X705

Analysis of fixation effect and mechanism of phosphorus in phosphogypsum by multiple substances combination

  • 摘要:

    采用微生物-植物联用的磷石膏无害化处理方法,在磷石膏渣场土壤中富集筛选出2种聚磷菌,通过鉴定得知分别是假单胞菌(Pseudomonas sp.)和恶臭假单胞菌(Pseudomonas putida)。将生石灰改性的磷石膏与少量土壤按质量比混合后,与已经配置的有机肥-微生物液体菌剂均匀混合,按不同混合比例放入渗滤土柱装置中并在表层种植高羊茅,底部收集渗滤液,通过钼酸铵分光光度法测量液体中总磷浓度变化,磷石膏∶土∶生石灰∶有机肥∶微生物∶草籽质量比为7∶3∶0.2∶0.2∶0.03∶0.03的组磷浸出浓度在1 mg/L以下,质量比为8∶2∶0.2∶0.2∶0.03∶0.03的组浸出液总磷浓度不超过4 mg/L,对比新鲜磷石膏浸出液总磷浓度(633.9 mg/L),多物质联合处理磷石膏中磷的固定率达到99%。筛选的菌株在混合土壤中存活量最高可达6.4×106 cfu/mL且活菌数量随时间保持稳定或缓慢增长趋势。为解决磷石膏堆积区磷浸出浓度超标的问题以及磷石膏无害化处理提供了有效支撑。

     

  • 图  1  菌种P1系统发育进化树

    Figure  1.  Phylogenetic tree of strain P1

    图  2  菌种P2系统发育进化树

    Figure  2.  Phylogenetic tree of strain P2

    图  3  菌种P3系统发育进化树

    Figure  3.  Phylogenetic tree of strain P3

    图  4  菌种P4系统发育进化树

    Figure  4.  Phylogenetic tree of strain P4

    图  5  菌种形态

    Figure  5.  Species morphology

    图  6  不同菌种的固磷率对比

    Figure  6.  Comparison of phosphorus fixation rates among different strains

    图  7  固磷植物长势对比

    注:图(a)、(b)、(c)中磷石膏∶土∶生石灰∶有机肥∶微生物∶草籽的比例均为7∶3∶0.2∶0.2∶0.03∶0.03。

    Figure  7.  Comparison of growth of phosphorus fixation plants

    图  8  磷石膏与土质量比为7∶3组的磷浸出浓度对比

    Figure  8.  Comparison of phosphorus leaching concentration in phosphogypsum to soil ratio 7∶3 group

    图  9  磷石膏与土质量比为8∶2组的磷浸出浓度对比

    Figure  9.  Comparison of phosphorus leaching concentration in phosphogypsum to soil ratio 8∶2 group

    图  10  A3F4组中投加不同菌种后磷浸出浓度对比

    注:M1、M2、M3、M4分别代表菌种P1与P2混合、P2、P3与P4混合、P1与P4混合。全文同。

    Figure  10.  Comparison of phosphorus leaching concentration in A3F4 group after adding different strains

    图  11  B3F4组中投加不同菌种后磷浸出浓度对比

    Figure  11.  Comparison of phosphorus leaching concentration in B3F4 group after adding different strains

    图  12  混合土柱中微生物-植物聚磷机理

    Figure  12.  Mechanism of microbial-plant phosphorus accumulation in mixed soil column

    表  1  磷石膏、土、生石灰、有机肥、微生物和草籽的混合质量比对照

    Table  1.   Comparison of mixed mass ratio of phosphogypsum, soil, quicklime, organic fertilizer, microorganism and grass seeds

    编号 磷石膏∶土∶生石灰∶有机肥∶
    微生物∶草籽
    编号 磷石膏∶土∶生石灰∶有机肥∶
    微生物∶草籽
    A1F4 7∶3∶0∶0.2∶0.03∶0.03 A3F1 7∶3∶0.2∶0∶0.03∶0.03
    A2F4 7∶3∶0.1∶0.2∶0.03∶0.03 B1F4 8∶2∶0∶0.2∶0.03∶0.03
    A3F4 7∶3∶0.2∶0.2∶0.03∶0.03 B2F4 8∶2∶0.1∶0.2∶0.03∶0.03
    A3F3 7∶3∶0.2∶0∶0∶0 B3F4 8∶2∶0.2∶0.2∶0.03∶0.03
    A3F2 7∶3∶0.2∶0∶0∶0.03 B3F5 8∶2∶0.2∶0.2∶0∶0
    下载: 导出CSV

    表  2  不同比例磷石膏与土壤混合试验的pH

    Table  2.   pH of a mixture test with different proportions of phosphogypsum and soil

    磷石膏∶土 pH 磷石膏∶土 pH
    10∶0 1.6 6∶4 3.5
    9∶1 2.4 5∶5 3.9
    8∶2 2.7 0∶10 6.8
    7∶3 3.4
    下载: 导出CSV

    表  3  不同比例磷石膏、土壤和生石灰混合试验的pH

    Table  3.   pH of a mixture test with different proportions of phosphogypsum, soil and quicklime

    磷石膏∶土∶生石灰 pH 磷石膏∶土∶生石灰 pH
    8∶2∶2 12.8 7∶3∶2 13.0
    8∶2∶0.1 4.7 7∶3∶0.1 5.3
    8∶2∶0.2 5.9 7∶3∶0.2 6.6
    8∶2∶0.3 9.2 7∶3∶0.3 8.0
    8∶2∶0.4 11.8 7∶3∶0.4 11.6
    8∶2∶0.5 12.2 7∶3∶0.5 12.4
    下载: 导出CSV

    表  4  土壤和渗滤液中活菌数量对比

    Table  4.   Comparison of viable bacteria quantity in leachate and soil cfu/mL 

    编号土壤中活菌数量渗滤液中活菌数量
    A3F4-16.4×1061.7×104
    A3F4-21.5×1062.6×104
    A3F4-31.1×1065.5×103
    A3F4-41.1×1062.8×104
    B3F4-13.1×1065.5×103
    B3F4-22.9×1062.3×103
    B3F4-31.4×1062.0×103
    B3F4-41.8×1063.3×103
      注:在A3F4和B3F4组土柱试验进行的第3、6、9和12天取样,4次取样的后缀依次为1、2、3、4。
    下载: 导出CSV
  • [1] 杨耿, 秦延文, 马迎群, 等. 沱江流域磷石膏的磷形态组成及潜在释放特征[J]. 环境工程技术学报,2018,8(6):610-616. doi: 10.3969/j.issn.1674-991X.2018.06.081

    YANG G, QIN Y W, MA Y Q, et al. Phosphorus forms and potential release characteristics of phosphogypsum in Tuojiang River Basin[J]. Journal of Environmental Engineering Technology,2018,8(6):610-616. doi: 10.3969/j.issn.1674-991X.2018.06.081
    [2] 饶轶晟, 王凤霞. 磷石膏资源化利用途径及展望[J]. 化工矿物与加工,2020,49(8):30-33.

    RAO Y S, WANG F X. Utilization of phosphogypsum as resource and its prospect[J]. Industrial Minerals & Processing,2020,49(8):30-33.
    [3] 白海丹. 我国磷石膏综合利用形势及对策建议[J]. 磷肥与复肥,2020,35(12):1-3.
    [4] TAYIBI H, CHOURA M, LÓPEZ F A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management,2009,90(8):2377-2386. doi: 10.1016/j.jenvman.2009.03.007
    [5] 冯慕华, 郑锦, 李文朝, 等. 云南省抚仙湖流域帽天山磷矿区磷流失过程模拟研究[J]. 环境化学,2007,26(6):801-804.

    FENG M H, ZHENG J, LI W C, et al. Simulation study on phosphorus release of phosphate mined land of Maotianshan Mountain in Fuxianhu watershed[J]. Environmental Chemistry,2007,26(6):801-804.
    [6] 官洪霞, 谭建红, 袁鹏, 等. 对磷石膏中各危害组分环境污染本质的分析[J]. 广州化工,2013,41(22):135-136.

    GUAN H X, TAN J H, YUAN P, et al. The harm of phosphogypsum component analysis of the nature of environmental pollution[J]. Guangzhou Chemical Industry,2013,41(22):135-136.
    [7] 李展, 陈江, 张覃, 等. 磷石膏中磷、氟杂质的脱除研究[J]. 矿物学报,2020,40(5):639-646.

    LI Z, CHEN J, ZHANG Q, et al. A study on the removal of phosphorus and fluorine impurities from phosphogypsum[J]. Acta Mineralogica Sinica,2020,40(5):639-646.
    [8] PÉREZ-LÓPEZ R, CASTILLO J, SARMIENTO A M, et al. Assessment of phosphogypsum impact on the salt-marshes of the Tinto River (SW Spain): role of natural attenuation processes[J]. Marine Pollution Bulletin,2011,62(12):2787-2796. doi: 10.1016/j.marpolbul.2011.09.008
    [9] 王建民, 章守陶. 磷石膏的特性及其在农业上的应用[J]. 磷肥与复肥,1997,12(3):67-71.
    [10] 陈玉琦. 工业固体废渣: 磷石膏在农业上应用效果的研究[J]. 天津农学院学报,2005,12(3):49-52.

    CHEN Y Q. Research on application effect of solid industrial waste residue: phosphorus plaster on agriculture[J]. Journal of Tianjin Agricultural College,2005,12(3):49-52.
    [11] KOMNITSAS K, LAZAR I, PETRISOR I G. Application of a vegetative cover on phosphogypsum stacks[J]. Minerals Engineering,1999,12(2):175-185. doi: 10.1016/S0892-6875(98)00130-7
    [12] 苟万里, 梁婷婷, 杨敏, 等. 大蒜用于磷石膏堆场植被覆盖可能性的初步研究[J]. 化工管理,2021(27):25-26.

    GOU W L, LIANG T T, YANG M, et al. Primary study on the posobility of covering the phosphogypsum stacks by cultivating the garlic[J]. Chemical Enterprise Management,2021(27):25-26.
    [13] 陈亚松, 金文标, 闫韫, 等. 高效聚磷菌的筛选及其应用[J]. 净水技术,2011,30(2):51.

    CHEN Y S, JIN W B, YAN Y, et al. Screening and application of high efficient phosphate-accumulating organisms (PAOs)[J]. Water Purification Technology,2011,30(2):51.
    [14] 朱荣贵, 方春玉, 周健, 等. 一株聚磷菌的分离、鉴定及其除磷特性分析[J]. 基因组学与应用生物学,2020,39(12):5625-5630.

    ZHU R G, FANG C Y, ZHOU J, et al. Analysis of the isolation and identification of a phosphorus-accumulating bacterium and its characteristic of phosphorus removal[J]. Genomics and Applied Biology,2020,39(12):5625-5630.
    [15] 岳宜菲. 高效聚磷菌的筛选及其在废水除磷中的应用研究[D]. 郑州: 河南工业大学, 2021.
    [16] 环境保护部. 水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法: HJ 670—2013[S]. 北京: 中国环境科学出版社, 2014.
    [17] 吴晓娜, 王助贫, 谢恩, 等. 一株反硝化聚磷菌筛选及其接种量对脱氮除磷效应的影响[J]. 环境工程学报,2018,12(2):544-551. doi: 10.12030/j.cjee.201706224

    WU X N, WANG Z P, XIE E, et al. Screening of one strain of denitrifying phosphorus accumulation bacteria (DPAB) and inhibitions effects of nitrogen-phosphorus removal[J]. Chinese Journal of Environmental Engineering,2018,12(2):544-551. doi: 10.12030/j.cjee.201706224
    [18] 谢晓琳, 曾萍, 钱锋, 等. 磷霉素降解菌株的筛选及其降解性能研究[J]. 环境工程技术学报,2019,9(1):36-43. doi: 10.3969/j.issn.1674-991X.2019.01.006

    XIE X L, ZENG P, QIAN F, et al. Screening and degradation characterization of fosfomycin-degrading bacterial strains[J]. Journal of Environmental Engineering Technology,2019,9(1):36-43. doi: 10.3969/j.issn.1674-991X.2019.01.006
    [19] 苏丹, 巩春娟, 王鑫, 等. 耐冷腐殖酸吸附态PAHs降解菌筛选及其降解特性[J]. 环境科学学报,2017,37(10):3943-3950.

    SU D, GONG C J, WANG X, et al. Isolation and charactrizaton of cold-resistance, PAHs-degrading bacterium[J]. Acta Scientiae Circumstantiae,2017,37(10):3943-3950.
    [20] 蔡天明, 管莉菠, 崔中利, 等. 恶臭假单胞菌( Pseudomonas putida) GM6的聚磷特性研究[J]. 土壤学报,2006,43(1):117-123. doi: 10.3321/j.issn:0564-3929.2006.01.017

    CAI T M, GUAN L B, CUI Z L, et al. Characterization of Pseudomonas putida GM6 with high capability of accumulating poly-p[J]. Acta Pedologica Sinica,2006,43(1):117-123. doi: 10.3321/j.issn:0564-3929.2006.01.017
    [21] 张晓辉, 崔建宇, 曹奇光, 等. 高羊茅和结缕草对地下渗滤系统中氮磷的去除研究[J]. 环境工程,2012,30(6):52-54.

    ZHANG X H, CUI J Y, CAO Q G, et al. Removal effects of N and P in subsurface wastewater infiltration system by festuca aroundinaces schreb and Zoysia japonica steud[J]. Environmental Engineering,2012,30(6):52-54.
    [22] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology,2003,133(1):16-20. doi: 10.1104/pp.103.024380
    [23] 申春妮, 曹小方, 李腾, 等. 植物–微生物联合修复柴油污染土试验研究[J/OL]. 土木与环境工程学报(中英文). [2022-06-28]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220312.2026.006.html.
    [24] 国家环境保护总局, 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB 18918-2002[S]. 北京: 中国环境出版社, 2002.
    [25] 耿乾, 孙红娟, 彭同江, 等. 焙烧与生石灰改性对磷石膏中可溶磷含量的影响[J]. 矿产保护与利用,2019,39(4):9-13.

    GENG Q, SUN H J, PENG T J, et al. Effect of roasting and quicklime modification on soluble phosphorus content in phosphogypsum[J]. Conservation and Utilization of Mineral Resources,2019,39(4):9-13.
    [26] 郑少奎, 罗焇湝. EBPR工艺污泥中聚磷菌多样性与除磷潜力评价方法[J]. 环境科学研究,2022,35(10):2338-2347.

    ZHENG S K, LUO X J. PAO phylogenetic diversity in activated sludge and its contribution to phosphorus removal by EBPR process[J]. Research of Environmental Sciences,2022,35(10):2338-2347.
    [27] HU Z R, WENTZEL M C, EKAMA G A. Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems[J]. Water Research,2002,36(19):4927-4937. doi: 10.1016/S0043-1354(02)00186-0
    [28] WEXLER M, RICHARDSON D J, BOND P L. Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal[J]. Environmental Microbiology,2009,11(12):3029-3044. doi: 10.1111/j.1462-2920.2009.02007.x
    [29] 邓遵, 彭剑峰, 宋永会, 等. 2-溴乙烷磺酸钠对ABR反应器运行效果和微生物菌群结构的影响[J]. 环境工程技术学报,2012,2(6):461-467.

    DEGN Z, PENG J F, SONG Y H, et al. Effect of 2-bromoethane sulfonate on operational performance and microorganism structure of anaerobic baffled reactor[J]. Journal of Environmental Engineering Technology,2012,2(6):461-467.
    [30] LI W W, ZHANG H L, SHENG G P, et al. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process[J]. Water Research,2015,86:85-95. doi: 10.1016/j.watres.2015.06.034
    [31] MA J, PENG Y Z, WANG S Y, et al. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy[J]. Journal of Environmental Sciences,2009,21(9):1169-1174. doi: 10.1016/S1001-0742(08)62398-0
    [32] WANG L, SHEN N, OEHMEN A, et al. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs)[J]. Environmental Research,2020,188:109729. doi: 10.1016/j.envres.2020.109729
    [33] TANDUKAR M, OHASHI A, HARADA H. Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater[J]. Water Research,2007,41(12):2697-2705. doi: 10.1016/j.watres.2007.02.027
    [34] WU M, ZHU R, ZHU H G, et al. Phosphorus removal and simultaneous sludge reduction in humus soil sequencing batch reactor treating domestic wastewater[J]. Chemical Engineering Journal,2013,215/216:136-143. doi: 10.1016/j.cej.2012.11.066
    [35] SEVIOUR R J, MINO T, ONUKI M. The microbiology of biological phosphorus removal in activated sludge systems[J]. FEMS Microbiology Reviews,2003,27(1):99-127. doi: 10.1016/S0168-6445(03)00021-4
    [36] KULAEV I, KULAKOVSKAYA T. Polyphosphate and phosphate pump[J]. Annual Review of Microbiology,2000,54:709-734. doi: 10.1146/annurev.micro.54.1.709
    [37] KULAEV I S, VAGABOV V M, KULAKOVSKAYA T V. The biochemistry of inorganic polyphosphates[M]. New York: John Wiley & Sons, 2004.
    [38] KORNBERG A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable[J]. Journal of Bacteriology,1995,177(3):491-496. doi: 10.1128/jb.177.3.491-496.1995
    [39] DIGNUM M, MATTHIJS H C P, PEL R, et al. Nutrient limitation of freshwater cyanobacteria[M]//Harmful Cyanobacteria. Berlin: Springer-Verlag, 2005: 65-86.
    [40] 管莉菠. Pseudomonas putida GM6聚磷相关基因的克隆和特性研究[D]. 南京: 南京农业大学, 2007.
    [41] 周岳溪, 陈方荣, 钱易, 等. 假单胞菌摄磷和释磷条件的研究[J]. 环境科学学报, 1994, 142): 212-215.

    ZHOU Y X, CHEN F R, QIAN Y, et al. Study on the mechanism of uptake and rrelease of phosphate by Pseudomon AS sp.[J]. Acta Scientiae Circumstantiae, 1994, 142): 212-215.
    [42] NGUYEN H T T, NIELSEN J L, NIELSEN P H. 'Candidatus Halomonas phosphatis', a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants[J]. Environmental Microbiology,2012,14(10):2826-2837. doi: 10.1111/j.1462-2920.2012.02826.x
    [43] 周岳溪, 钱易, 顾夏声. 生物除磷过程中乙酸盐厌氧代谢机理的研究[J]. 环境科学研究,1992,5(3):25-28. doi: 10.3321/j.issn:1001-6929.1992.03.004

    ZHOU Y X, QIAN Y, GU X S. A study on the anaerobic acetate metabolism in the biological phosphorus removal process[J]. Research of Environmental Sciences,1992,5(3):25-28. doi: 10.3321/j.issn:1001-6929.1992.03.004
    [44] CAO S B, SUN F Q, LU D, et al. Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: effect of HRT on their fate and transformation[J]. Water Research,2019,159:135-144. doi: 10.1016/j.watres.2019.04.063
    [45] 庞震鹏, 李永平, 朱教宁, 等. 猪粪玉米秸秆不同干物质比厌氧发酵产气及稳定性研究[J]. 安全与环境学报,2019,19(5):1767-1775.

    PANG Z P, LI Y P, ZHU J N, et al. On effect of dry matter mixing ratio on gas production and stability of anaerobic fermentation by pig manure and corn straw[J]. Journal of Safety and Environment,2019,19(5):1767-1775.
    [46] 张彬, 蒋滔, 高立洪, 等. 猪粪与玉米秸秆混合中温发酵产气效果[J]. 环境工程学报,2014,8(11):4991-4997.

    ZHANG B, JIANG T, GAO L H, et al. Aerogenesis characteristics of swine feces mixed with corn straw under mesophilic fermentation[J]. Chinese Journal of Environmental Engineering,2014,8(11):4991-4997.
    [47] 潘杨. 污泥转移SBR工艺对聚磷菌的筛选机制研究[D]. 无锡: 江南大学, 2019.
    [48] KODERA H, HATAMOTO M, ABE K, et al. Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor[J]. Water Research,2013,47(6):2025-2032. doi: 10.1016/j.watres.2013.01.027
    [49] 谭周进, 肖罗, 谢丙炎, 等. 假单胞菌的微生态调节作用[J]. 核农学报,2004,18(1):72-76.

    TAN Z J, XIAO L, XIE B Y, et al. Microecological functions of pseudomonad[J]. Acta Agriculturae Nucleatae Sinica,2004,18(1):72-76.
    [50] ZHOU Y X, QIAN Y, GU X S. Studies on the characteristics of phosphorus metabolism in Pseudomonas sp.[J]. Environmental Science,1992(5):42-44. □
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  94
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 录用日期:  2023-07-17
  • 修回日期:  2023-06-23

目录

    /

    返回文章
    返回