Feasibility study on roof rainwater utilization in seven geographical areas of China based on the precipitation data in recent 40 years
-
摘要:
雨水利用是解决城市水资源危机和缓解城市内涝的有效途径,降水特征和雨水利用可行性是衡量雨水利用工程可行与否的关键指标。基于全国各监测站点1980—2020年降水量数据,分析了全国七大地理区的降水特征;运用水量平衡原理,建立了日降水量-用水量平衡模型,探究了屋面雨水利用的影响因素,分析了全国七大地理区7座典型城市的雨水利用可行性。结果表明:1)我国年均降水量受地形和气候差异的影响,呈现出由东南向西北逐渐递减的趋势;季节降水量和年均降水量空间分布趋势一致,各季节降水量以夏季最高、春秋季次之;降水集中度分布特征与降水量不同,年均降水量较小的地区降水相对更加集中。2)降水特征、雨水罐设计容积、集雨面积、日用水需求量、节水效率和溢流率对不同地区雨水利用可行性具有显著影响。降水量越大的地区雨水利用可靠性越高,不同地理区7座典型城市雨水利用可靠性顺序为广州>武汉>南京>昆明>哈尔滨>北京>西宁,但各城市的雨水利用可靠性均难以达到100%。3)雨水利用可靠性随雨水罐容积的增大而增大,但当雨水罐容积达到10 m3时,其增加显著减缓;雨水利用可靠性与集雨面积成正比,与日用水需求量成反比;节水效率的曲线趋势变化与可靠性趋势变化基本一致,但是数值上高于可靠性;合理控制溢流率可以提高雨水利用效益,在实际应用中应结合可靠性和溢流率来确定雨水罐最佳尺寸。总体上,华南、华东、西南地区进行雨水利用的可行性较高,东北、华北地区次之,而西北地区的可行性最低。
Abstract:Rainwater utilization is an effective way to solve urban water resources crisis and alleviate urban waterlogging. Precipitation characteristics and rainwater utilization reliability are key indicators to measure the feasibility of rainwater utilization projects. Based on the rainfall data (from 1980 to 2020) from various monitoring stations in China, the precipitation characteristics of 7 geographical regions were analyzed. Using the principle of water balance, a daily precipitation-water consumption balance model was established, the influencing factors of roof rainwater utilization was discussed and the rainwater utilization feasibility of 7 typical cities in 7 geographical regions was analyzed. The results showed that: 1) the average annual rainfall depth decreased gradually from southeast to northwest in China due to the impact of terrain and climate differences. The spatial distribution trend of seasonal and annual rainfall depth was consistent. The seasonal rainfall was the highest in summer, followed by spring and autumn. The distribution characteristics of rainfall concentration were different from that of rainfall, and rainfall was more concentrated in areas with less annual rainfall depth. 2) Precipitation characteristics, rainwater harvesting tank volume, rainwater harvesting area, daily water demand, water saving efficiency and overflow rate had significant influence on the reliability of rainwater utilization in different areas. The greater the rainfall depth, the higher the reliability. The reliability order of the seven typical cities was Guangzhou > Wuhan > Nanjing > Kunming > Harbin > Beijing > Xining, but the reliability of each city could not reach 100%. 3) With the increase of the rainwater harvesting tank volume, the reliability of rainwater utilization increased. However, when the volume of rainwater harvesting tank reached 10 m³, the increase in reliability significantly slowed down. The reliability of rainwater utilization was directly proportional to rainwater collection area and inversely proportional to daily water demand. The curve trend change of water saving efficiency was accordant with that of reliability, but the value was higher than that of reliability. Reasonable control of overflow rate can improve the efficiency of rainwater utilization. In practical applications, both reliability and overflow rate should be considered to determine the optimal size of rainwater harvesting tanks. In general, the feasibility of rainwater utilization is higher in South China, East China and Southwest China, followed by Northeast China and North China, and the lowest in Northwest China.
-
表 1 我国七大地理区典型城市降水监测站点位置及降水量
Table 1. Precipitation and rainfall monitoring stations' location of typical cities in 7 geographical regions of China
地理区 典型城市 监测站点位置 年均降水量/mm 对应年份 华南 广州 113.37°E,23.37°N 1 906.8 2020 西南 昆明 102.85°E,24.96°N 979.3 2008 华东 南京 118.80°E,32.06°N 1 090.6 2014 华中 武汉 114.31°E,30.60°N 1 315.8 2010 华北 北京 116.35°E,39.60°N 448.9 2015 东北 哈尔滨 126.25 °E,45.63°N 538.0 2009 西北 西宁 101.77°E,36.60°N 398.8 2001 表 2 4种研究场景的具体设置
Table 2. Specific Settings of 4 kinds of research scenarios
场景 集雨面
积/m2居住人
数/人绿化面
积/m2如厕次数/
〔次/(人·d)〕洗衣次数/
(次/周)总需水量/
〔L/(m3·d)〕Ⅰ 300 36 0 5 3 1.34 Ⅱ 300 48 0 5 3 1.7 Ⅲ 300 48 100 5 3 2.0 Ⅳ 400 48 100 5 3 2.0 表 3 我国七大地理区各典型城市年均降水量
Table 3. Average annual rainfall depth for typical cities in seven geographical regions of China
mm 地理区 省(区、市) 年均降水量 华东 上海市 1121.4 江苏省 1060.2 浙江省 1525.1 安徽省 1148.0 福建省 1645.0 江西省 1606.5 山东省 679.7 华中 河南省 720.3 湖北省 1095.4 湖南省 1380.1 华南 广东省 1787.2 广西壮族自治区 1563.2 海南省 1749.6 西南 重庆市 1184.5 四川省 990.3 贵州省 1136.3 云南省 1262.8 西藏自治区 426.4 东北 吉林省 609.0 黑龙江省 533.3 辽宁省 674.0 华北 北京市 569.0 天津市 528.7 河北省 484.3 山西省 472.0 内蒙古自治区 287.2 西北 陕西省 606.4 甘肃省 301.3 青海省 290.4 宁夏回族自治区 270.5 新疆维吾尔自治区 162.7 表 4 我国七大地理区各典型城市季节平均降水量
Table 4. Average seasonal rainfall depth for typical cities in seven geographical regions of China
mm 地理区 省(区、市) 春季 夏季 秋季 冬季 华东 上海市 290.6 441.4 237.5 153.2 江苏省 192.8 525.2 205.5 138.1 浙江省 355.6 565.5 376.3 225.8 安徽省 270.8 549.2 207.8 118.2 福建省 495.3 717.4 234.1 195.9 江西省 622.1 576.2 177.1 232.4 山东省 122.5 429.5 99.0 26.1 平均值 335.7 543.5 219.6 155.7 华中 河南省 132.1 363.6 185.4 40.8 湖北省 339.1 415.0 245.1 97.6 湖南省 508.1 438.6 229.6 201.7 平均值 326.4 405.8 220.0 113.4 华南 广东省 588.9 779.4 293.4 129.9 广西壮族自治区 383.5 718.9 337.7 122.3 海南省 324.1 723.9 645.5 57.1 平均值 432.2 740.8 425.5 103.1 西南 重庆市 257.3 577.8 284.4 65.4 四川省 215.3 508.7 226.1 40.7 贵州省 318.1 493.5 265.2 59.6 云南省 283.4 598.8 297.4 79.0 西藏自治区 64.5 279.4 76.8 5.3 平均值 227.7 491.6 230.0 50.0 东北 吉林省 124.3 323.1 111.6 50.4 黑龙江省 106.8 309.0 95.9 18.3 辽宁省 98.4 438.0 119.3 17.6 平均值 109.8 356.7 108.9 28.8 华北 北京市 88.4 362.3 99.1 17.7 天津市 48.4 381.7 89.5 8.5 河北省 73.1 318.9 80.3 13.2 山西省 85.6 268.3 102.6 15.2 内蒙古自治区 45.0 174.3 64.2 7.3 平均值 68.1 301.1 87.1 12.4 西北 陕西省 134.6 285.9 169.5 16.1 甘肃省 58.4 161.8 73.4 8.6 青海省 51.9 154.6 78.2 8.1 宁夏回族自治区 48.8 141.4 69.0 7.1 新疆维吾尔自治区 42.4 50.6 38.7 29.7 平均值 67.2 158.8 85.8 13.9 表 5 七大地理区各典型城市降水集中度
Table 5. Precipitation concentration degree for typical cities in seven geographical regions of China
地理区 省(区、市) 集中度 华东 上海市 0.049 江苏省 0.252 浙江省 0.145 安徽省 0.204 福建省 0.178 江西省 0.155 山东省 0.286 平均值 0.181 华中 河南省 0.195 湖北省 0.108 湖南省 0.169 平均值 0.157 华南 广东省 0.156 广西壮族自治区 0.180 海南省 0.164 平均值 0.167 西南 重庆市 0.172 四川省 0.154 贵州省 0.154 云南省 0.159 西藏自治区 0.179 平均值 0.164 东北 吉林省 0.259 黑龙江省 0.223 辽宁省 0.227 平均值 0.236 华北 北京市 0.179 天津市 0.226 河北省 0.271 山西省 0.169 内蒙古自治区 0.226 平均值 0.214 西北 陕西省 0.244 甘肃省 0.232 青海省 0.197 宁夏回族自治区 0.222 新疆维吾尔自治区 0.291 平均值 0.237 -
[1] CAO T, WANG S G, CHEN B. Water shortage risk transferred through interprovincial trade in Northeast China[J]. Energy Procedia,2019,158:3865-3871. doi: 10.1016/j.egypro.2019.01.859 [2] WU L, SU X L, MA X Y, et al. Integrated modeling framework for evaluating and predicting the water resources carrying capacity in a continental river basin of Northwest China[J]. Journal of Cleaner Production,2018,204:366-379. doi: 10.1016/j.jclepro.2018.08.319 [3] 李海生, 杨鹊平, 赵艳民. 聚焦水生态环境突出问题, 持续推进长江生态保护修复[J]. 环境工程技术学报,2022,12(2):336-347.LI H S, YANG Q P, ZHAO Y M. Focusing on water eco-environment problems and sustainably promoting ecological conservation and restoration of the Yangtze River[J]. Journal of Environmental Engineering Technology,2022,12(2):336-347. [4] LEE M J, KIM M, KIM Y, et al. Consideration of rainwater quality parameters for drinking purposes: a case study in rural Vietnam[J]. Journal of Environmental Management,2017,200:400-406. [5] 邹晓雯, 毛战坡. 新型城镇化中的雨水利用关键问题[J]. 水利发展研究,2015,15(10):64-68.ZOU X W, MAO Z P. Key problems of rainwater utilization in new urbanization[J]. Water Resources Development Research,2015,15(10):64-68. [6] 冯峰, 谷晓伟, 何宏谋. 郑州市雨水资源利用潜力及效益量化研究[J]. 水资源保护,2013,29(4):68-71.FENG F, GU X W, HE H M. Research on utilization potential and benefit quantification of rainwater resources in Zhengzhou City[J]. Water Resources Protection,2013,29(4):68-71. [7] 汤佳, 李小雁, 王卫. 半干旱区雨水集流效益评价: 以甘肃定西、内蒙古准格尔旗为例[J]. 云南师范大学学报(哲学社会科学版),2009,41(3):48-53.TANG J, LI X Y, WANG W. Benefit assessment of rainwater harvesting in the semiarid regions of China: a case study in Dingxi of Gansu and Zhungeer of Inner Mongolia[J]. Journal of Yunnan Normal University (Humanities and Social Sciences),2009,41(3):48-53. [8] 车伍, 唐宁远, 张炜, 等. 我国城市降雨特点与雨水利用[J]. 给水排水,2007,33(6):45-48.CHE W, TANG N Y, ZHANG W, et al. Characteristics and utilization of urban rainfall in China[J]. Water & Wastewater Engineering,2007,33(6):45-48. [9] IMTEAZ M A, RAHMAN A, AHSAN A. Reliability analysis of rainwater tanks: a comparison between South-East and Central Melbourne[J]. Resources, Conservation and Recycling,2012,66:1-7. doi: 10.1016/j.resconrec.2012.05.009 [10] 毛龙富, 刘宏, 陈瑞永, 等. 基于水量平衡模型的喀斯特石漠化区集雨水窖分析[J]. 水土保持研究,2021,28(4):218-225.MAO L F, LIU H, CHEN R Y, et al. Analysis of rainwater collection cellar in Karst rocky desertification area based on water balance model[J]. Research of Soil and Water Conservation,2021,28(4):218-225. [11] 邢国平, 李爽, 周建芝, 等. 基于日水量平衡模型的城市小区雨水池计算分析[J]. 水土保持通报,2013,33(2):120-123.XING G P, LI S, ZHOU J Z, et al. Analysis of rainwater collection tanks in urban residence based on daily water balance model[J]. Bulletin of Soil and Water Conservation,2013,33(2):120-123. [12] 樊超, 孙学良. 建筑小区的海绵化改造效益核算: 以固原市玫瑰苑小区为例[J]. 环境工程技术学报,2020,10(2):316-322.FAN C, SUN X L. Benefit accounting analysis of sponge transformation in building and communities: taking Rose Community in Guyuan City as an example[J]. Journal of Environmental Engineering Technology,2020,10(2):316-322. [13] BASHAR M Z I, KARIM M R, IMTEAZ M A. Reliability and economic analysis of urban rainwater harvesting: a comparative study within six major cities of Bangladesh[J]. Resources, Conservation and Recycling,2018,133:146-154. doi: 10.1016/j.resconrec.2018.01.025 [14] 住房和城乡建设部. 室外给水设计标准: GB 50013—2018[S]. 北京: 中国计划出版社, 2018. [15] 建设部. 城市居民生活用水量标准: GB/T 50331—2002[S]. 北京: 中国建筑工业出版社, 2002. [16] 刘静, 鲁逸, 程栋, 等. 基于综合风险指数的城市雨水利用风险评估[J]. 安徽农业科学,2012,40(5):2932-2934.LIU J, LU Y, CHENG D, et al. Risk assessment of urban rainwater utilization based on comprehensive risk index[J]. Journal of Anhui Agricultural Sciences,2012,40(5):2932-2934. [17] 王琳, 杨鲁豫, 王宝贞. 城市水资源短缺与雨水收集利用[J]. 给水排水,2001,27(2):1-3. doi: 10.3969/j.issn.1002-8471.2001.02.001WANG L, YANG L Y, WANG B Z. Shortage of urban water resources and rainwater collection and utilization[J]. Water & Wastewater Engineering,2001,27(2):1-3. doi: 10.3969/j.issn.1002-8471.2001.02.001 [18] 张录军, 钱永甫. 长江流域汛期降水集中程度和洪涝关系研究[J]. 地球物理学报,2004,47(4):622-630. doi: 10.3321/j.issn:0001-5733.2004.04.012ZHANG L J, QIAN Y F. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River valley of China[J]. Chinese Journal of Geophysics,2004,47(4):622-630. doi: 10.3321/j.issn:0001-5733.2004.04.012 [19] IMTEAZ M A, AHSAN A, NASER J, et al. Reliability analysis of rainwater tanks in Melbourne using daily water balance model[J]. Resources, Conservation and Recycling,2011,56(1):80-86. doi: 10.1016/j.resconrec.2011.09.008 [20] KARIM M R, BASHAR M Z I, IMTEAZ M A. Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh[J]. Resources, Conservation and Recycling,2015,104:61-67. doi: 10.1016/j.resconrec.2015.09.010 [21] KHAN Z, ALIM M A, RAHMAN M M, et al. A continental scale evaluation of rainwater harvesting in Australia[J]. Resources, Conservation and Recycling,2021,167:105378. doi: 10.1016/j.resconrec.2020.105378 [22] ZHANG S H, ZHANG J J, YUE T J, et al. Impacts of climate change on urban rainwater harvesting systems[J]. Science of the Total Environment,2019,665:262-274. doi: 10.1016/j.scitotenv.2019.02.135 [23] IMTEAZ M A, AHSAN A, SHANABLEH A. Reliability analysis of rainwater tanks using daily water balance model: variations within a large city[J]. Resources, Conservation and Recycling,2013,77:37-43. ◇ doi: 10.1016/j.resconrec.2013.05.006