Analysis of application cases of multi-technology combined treatment for typical coking contaminated site
-
摘要:
典型焦化污染场地具有明显的多环芳烃和重金属复合污染特征,单一修复技术往往难以完成治理。多技术联用修复焦化污染场地土壤已开展了应用实践,但联用技术适用的场地污染特征和工程技术问题还鲜有报道。焦化场地多环芳烃和重金属主要分布在浅层土壤中,复合污染普遍,但2类污染物互相作用影响小,适合采用以土壤淋洗为核心的联用修复技术,其具有节省修复周期和成本的工程应用优势,二次污染防治是其技术难点,未来可发展土壤淋洗+化学氧化+生物修复联用技术,进行绿色修复。
Abstract:Typical coking-contaminated sites have obvious composite pollution characteristics of polycyclic aromatic hydrocarbons (PAHs) and heavy metals, and single remediation technology is often difficult to complete the treatment. The application practice of multi-technology combined remediation has been carried out, but the site pollution characteristics and engineering technical problems applicable to the combined application technology are rarely reported. PAHs and heavy metals in the coking-contaminated sites are primarily distributed within the shallow soil, indicating compound pollution. However, there is minimal interaction between these two kinds of pollutants. Therefore, a combined remediation technology with soil leaching as its core is suitable for application due to its advantages of saving restoration cycle and cost. The main technical challenge lies in preventing and controlling secondary pollution. In the future, a synergistic approach combining soil leaching, chemical oxidation, and bioremediation technologies can be developed for environmentally-friendly restoration.
-
Key words:
- thermal desorption /
- chemical oxidation /
- soil washing /
- bioremediation /
- compound pollution /
- combined technology
-
表 1 安徽某退役钢铁厂焦化污染场地地层地质及水文地质情况
Table 1. Geological and hydrogeological condition of the coking polluted site of a retired iron and steel plant in Anhui
地层 埋深层厚/m 地层全场区
分布情况地下水分布 杂填土(Q4ml) 1.20~6.50 普遍分布 上层滞水 黏土(Q4al+pl) 2.70~21.50 普遍分布 — 粉质黏土夹粉土(Q4al+pl) 1.50~13.20 局部分布 — 粉砂(Q3al+pl) 4.20~10.30 局部分布 承压水 强风化泥岩(E2t) 3.00~5.80 局部分布 承压水 中风化泥岩(E2t) 2.80~3.70 普遍分布 承压水 表 2 实例场地修复技术成本分析
Table 2. Cost analysis of site restoration technologies for the case study site
-
[1] 辜海芳.2021年我国钢铁行业运行情况分析[J]. 冶金经济与管理,2022(3):18-21. [2] SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology,2013,47(12):6415-6424. [3] LI J F, DONG H, ZHANG D H, et al. Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China[J]. Marine Pollution Bulletin,2015,96(1/2):485-490. [4] MU L, PENG L, LIU X F, et al. Emission characteristics of heavy metals and their behavior during coking processes[J]. Environmental Science & Technology,2012,46(11):6425-6430. [5] ALVAREZ R, BARRIOCANAL C, DÍEZ M A, et al. Recycling of hazardous waste materials in the coking process[J]. Environmental Science & Technology,2004,38(5):1611-1615. [6] JIA H Z, ZHAO S, NULAJI G, et al. Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization[J]. Environmental Science & Technology,2017,51(11):6000-6008. [7] 滕青, 王春, 林炫洁, 等.土壤多环芳烃污染修复技术研究进展[J]. 中国农学通报,2021,37(23):138-143.TENG Q, WANG C, LIN X J, et al. Remediation technologies of polycyclic aromatic hydrocarbons contaminated soil: a review[J]. Chinese Agricultural Science Bulletin,2021,37(23):138-143. [8] 董燕, 王丽娜, 李少勇, 等.山东省某焦化遗留场地典型重金属污染物的分布特征与评价[J]. 能源与环保,2022,44(4):58-65.DONG Y, WANG L N, LI S Y, et al. Distribution characteristics and evaluation of heavy metal pollution for remaining site of coking plant in Shandong Province[J]. China Energy and Environmental Protection,2022,44(4):58-65. [9] 武文培, 陈梦舫, 韩璐, 等.基于统计方法学的焦化类污染场地风险筛选决策研究[J]. 环境科学研究,2022,35(12):2819-2829.WU W P, CHEN M F, HAN L, et al. Risk screening decision of coking pollution sites based on statistical methods[J]. Research of Environmental Sciences,2022,35(12):2819-2829. [10] 刘庚, 毕如田, 权腾, 等.某焦化场地土壤中多环芳烃分布的三维空间插值研究[J]. 生态学报,2014,34(11):2876-2883.LIU G, BI R T, QUAN T, et al. 3D interpolation of soil PAHs distribution in a coking contaminated site of China[J]. Acta Ecologica Sinica,2014,34(11):2876-2883. [11] 李爽, 高兰兰, 陈军, 等. 土壤修复应用案例及费用组成分析[C]//2022年科学技术年会. 北京: 中国环境科学学会, 2022: 585-590. [12] 卢聪.工业土壤重金属污染修复技术适用性评估[J]. 上海交通大学学报(农业科学版),2018,36(4):66-71.LU C. Assessment of soil remediation technology in industrial sites with heavy metal contamination[J]. Journal of Shanghai Jiao Tong University (Agricultural Science),2018,36(4):66-71. [13] 王泓泉.污染场地土壤修复技术对比分析[J]. 资源节约与环保,2019(8):32-33.WANG H Q. Comparative analysis of soil remediation techniques in contaminated sites[J]. Resources Economization & Environmental Protection,2019(8):32-33. [14] 张灿灿, 郭书海, 李婷婷, 等.焦化厂高环PAHs污染土壤的电动-微生物修复[J]. 环境工程,2014,32(7):150-154.ZHANG C C, GUO S H, LI T T, et al. Electro-bioremediation of coking plant soils contaminated with high-molecular polycyclic aromatic hydrocarbons[J]. Environmental Engineering,2014,32(7):150-154. [15] 张桐, 张展华, 胡杰华, 等.淋洗技术在土壤污染修复中的应用与挑战[J]. 环境化学,2022,41(11):3599-3612.ZHANG T, ZHANG Z H, HU J H, et al. Application and challenge of washing technology in soil pollution remediation[J]. Environmental Chemistry,2022,41(11):3599-3612. [16] 李伟, 王华伟, 孙英杰, 等. 焦化场地多环芳烃(PAHs)污染特征和修复技术研究进展[C]//2022年科学技术年会. 北京: 中国环境科学学会, 2022: 334-340. [17] 张淇翔. 改性生物炭载纳米零价铁-过硫酸盐化学氧化修复焦化污染场地实验研究[D]. 徐州: 中国矿业大学, 2022. [18] 张海鸥, 郭书海, 李凤梅, 等.焦化场地PAHs污染土壤的电动-化学氧化联合修复[J]. 农业环境科学学报,2014,33(10):1904-1911.ZHANG H O, GUO S H, LI F M, et al. Remediation of PAHs contaminated soil at coking site by integrated electrokinetics and chemical oxidation[J]. Journal of Agro-Environment Science,2014,33(10):1904-1911. [19] 朱煜.异位化学氧化技术处理多环芳烃污染土壤的工程应用研究[J]. 广东化工,2016,43(13):308-309.ZHU Y. Application of ex-situ chemical oxidization technology for site contamination with polycyclic aromatic hydrocarbons[J]. Guangdong Chemical Industry,2016,43(13):308-309. [20] 王琦. 多环芳烃类污染土壤异位化学氧化修复技术及应用工艺研究[R]. 天津: 中交天航环保工程有限公司, 2019. [21] 沈宗泽, 陈有鑑, 李书鹏, 等.异位热脱附技术与设备在我国污染场地修复工程中的应用[J]. 环境工程学报,2019,13(9):2060-2073.SHEN Z Z, CHEN Y J, LI S P, et al. Application of ex-situ thermal desorption technology and equipment in contaminated site remediation projects in China[J]. Chinese Journal of Environmental Engineering,2019,13(9):2060-2073. [22] 和丽萍, 李丽娜, 陈异晖, 等. 云南某焦化厂多环芳烃污染红壤异位热脱附修复效率[C]//2019年科学技术年会. 北京: 中国环境科学学会, 2019: 294-298. [23] 朱瑞利, 顾晓晨.异位热脱附修复技术对高浓度多环芳烃污染土壤的修复应用实例[J]. 云南化工,2021,48(6):38-40.ZHU R L, GU X C. Case study of ex-situ thermal desorption remediation on contaminated soil with high concentration of PAHs[J]. Yunnan Chemical Technology,2021,48(6):38-40. [24] 陈春红, 徐成华, 于天, 等.低环多环芳烃异位热脱附行为分析[J]. 环境工程,2022,40(1):78-85.CHEN C H, XU C H, YU T, et al. Ex-situ thermal desorption behaviors of low-rings pahs[J]. Environmental Engineering,2022,40(1):78-85. [25] 谢冬燕, 曹斐姝, 陈建平, 等.低分子有机酸对高浓度锑砷污染土壤的淋洗效率及机理研究[J]. 环境科学研究,2023,36(1):117-127.XIE D Y, CAO P Z, CHEN J P, et al. Washing efficiency and mechanisms of low molecular organic acids on soil contaminated with high antimony and arsenic content[J]. Research of Environmental Sciences,2023,36(1):117-127. [26] 陈梦巧, 籍龙杰, 孙静, 等.重金属污染土壤淋洗技术的基础研究与工程应用进展[J]. 环境污染与防治,2022,44(2):238-243.CHEN M Q, JI L J, SUN J, et al. Progress in basic research and engineering application of washing/flushing technology for heavy metal contaminated soil remediation[J]. Environmental Pollution & Control,2022,44(2):238-243. [27] 李爽, 胡晓钧, 李玉双, 等.表面活性剂对多环芳烃的淋洗修复[J]. 环境工程学报,2017,11(3):1899-1905.LI S, HU X J, LI Y S, et al. Washing remediation of PAHs with surfactants[J]. Chinese Journal of Environmental Engineering,2017,11(3):1899-1905. [28] 王璇, 熊惠磊, 马骏, 等.废弃铬盐厂土壤中铬的赋存特征及异位淋洗修复可行性研究[J]. 环境工程学报,2016,10(11):6746-6752.WANG X, XIONG H L, MA J, et al. Research on occurrence characteristics of Chromium in soils and feasibility study of ex-situ soil washing for an abandoned chrome chemicals manufacturing facility[J]. Chinese Journal of Environmental Engineering,2016,10(11):6746-6752. [29] 李书鹏, 刘鹏.钢铁企业污染场地修复经验探索: 我国钢铁企业场地污染特征及常用修复技术简介[J]. 世界环境,2016(4):59-62.LI S P, LIU P. Exploration of China’s iron and steel enterprises' experience in contaminated site remediation[J]. World Environment,2016(4):59-62. [30] SAEEDI M, LI L Y, GRACE J R. Effect of organic matter and selected heavy metals on sorption of acenaphthene, fluorene and fluoranthene onto various clays and clay minerals[J]. Environmental Earth Sciences,2018,77(8):305. doi: 10.1007/s12665-018-7489-0 [31] 王荔, 张腾飞, 杨苏才, 等.焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报,2021,11(4):720-726.WANG L, ZHANG T F, YANG S C, et al. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology,2021,11(4):720-726. [32] 王珍霞, 宋久浩, 苑文仪, 等.我国污染场地化学氧化修复技术应用特征及再利用潜在腐蚀风险分析[J]. 环境科学研究,2022,35(5):1140-1149.WANG Z X, SONG J H, YUAN W Y, et al. Application characteristics and potential corrosion risks of chemical oxidation remediation technology for contaminated sites in China[J]. Research of Environmental Sciences,2022,35(5):1140-1149. □