Spatial and temporal distribution characteristics of phycobiliprotein in Dianchi Lake and analysis of its influencing factors
-
摘要:
藻胆蛋白具有重要的经济价值,可以从藻体中提取、加工,从而实现藻泥废物的减量化与资源化。为厘清滇池水体藻胆蛋白的时空分布特征及其影响因素,于2022年不同季节进行了4次采样,在建立藻胆蛋白检测方法的基础上,分析了滇池草海、外海北部、外海中部和外海南部4个区域的藻胆蛋白时空变化特征,并基于ArcGIS建立了藻胆蛋白浓度时间和空间序列栅格数据图。结果表明:1)滇池藻胆蛋白浓度在时间上呈现夏季>秋季>春季>冬季的分布特征,在空间上呈现外海北部>外海中部>外海南部>草海的规律,且以藻蓝蛋白为主要成分,藻红蛋白的浓度较低。2)通过对各影响因子的统计分析发现,藻蓝蛋白浓度与TP浓度和BOD5存在显著的线性相关性(P<0.01),藻红蛋白浓度与营养盐的相关性较低,藻胆蛋白浓度与pH、DO浓度和透明度的线性关系显著(P<0.05)。3)对藻胆蛋白的影响因子进行分湖区讨论,结果表明氮、磷是藻胆蛋白分布的主要驱动因子,并可能受到水力条件和藻类种群类别的影响。4)草海虽然具有最高的TN、TP平均浓度,但其氮磷比(N/P)过高,蓝藻群落被绿藻取代,导致其藻胆蛋白浓度最低;外海北部具有较长的水力停留时间和较低的N/P,造成蓝藻种群占比高,藻胆蛋白的浓度最高;滇池水体春冬季的N/P显著高于夏秋季,这也是夏秋季藻胆蛋白浓度高于春冬季的主要原因之一。
Abstract:Phycobiliprotein has important economic value. It can be extracted and processed from algae to realize the reduction and recycling of algae sludge waste. Aiming to clarify the spatial and temporal distribution characteristics of phycobiliprotein in Dianchi Lake and its influencing factors, four samples were collected by seasons in 2022. Upon establishing the detection method of phycobiliprotein, the spatial and temporal variation characteristics of phycobiliprotein in four areas of Dianchi Lake, namely Caohai, northern Waihai, central Waihai and southern Waihai were analyzed. Based on ArcGIS, the time and spatial sequence grid data chart of phycobiliprotein concentration in Dianchi Lake was established. The results showed that the phycobiliprotein concentrations in Dianchi Lake presented the distribution characteristics of summer>autumn>spring>winter in time, the rule of northern Waihai>central Waihai>southern Waihai>Caohai in space, and the concentration of phycobiliprotein was low with phycocyanin as the main component. Through the statistical analysis of various influencing factors, it was found that there was a strong linear correlation between phycocyanin concentration and TP and BOD5 (P<0.01). The correlation between phycoerythrin and nutrients was low. The increase of phycobiliprotein in turn would affect pH, DO and transparency of the water body (P<0.05). The influencing factors of phycobiliprotein were discussed in different areas, and it was concluded that nitrogen and phosphorus were the main driving factors of phycobiliprotein distribution, which might be affected by hydraulic conditions and algae population types. Although Caohai had the highest average concentration of TN and TP, its N/P value was too high, and the blue-green algae community was replaced by green algae. At the same time, its phycobiliprotein concentrationd was the lowest. While the northern Waihai had long hydraulic retention time and low N/P value, resulting in a higher proportion of blue-green algae population and the highest concentration of phycobiliprotein. N/P of Dianchi Lake water body in spring and winter was significantly higher than that in summer and autumn, which was one of the main reasons for the higher concentration of phycobiliprotein in summer and autumn.
-
表 1 滇池不同湖区水体TN、TP浓度与藻胆蛋白浓度皮尔逊相关系数
Table 1. Pearson correlation coefficient between TN, TP and phycobiliprotein concentrations in different lakes of Dianchi Lake
湖区 指标 TP TN N/P 藻红蛋白 藻蓝蛋白 草海 TP 1 0.079 −0.613** 0.166 0.373* TN 1 0.357* −0.115 −0.152 N/P 1 −0.169 −0.373* 藻红蛋白 1 0.371 藻蓝蛋白 1 外海北部 TP 1 0.436* 0.671** 0.382* 0.604** TN 1 0.442* −0.321* −0.396* N/P 1 −0.167 −0.489* 藻红蛋白 1 0.424* 藻蓝蛋白 1 外海中部 TP 1 −0.664** −0.713** 0.493* 0.637** TN 1 0.397* −0.299 0.404* N/P 1 −0.198 −0.449* 藻红蛋白 1 0.392* 藻蓝蛋白 1 外海南部 TP 1 −0.487* −0.498** 0.279 0.411* TN 1 0.266 −0.213 −0.374 N/P 1 −0.179 −0.406* 藻红蛋白 1 0.383* 藻蓝蛋白 1 注:*表示P<0.05,**表示P<0.01。 -
[1] 杨贵兰, 李文军, 秦松, 等.藻胆蛋白产业领域专利技术现状与发展趋势[J]. 中国发明与专利,2021,18(4):55-62. [2] 李富强, 张廷新, 李晓杰, 等.藻胆蛋白源生物活性肽研究进展[J]. 中国农学通报,2021,37(27):70-76.LI F Q, ZHANG T X, LI X J, et al. Bioactive peptides derived from phycobiliprotein: a review[J]. Chinese Agricultural Science Bulletin,2021,37(27):70-76. [3] 谷洋洋, 刘冰, 杜虹, 等.高纯度藻胆蛋白的分离纯化研究进展[J]. 海洋科学,2016,40(7):170-177.GU Y Y, LIU B, DU H, et al. The research progress on isolation and purification of highpurified phycobiliprotein[J]. Marine Sciences,2016,40(7):170-177. [4] 臧帆, 秦松, 马丞博, 等.藻类特有的捕光色素蛋白: 藻红蛋白的结构、功能及应用[J]. 科学通报,2020,65(7):565-576. doi: 10.1360/TB-2019-0487ZANG F, QIN S, MA C B, et al. Structure, function and applications of phycoerythrin: a unique light harvesting protein in algae[J]. Chinese Science Bulletin,2020,65(7):565-576. doi: 10.1360/TB-2019-0487 [5] 武康, 汪家权, 赵冰冰, 等.柱层析法纯化藻胆蛋白的紫外-可见光谱特征研究与机理分析[J]. 光谱学与光谱分析,2020,40(4):1107-1112.WU K, WANG J Q, ZHAO B B, et al. Ultraviolet-visible spectral characteristics and mechanism analysis of purification of phycobiliprotein by column chromatography[J]. Spectroscopy and Spectral Analysis,2020,40(4):1107-1112. [6] 梁英, 闫译允, 黄徐林, 等.NaHSO3对两种微藻生长及胞外多糖和藻胆蛋白含量的影响[J]. 中国海洋大学学报(自然科学版),2020,50(1):21-29.LIANG Y, YAN Y Y, HUANG X L, et al. Effects of NaHSO3 on the growth and extracellular polysaccharide and phycobiliprotein contents of two microalgae[J]. Periodical of Ocean University of China,2020,50(1):21-29. [7] 梁英, 胡乃霞, 黄徐林, 等.氮源对紫球藻和蓝隐藻胞外多糖及藻胆蛋白含量的影响[J]. 中国海洋大学学报(自然科学版),2020,50(5):31-39.LIANG Y, HU N X, HUANG X L, et al. Effects of nitrogen sources on exopolysaccharide and phycobiliprotein contents of Porphyridium sp. and Chroomonas placoidea[J]. Periodical of Ocean University of China,2020,50(5):31-39. [8] 高伟, 程国微, 严长安, 等.1988—2018年滇池氮磷比的时空演变特征与原因解析[J]. 湖泊科学,2021,33(1):64-73. doi: 10.18307/2021.0105GAO W, CHENG G W, YAN C A, et al. Identifying spatiotemporal alteration of nitrogen to phosphorus ratio of Lake Dianchi and its driving forces during 1988-2018[J]. Journal of Lake Sciences,2021,33(1):64-73. doi: 10.18307/2021.0105 [9] WANG Q, SUN L, ZHU Y, et al. Hysteresis effects of meteorological variation-induced algal blooms: a case study based on satellite-observed data from Dianchi Lake, China (1988-2020)[J]. Science of the Total Environment,2022,812:152558. doi: 10.1016/j.scitotenv.2021.152558 [10] 蒋尖尖, 胡文, 叶春, 等.近60年滇池水生态系统演替及驱动因子[J]. 环境工程技术学报,2023,13(2):541-551.JIANG J J, HU W, YE C, et al. Succession and driving factors of Lake Dianchi aquatic ecosystem in the past 60 years[J]. Journal of Environmental Engineering Technology,2023,13(2):541-551. [11] 侯秀丽, 苑春刚, 李学平, 等.滇池氮磷浓度变化对蓝、绿、硅藻年际变化的影响[J]. 水生态学杂志,2018,39(1):16-22.HOU X L, YUAN C G, LI X P, et al. Effect of nitrogen and phosphorus concentrations on the planktonic algae dynamics in Dianchi Lake[J]. Journal of Hydroecology,2018,39(1):16-22. [12] 施凤宁, 阳辉, 刘湘伟, 等.滇池外海藻类时空分布及其与环境因素间非线性相关分析[J]. 水生生物学报,2022,46(7):1070-1079.SHI F N, YANG H, LIU X W, et al. Spatial-temporal distribution of phytoplankton in Waihai of Dianchi Lake and its nonlinear correlation analysis with environmental factors[J]. Acta Hydrobiologica Sinica,2022,46(7):1070-1079. [13] 程宇凯, 秦可娜, 魏亮亮, 等.富营养化湖泊中藻类蛋白特征及其资源化开发[J]. 哈尔滨商业大学学报(自然科学版),2015,31(2):201-205.CHENG Y K, QIN K N, WEI L L, et al. Characteristics and resourced utilization of algae proteins in eutrophication water bodies[J]. Journal of Harbin University of Commerce (Natural Sciences Edition),2015,31(2):201-205. [14] 赵以军, 王旭, 程凯.滇池微囊藻“水华”藻胆蛋白资源化研究[J]. 华中师范大学学报(自然科学版),1998,32(3):333-336.ZHAO Y J, WANG X, CHENG K. Research on phycobiliproteins from microsystis in Dianchi Lake, China[J]. Journal of Central China Normal University (Natural Sciences),1998,32(3):333-336. [15] 柳后起, 朱勇坤, 王帆.蓝藻控制与资源化[J]. 环境保护与循环经济,2022,42(7):4-7. doi: 10.3969/j.issn.1674-1021.2022.07.002LIU H Q, ZHU Y K, WANG F. Control and resource utilization of cyanobacteria[J]. Environmental Protection and Circular Economy,2022,42(7):4-7. doi: 10.3969/j.issn.1674-1021.2022.07.002 [16] 何涛, 苏雨, 张发宇, 等.巢湖蓝藻藻蓝蛋白纯化工艺的优化[J]. 中国生物制品学杂志,2019,32(3):319-323.HE T, SU Y, ZHANG F Y, et al. Optimization of purification procedure for phycocyanin from cyanobacteria from Chaohu Lake[J]. Chinese Journal of Biologicals,2019,32(3):319-323. [17] 于娇, 胡晓, 杨贤庆, 等.海洋藻类藻胆蛋白的提取、纯化与应用研究进展[J]. 食品工业科技,2018,39(11):314-318.YU J, HU X, YANG X Q, et al. Advances in extraction, purification and application of phycobiliprotein from marine algae[J]. Science and Technology of Food Industry,2018,39(11):314-318. [18] 台丹丹, 赵明日, 孙力.红藻多管藻(Polysiphonia urceolata)R-藻蓝蛋白、别藻蓝蛋白吸收系数测定及藻胆体藻胆蛋白组成分析[J]. 烟台大学学报(自然科学与工程版),2021,34(3):272-281.TAI D D, ZHAO M R, SUN L. Light absorption coefficient determination of R-phycocyanin and allophycocyanin and phycobiliptrotein composition analysis of phycobilisomes from Polysiphonia urceolata[J]. Journal of Yantai University (Natural Science and Engineering Edition),2021,34(3):272-281. [19] BEER S, ESHEL A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Marine and Freshwater Research,1985,36(6):785. doi: 10.1071/MF9850785 [20] 薛志欣, 杨桂朋, 马晓梅, 等.分光光度法测定藻胆蛋白含量的研究[J]. 鲁东大学学报(自然科学版),2008,24(3):250-253.XUE Z X, YANG G P, MA X M, et al. Study on determination of phycobiliprotein content by spectrophotometry[J]. Journal of Ludong University (Natural Science Edition),2008,24(3):250-253. [21] 李奇科, 高彦祥.藻蓝蛋白色素稳定性及其递送体系研究进展[J]. 中国食品学报,2022,22(9):349-364.LI Q K, GAO Y X. Research progress of the color-shade stability and delivery systems of phycocyanin[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(9):349-364. [22] 张静, 韦玉春, 王国祥, 等.太湖水体中藻蓝蛋白的紫外-可见吸收光谱特征分析[J]. 光谱学与光谱分析,2014,34(5):1297-1301. doi: 10.3964/j.issn.1000-0593(2014)05-1297-05ZHANG J, WEI Y C, WANG G X, et al. UV-vis spectrum characteristics of phycocyanin in water from Taihu Lake[J]. Spectroscopy and Spectral Analysis,2014,34(5):1297-1301. doi: 10.3964/j.issn.1000-0593(2014)05-1297-05 [23] 李加龙, 罗纯良, 吕恒, 等.2002—2018年滇池外海蓝藻水华暴发时空变化特征及其驱动因子[J]. 生态学报,2023,43(2):878-891.LI J L, LUO C L, LÜ H, et al. Spatio-temporal variation characteristics and driving factors of cyanobacteria bloom off Dianchi Lake from 2002 to 2018[J]. Acta Ecologica Sinica,2023,43(2):878-891. [24] 杨枫, 许秋瑾, 宋永会, 等.滇池流域水生态环境演变趋势、治理历程及成效[J]. 环境工程技术学报,2022,12(3):633-643.YANG F, XU Q J, SONG Y H, et al. Evolution trend, treatment process and effect of water ecological environment in Dianchi Lake Basin[J]. Journal of Environmental Engineering Technology,2022,12(3):633-643. [25] 郑丙辉, 彭嘉玉, 胡小贞, 等.2017年滇池外海水质异常下降原因及对策[J]. 环境工程技术学报,2018,8(5):465-472.ZHENG B H, PENG J Y, HU X Z, et al. The cause for abnormal water quality deterioration of Waihai of Dianchi Lake in 2017 and the countermeasures[J]. Journal of Environmental Engineering Technology,2018,8(5):465-472. [26] YANG K, YU Z Y, LUO Y, et al. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality: a case study of Dianchi Lake[J]. Science of the Total Environment,2018,624:859-871. doi: 10.1016/j.scitotenv.2017.12.119 [27] CAO X, WANG Y Q, HE J, et al. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi[J]. Environmental Pollution,2016,219:580-587. doi: 10.1016/j.envpol.2016.06.017 [28] 刘绍俊, 施艳峰, 翟竟余, 等.星云湖微囊藻密度周年变化及其与水质指标的关系[J]. 环境化学,2021,40(7):2064-2072.LIU S J, SHI Y F, ZHAI J Y, et al. Annual variations of Microcystis density and their relationships with water quality indices in Xingyun Lake[J]. Environmental Chemistry,2021,40(7):2064-2072. [29] WANG J H, LI C, XU Y P, et al. Identifying major contributors to algal blooms in Lake Dianchi by analyzing river-lake water quality correlations in the watershed[J]. Journal of Cleaner Production,2021,315:128144. doi: 10.1016/j.jclepro.2021.128144 [30] 李乐, 王海芳, 王圣瑞, 等.滇池河流氮入湖负荷时空变化及形态组成贡献[J]. 环境科学研究,2016,29(6):829-836.LI L, WANG H F, WANG S R, et al. Spatial and temporal changes in nitrogen loading of rivers into Dianchi Lake and contributions of different components[J]. Research of Environmental Sciences,2016,29(6):829-836. [31] LIU Y, JIANG Q S, SUN Y X, et al. Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002-2018[J]. Environmental Pollution,2021,288:117826. doi: 10.1016/j.envpol.2021.117826 [32] 焦立新, 赵海超, 王圣瑞, 等.洱海水体氮磷时空分布及其对ρ(Chla)的影响[J]. 环境科学研究,2013,26(5):527-533.JIAO L X, ZHAO H C, WANG S R, et al. Temporal and spatial distribution of nitrogen and phosphorus in water body of Erhai Lake and effect on concentration of chlorophyll-a[J]. Research of Environmental Sciences,2013,26(5):527-533. [33] 刘玉生, 韩梅, 梁占彬, 等.光照、温度和营养盐对滇池微囊藻生长的影响[J]. 环境科学研究,1995,8(6):7-11.LIU Y S, HAN M, LIANG Z B, et al. Influence of light intensity, temperature and nutrients on the growth of Microcystis in water of Dianchi Lake[J]. Research of Environmental Sciences,1995,8(6):7-11. [34] HUO S L, XIAO Z, LI X C, et al. Long-term succession of Microcystis genotypes is driven by hydrological conditions and anthropogenic nutrient loading in a large shallow lake[J]. Journal of Hydrology,2022,606:127451. doi: 10.1016/j.jhydrol.2022.127451 [35] XIE Y C, SHENG Y Z, LI D N, et al. Change of the structure and assembly of bacterial and photosynthetic communities by the ecological engineering practices in Dianchi Lake[J]. Environmental Pollution,2022,315:120386. doi: 10.1016/j.envpol.2022.120386 [36] PAGELS F, GUEDES A C, AMARO H M, et al. Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications[J]. Biotechnology Advances,2019,37(3):422-443. doi: 10.1016/j.biotechadv.2019.02.010 [37] ZHENG X N, WU D X, HUANG C Q, et al. Impacts of hydraulic retention time and inflow water quality on algal growth in a shallow lake supplied with reclaimed water[J]. Water Cycle,2022,3:71-78. doi: 10.1016/j.watcyc.2022.04.004 [38] 周静, 苟婷, 张洛红, 等.流速对不同浮游藻类的生长影响研究[J]. 生态科学,2018,37(6):75-82.ZHOU J, GOU T, ZHANG L H, et al. The effect of flow velocity on the growth of different phytoplankton[J]. Ecological Science,2018,37(6):75-82. [39] 马巍, 浦承松, 罗佳翠, 等.滇池水动力特性及其对北岸蓝藻堆积驱动影响[J]. 水利学报,2013,44(增刊 1):22-27.MA W, PU C S, LUO J C, et al. Hydrodynamic characteristics of Dianchi Lake and its influence on accumulation of blue-green algae in Dianchi Lake[J]. Journal of Hydraulic Engineering,2013,44(Suppl 1):22-27. [40] WANG J H, YANG C, HE L Q S, et al. Meteorological factors and water quality changes of Plateau Lake Dianchi in China (1990-2015) and their joint influences on cyanobacterial blooms[J]. Science of the Total Environment,2019,665:406-418. doi: 10.1016/j.scitotenv.2019.02.010 [41] HE J, WU X, ZHI G Q, et al. Fluorescence characteristics of DOM and its influence on water quality of rivers and lakes in the Dianchi Lake Basin[J]. Ecological Indicators,2022,142:109088. doi: 10.1016/j.ecolind.2022.109088 [42] FENG L, DAI Y H, HOU X J, et al. Concerns about phytoplankton bloom trends in global lakes[J]. Nature,2021,590(7846):E35-E47. doi: 10.1038/s41586-021-03254-3 [43] 吕萍, 李慧莉, 徐勇, 等.营养物质对铜绿微囊藻生长和藻际细菌的影响[J]. 环境科学,2022,43(10):4502-4510.LÜ P, LI H L, XU Y, et al. Effects of nutrients on the growth of Microcystis aeruginosa and bacteria in the phycosphere[J]. Environmental Science,2022,43(10):4502-4510. [44] 谭啸, 石琳, 段志鹏, 等.氮磷比对微囊藻与栅藻磷赋存及分配的影响[J]. 湖泊科学,2022,34(5):1461-1470. doi: 10.18307/2022.0505TAN X, SHI L, DUAN Z P, et al. Influence of N: P ratio on the phosphorus accumulation and distribution of Microcystis and Scenedesmus[J]. Journal of Lake Sciences,2022,34(5):1461-1470. doi: 10.18307/2022.0505 [45] 孔欣, 张树林, 戴伟, 等.氮、磷营养盐对铜绿微囊藻生长的影响[J]. 水产科技情报,2020,47(5):296-300.KONG X, ZHANG S L, DAI W, et al. Effects of nitrogen and phosphorus nutrients on the growth of Microcystis aeruginosa[J]. Fisheries Science & Technology Information,2020,47(5):296-300. [46] 赵嶝科, 刘慧, 张少斌, 等.Ni2+对钝顶螺旋藻生长及藻胆蛋白含量的影响[J]. 水产科学,2021,40(1):128-132.ZHAO D K, LIU H, ZHANG S B, et al. Effects of nickel (Ni2+) on growth, spectral characteristics and phycobiliprotein content of alga spirulinaplatensis[J]. Fisheries Science,2021,40(1):128-132. [47] 马玉心, 叶立果, 崔大练, 等.不同质量浓度NaCl对钝顶螺旋藻生长及营养物质含量的影响[J]. 安徽农业科学,2018,46(18):13-15.MA Y X, YE L G, CUI D L, et al. Effects of NaCl concentrations on the growth and nutrient content of Spirulina platensis[J]. Journal of Anhui Agricultural Sciences,2018,46(18):13-15. [48] LIMRUJIWAT K, SUPAN S, KHETKORN W. Cyanobacterial biodiversity from Thai karstic caves as a potential source for phycobiliprotein production[J]. Algal Research,2022,64:102666. ◇ doi: 10.1016/j.algal.2022.102666