留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多环芳烃降解菌及其应用研究进展

李花 赵立坤 包仕钰 余晓龙 毛旭辉 陈超琪

李花,赵立坤,包仕钰,等.多环芳烃降解菌及其应用研究进展[J].环境工程技术学报,2023,13(5):1663-1676 doi: 10.12153/j.issn.1674-991X.20230152
引用本文: 李花,赵立坤,包仕钰,等.多环芳烃降解菌及其应用研究进展[J].环境工程技术学报,2023,13(5):1663-1676 doi: 10.12153/j.issn.1674-991X.20230152
LI H,ZHAO L K,BAO S Y,et al.Research progress on polycyclic aromatic hydrocarbons degrading bacteria and their applications[J].Journal of Environmental Engineering Technology,2023,13(5):1663-1676 doi: 10.12153/j.issn.1674-991X.20230152
Citation: LI H,ZHAO L K,BAO S Y,et al.Research progress on polycyclic aromatic hydrocarbons degrading bacteria and their applications[J].Journal of Environmental Engineering Technology,2023,13(5):1663-1676 doi: 10.12153/j.issn.1674-991X.20230152

多环芳烃降解菌及其应用研究进展

doi: 10.12153/j.issn.1674-991X.20230152
基金项目: 国家重点研发计划项目(2020YFC1807901)
详细信息
    作者简介:

    李花(1999—),女,硕士研究生,主要从事焦化多环芳烃污染物的生物降解研究,L18793920997@163.com

    通讯作者:

    陈超琪(1985—),男,副研究员,主要从事环境新兴污染物效应和风险评估研究,Chenchaoqi@whu.edu.cn

  • 中图分类号: X53;X172

Research progress on polycyclic aromatic hydrocarbons degrading bacteria and their applications

  • 摘要:

    多环芳烃(PAHs)在环境中分布广泛,且具有生态和环境毒理效应,因此对PAHs污染场地的治理和修复备受关注。生物降解是去除PAHs的重要技术之一,但存在降解效率低、周期长等局限性。归纳了PAHs常见降解菌及其主要降解机制,探讨了PAHs降解菌在实际污染场地应用的研究进展与不足。结果表明:PAHs降解菌株主要包括不动杆菌属(Acinetobacter)、分枝杆菌属(Mycobacterium)和假单胞菌属(Pseudomonas),白腐真菌是常见的降解菌;相比单一菌株,复合菌群对PAHs的降解能力更强。在降解菌株降解基因(如nah基因簇)编码酶的作用下,萘、菲和芘等PAHs发生开环并逐步氧化,最终通过水杨酸或邻苯二甲酸途径进入三羧酸循环实现完全降解;而苯并[a]芘降解过程中会产生包括醇、醛、酸类中间产物,其完全降解机理仍有待研究。目前大部分针对PAHs降解菌的研究局限于实验室条件,缺少实际PAHs污染场地降解性能的验证;实际应用中,降解菌活性和PAHs的去除受温度、pH、氧气浓度和土壤有机质含量等环境因子的影响。PAHs降解菌的应用实例包括采用生物刺激和(或)生物强化的方式以促进PAHs污染场地的修复。然而,生物降解在实际应用中仍需克服降解菌失活、技术耦合困难、环境风险和成本高等限制因素。未来研究主要包括复合污染和土著菌共存条件下PAHs生物降解机制研究、降解菌生理特性调控和新型强化材料的开发;此外,应加强降解菌在实际污染场地应用的推广,以实现对PAHs污染的高效、经济、可持续治理。

     

  • 图  1  1989—2022年PAHs生物降解领域Web of Science文献计量分析

    Figure  1.  Bibliometric analysis of literatures on biodegradation of PAHs based on Web of Science from 1989 to 2022

    图  2  萘、菲、芘和苯并[a]芘的生物降解途径[11,45,58,61-62,64-67]

    Figure  2.  Biodegradation pathways of naphthalene, phenanthrene, pyrene, and benzo [a] pyrene

    表  1  PAHs降解菌株及其降解率

    Table  1.   PAHs degrading bacteria strains and degradation efficiencies

    菌株属名PAHs(降解时间,降解率)培养介质数据来源
    微杆菌(Microbacterium)萘(45 d,85%);菲(45 d,约60%);芴(45 d,78%);
    苯并[b]荧蒽(45 d,约35%)
    液体培养基文献[15]
    金黄杆菌(Chryseobacterium)菲(4 d,100%)基础盐培养基文献[16]
    枝芽孢杆菌(Virgibacillus)菲(10 d,94%)缺氧矿物培养基文献[17]
    肠杆菌(Enterobacter)芘(120 h,42%~77%)选择性培养基文献[18]
    新鞘氨醇菌(Novosphingobium)芘(12 d,<10%)无碳矿物培养基文献[13]
    骨干杆菌(Diaphorobacter)苯并[a]芘(52 h,96%)基础盐培养基文献[12]
    伯克霍尔德氏菌(Paraburkholderia)二苯并噻吩(30 d,100%)基本培养基文献[19]
    不动杆菌(Acinetobacter)菲、芴、苊、荧蒽、芘(7 d,>90%)土壤文献[20]
    芽胞杆菌(Bacillus)芘(12 d,约20%)无碳矿物培养基文献[13]
    菲、苯并[a]荧蒽、芘(56 d,99%)焦化厂土壤文献[21]
    分枝杆菌(Mycobacterium)芘(7 d,11%~86%)矿物培养基文献[22]
    芘(6 d,约100%)无碳矿物培养基文献[13]
    菲、芘、苯并[a]荧蒽、苯并[a]芘、䓛(150 d,∑PAHs为76%)液体培养基文献[23]
    苍白杆菌(Ochrobactrum)芘(12 d,<10%)无碳矿物培养基文献[13]
    萘(45 d,约70%);菲(45 d,约60%);芴(45 d,约40%);
    苯并[b]荧蒽(45 d,约50%)
    液体培养基文献[15]
    厄氏菌(Oerskovia)萘(30 d,69%);苊(30 d,47%)液体矿物培养基文献[24]
    分枝菌酸杆形菌(Mycolicibacterium)菲(3 d,100%);荧蒽(7 d,100%);芘(3 d,99%)培养基文献[25]
    红球菌(Rhodococcus)菲(3 d,23%);芴(7 d,100%);荧蒽(14 d,27%)培养基文献[25]
    寡养单胞菌(Stenotrophomonas)萘(45 d,约60%);菲(45 d,约50%);芴(45 d,48%);
    苯并[b]荧蒽(45 d,约50%)
    液体培养基文献[15]
    假单胞菌(Pseudomonas)萘(45 d,约70%);菲(45 d,40%~60%);芴(45 d,约40%);
    苯并[b]荧蒽(45 d,30%~60%)
    液体培养基文献[15]
    萘(96 h,100%);芴(72 h,40%);二苯并呋喃(96 h,约66%);二苯并噻吩(96 h,约32%)基础盐培养基文献[14]
    解氢芽胞杆菌(Hydrogenibacillus)萘(20 h,100%);菲(20 h,20%);芴(20 h,约95%);二苯并呋喃(20 d,100%);二苯并噻吩(20 d,约70%);咔唑(20 d,约30%)培养基文献[26]
    下载: 导出CSV

    表  2  PAHs降解菌群及其降解率

    Table  2.   PAHs degrading consortia and degradation efficiencies

    菌株属名PAHs(降解时间,降解率)培养介质数据来源
    分枝杆菌(Mycobacterium)、梭状芽胞菌
    (Clostridium)
    菲(7 d,82%)地下水文献[34]
    芽胞杆菌(Bacillus)、分枝杆菌
    (Mycobacterium)、苍白杆菌(Ochrobactrum)、
    新鞘氨醇菌(Novosphingobium)
    芘(6 d,100%)无碳矿物
    培养基
    文献[13]
    戴氏菌(Dyella)、索氏菌(Thauera)、地杆菌
    (Geobacter)、泰氏菌 (Tissierella)、骨干杆菌
    (Diaphorobacter)
    苯并[a]芘(30 d,11%~20%)焦化废水文献[35]
    分枝杆菌(Mycobacterium)、鞘氨醇单胞
    (Sphingomonas)
    菲(3 d,100%);荧蒽(3 d,71.2%);芘(3 d,50%)基础盐培养基文献[32]
    脱硫弧菌(Desulfovibrio)、佩特里单胞菌
    (Petrimonas)
    菲、芴、苊、蒽、芘、苯并[a]荧蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、
    二苯并[a,h]蒽(∑PAH,55 d,21%~29%)
    矿物盐培养基文献[36]
    鞘氨醇菌(Sphingobium)、假单胞菌
    (Pseudomonas)
    萘(8 h,约85%);菲(60 h,100%);芴(16 h,约80%);苊(30 h,约25%);
    蒽(30 h,约100%);荧蒽(8 h,100%);二苯并[a]荧蒽(30 h,约60%);
    二苯并呋喃(30 h,约50%);二苯并噻吩(60 h,94%);咔唑(30 h,约20%)
    基础盐培养基文献[33]
    微杆菌(Microbacterium)、苍白杆菌
    (Ochrobactrum)、假单胞菌(Pseudomonas)、
    寡养单胞菌(Stenotrophomonas)
    萘(45 d,97%);菲(45 d,97%);芴(45 d,76%);
    苯并[b]荧蒽(45 d,73%)
    液体培养基文献[15]
    下载: 导出CSV

    表  3  PAHs降解菌、降解基因和编码酶

    Table  3.   PAHs degrading bacteria, associated genes and encoding enzymes

    宿主菌PAHs降解基因编码酶数据来源
    Pseudomonas sp. MPDS萘、芴、二苯并呋喃、
    二苯并噻吩
    nahAa、nahAb、nahAc、nahAd萘双加氧酶文献[14]
    Pseudomonas fluorescens AH-40、
    Sphingomonas koreensis strain ASU-06
    萘、菲、蒽、芘nahAc文献
    [41-42]
    Herbaspirillum sp. strain RV1423nag文献[43]
    Polaromonas naphthalenivorans CJ2nagAc、nagAd文献[44]
    Mycobacterium vanbaalenii PRY-1、Mycobacterium sp. PYR10、
    Mycobacterium sp. PYR15
    菲、芘nidAB、nidA3B3环羟基化双加氧酶文献
    [45-46]
    Rhodococcus sp. P14蒽、菲、芘、苯并[a]蒽baaA、baaB文献[47]
    Delftia acidovorans Cs1-4phn文献[48]
    Acidovorax strain NA3萘、菲、苯并[a]蒽、苯并[a]芘phnAc、phnB、phnC文献[49]
    Mycobacterium sp. strain CH-2萘、菲、荧蒽pdoA2B2、nidAB文献[50]
    Mycobacterium sp. strain 6PY1pdoA1B1文献[51]
    Mycobacterium vanbaalenii strain PYR-1nidA、nidB、nidC、nidD文献[52]
    Roseobacter clade菲、芘、苯并[a]芘pahEPAH水合酶-醛缩酶文献[53]
    Mycobacterium vanbaalenii PYR-1phdG文献[54]
    Nocardioides sp. strain KP7萘、菲、蒽、1-甲氧基萘phdABCD文献[55]
    Mycobacterium vanbaalenii PYR-1phdF环裂解双加氧酶文献[54]
    Sphingomonas koreensis strain ASU-06、Pseudomonas fluorescens AH-40、Pseudomonas aeruginosa、Pseudomonas sp.、Sphingomonas koreensis strain ASU-06、Ralstonia sp.萘、菲、蒽、荧蒽、芘C12O、C23O儿茶酚双加氧酶文献[41-42,56]
    下载: 导出CSV
  • [1] BAO S Y, ZHAO L K, LIU Y W, et al. Influencing factors of bioaugmentation treatment of PAH-contaminated soils in slurry bioreactors[J]. Journal of Environmental Chemical Engineering,2023,11(3):109893. doi: 10.1016/j.jece.2023.109893
    [2] GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Frontiers in Microbiology,2016,7:1369.
    [3] XIE J Q, TAO L, WU Q, et al. Environmental profile, distributions and potential sources of halogenated polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials,2021,419:126164. doi: 10.1016/j.jhazmat.2021.126164
    [4] ZHANG X, YANG L, ZHANG H, et al. Assessing approaches of human inhalation exposure to polycyclic aromatic hydrocarbons: a review[J]. International Journal of Environmental Research and Public Health,2021,18(6):3124. doi: 10.3390/ijerph18063124
    [5] CHERUIYOT N K, LEE W J, MWANGI J K, et al. An overview: polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air[J]. Aerosol and Air Quality Research,2015,15(7):2730-2762. doi: 10.4209/aaqr.2015.11.0627
    [6] ZHANG A P, YE X T, YANG X D, et al. Elevated urbanization-driven plant accumulation and human intake risks of polycyclic aromatic hydrocarbons in crops of peri-urban farmlands[J]. Environmental Science and Pollution Research,2022,29(45):68143-68151. doi: 10.1007/s11356-022-20623-1
    [7] TOMEI M C, DAUGULIS A J. Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies[J]. Critical Reviews in Environmental Science and Technology,2013,43(20):2107-2139. doi: 10.1080/10643389.2012.672056
    [8] KUPPUSAMY S, THAVAMANI P, VENKATESWARLU K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions[J]. Chemosphere,2017,168:944-968. doi: 10.1016/j.chemosphere.2016.10.115
    [9] ZHU Y J, XU Y, XU J M, et al. Contrasting response strategies of microbial functional traits to polycyclic aromatic hydrocarbons contamination under aerobic and anaerobic conditions[J]. Journal of Hazardous Materials,2023,454:131548. doi: 10.1016/j.jhazmat.2023.131548
    [10] MOHD KAMI N A F, TAO W, HAMZAH N. Establishing the order of importance factor based on optimization of conditions in PAHs biodegradation[J]. Polycyclic Aromatic Compounds,2022,42(5):2348-2362. doi: 10.1080/10406638.2020.1833049
    [11] IMAM A, KUMAR SUMAN S, KANAUJIA P K, et al. Biological machinery for polycyclic aromatic hydrocarbons degradation: a review[J]. Bioresource Technology,2022,343:126121. doi: 10.1016/j.biortech.2021.126121
    [12] WANG P, ZHANG Y M, JIN J, et al. A high-efficiency phenanthrene-degrading Diaphorobacter sp. isolated from PAH-contaminated river sediment[J]. Science of the Total Environment,2020,746:140455. doi: 10.1016/j.scitotenv.2020.140455
    [13] WANAPAISAN P, LAOTHAMTEEP N, VEJARANO F, et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium[J]. Journal of Hazardous Materials,2018,342:561-570. doi: 10.1016/j.jhazmat.2017.08.062
    [14] LIU Y L, HU H Y, ZANAROLI G, et al. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways[J]. Journal of Hazardous Materials,2021,403:123956. doi: 10.1016/j.jhazmat.2020.123956
    [15] KUMARI S, REGAR R K, MANICKAM N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria[J]. Bioresource Technology,2018,254:174-179. doi: 10.1016/j.biortech.2018.01.075
    [16] XIAO M, YIN X Y, GAI H J, et al. Effect of hydroxypropyl-β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp.[J]. Bioresource Technology,2019,273:56-62. doi: 10.1016/j.biortech.2018.10.087
    [17] ZHANG Z T, SUN J, GONG X Q, et al. Anaerobic phenanthrene biodegradation by a new salt-tolerant/halophilic and nitrate-reducing Virgibacillus halodenitrificans strain PheN4 and metabolic processes exploration[J]. Journal of Hazardous Materials,2022,435:129085. doi: 10.1016/j.jhazmat.2022.129085
    [18] LIN H, SHI J Y, DONG Y B, et al. Construction of bifunctional bacterial community for co-contamination remediation: pyrene biodegradation and cadmium biomineralization[J]. Chemosphere,2022,304:135319. doi: 10.1016/j.chemosphere.2022.135319
    [19] ORTEGA RAMÍREZ C A, CHING T, YOZA B, et al. Glycerol-assisted degradation of dibenzothiophene by Paraburkholderia sp. C3 is associated with polyhydroxyalkanoate granulation[J]. Chemosphere,2022,291:133054. doi: 10.1016/j.chemosphere.2021.133054
    [20] CZARNY J, STANINSKA-PIĘTA J, PIOTROWSKA-CYPLIK A, et al. Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals[J]. Journal of Hazardous Materials,2020,383:121168. doi: 10.1016/j.jhazmat.2019.121168
    [21] ZHOU N, GUO H J, LIU Q X, et al. Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil with the nitrate-reducing bacterium PheN7 under anaerobic condition[J]. Journal of Hazardous Materials,2022,439:129643. doi: 10.1016/j.jhazmat.2022.129643
    [22] LI X N, LIU H L, YANG W B, et al. Humic acid enhanced pyrene degradation by Mycobacterium sp. NJS-1[J]. Chemosphere,2022,288:132613. doi: 10.1016/j.chemosphere.2021.132613
    [23] LI N, LIU R, CHEN J J, et al. Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium[J]. Science of the Total Environment,2021,754:141198. doi: 10.1016/j.scitotenv.2020.141198
    [24] LJEŠEVIĆ M, GOJGIĆ-CVIJOVIĆ G, IEDA T, et al. Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC × GC-TOF MS[J]. Journal of Hazardous Materials,2019,363:227-232. doi: 10.1016/j.jhazmat.2018.10.005
    [25] NALOKA K, POLRIT D, MUANGCHINDA C, et al. Bioballs carrying a syntrophic Rhodococcus and Mycolicibacterium consortium for simultaneous sorption and biodegradation of fuel oil in contaminated freshwater[J]. Chemosphere,2021,282:130973. doi: 10.1016/j.chemosphere.2021.130973
    [26] QIU X Y, WANG W W, ZHANG L G, et al. A thermophile Hydrogenibacillus sp. strain efficiently degrades environmental pollutants polycyclic aromatic hydrocarbons[J]. Environmental Microbiology,2022,24(1):436-450. doi: 10.1111/1462-2920.15869
    [27] IMAM A, SUMAN S K, VEMPATAPU B P, et al. Pyrene remediation by Trametes maxima: an insight into secretome response and degradation pathway[J]. Environmental Science and Pollution Research,2022,29(29):44135-44147. doi: 10.1007/s11356-022-18888-7
    [28] VALENTÍN L, LU-CHAU T A, LÓPEZ C, et al. Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55[J]. Process Biochemistry,2007,42(4):641-648. doi: 10.1016/j.procbio.2006.11.011
    [29] ARIFEEN M Z U, MA Y N, WU T S, et al. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor[J]. Chemosphere,2022,303:135062. doi: 10.1016/j.chemosphere.2022.135062
    [30] ZHONG Y, LUAN T G, ZHOU H W, et al. Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon byMycobacterium sp.[J]. Environmental Toxicology and Chemistry,2006,25(11):2853. doi: 10.1897/06-042R.1
    [31] JIANG J, LIU H Y, LI Q, et al. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae[J]. Ecotoxicology and Environmental Safety,2015,120:386-393. doi: 10.1016/j.ecoenv.2015.06.028
    [32] ZHONG Y, LUAN T G, LIN L, et al. Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp[J]. Bioresource Technology,2011,102(3):2965-2972. doi: 10.1016/j.biortech.2010.09.113
    [33] ZHANG L G, QIU X Y, HUANG L, et al. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater[J]. Journal of Hazardous Materials,2021,419:126524. doi: 10.1016/j.jhazmat.2021.126524
    [34] SHI J X, ZHANG B G, CHENG Y T, et al. Microbial vanadate reduction coupled to co-metabolic phenanthrene biodegradation in groundwater[J]. Water Research,2020,186:116354. doi: 10.1016/j.watres.2020.116354
    [35] WU H Z, WANG M, ZHU S, et al. Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater[J]. Chemosphere,2019,228:128-138. doi: 10.1016/j.chemosphere.2019.04.117
    [36] QIAN Y F, XU M Y, DENG T C, et al. Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation[J]. Journal of Hazardous Materials,2021,407:124385. doi: 10.1016/j.jhazmat.2020.124385
    [37] ATAGANA H I. Biodegradation of PAHs by fungi in contaminated-soil containing cadmium and nickel ions[J]. African Journal of Biotechnology,2009,8(21):5780-5789. doi: 10.5897/AJB2009.000-9465
    [38] FESTA S, COPPOTELLI B M, MORELLI I S. Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil[J]. International Biodeterioration & Biodegradation,2013,85:42-51.
    [39] KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings: assessments in liquid- and slurry-phase systems[J]. International Biodeterioration & Biodegradation,2016,108:149-157.
    [40] SAKSHI, HARITASH A K. A comprehensive review of metabolic and genomic aspects of PAH-degradation[J]. Archives of Microbiology,2020,202(8):2033-2058. doi: 10.1007/s00203-020-01929-5
    [41] HESHAM A E L, MAWAD A M M, MOSTAFA Y M, et al. Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis Strain ASU-06 isolated from Egyptian oily soil[J]. BioMed Research International,2014,2014:1-10.
    [42] MAWAD A, ABDEL-MAGEED W S, HESHAM A. Quantification of naphthalene dioxygenase (NahAC) and catechol dioxygenase (C23O) catabolic genes produced by phenanthrene-degrading Pseudomonas fluorescens AH-40[J]. Current Genomics,2020,21:111-118. doi: 10.2174/1389202921666200224101742
    [43] JAUREGUI R, RODELAS B, GEFFERS R, et al. Draft genome sequence of the naphthalene degrader Herbaspirillum sp. strain RV1423[J]. Genome Announcements,2014,2(2):e00188-14.
    [44] JEON C O, PARK M, RO H S, et al. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control[J]. Applied and Environmental Microbiology,2006,72(2):1086-1095. doi: 10.1128/AEM.72.2.1086-1095.2006
    [45] ELYAMINE A M, KAN J E, MENG S S, et al. Aerobic and anaerobic bacterial and fungal degradation of pyrene: mechanism pathway including biochemical reaction and catabolic genes[J]. International Journal of Molecular Sciences,2021,22(15):8202. doi: 10.3390/ijms22158202
    [46] KIM D W, LEE K, LEE D H, et al. Comparative genomic analysis of pyrene-degrading Mycobacterium species: genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation[J]. Journal of Microbiology,2018,56(11):798-804. doi: 10.1007/s12275-018-8372-0
    [47] PENG T, LUO A, KAN J E, et al. Identification of a ring-hydroxylating dioxygenases capable of anthracene and benz[a]anthracene oxidization from Rhodococcus sp. P14[J]. Journal of Molecular Microbiology and Biotechnology,2019,28(4):183-189.
    [48] SHETTY A R, de GANNES V, OBI C C, et al. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4[J]. Standards in Genomic Sciences,2015,10(1):1-10. doi: 10.1186/1944-3277-10-1
    [49] SINGLETON D R, RAMIREZ L G, AITKEN M D. Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain[J]. Applied and Environmental Microbiology,2009,75(9):2613-2620. doi: 10.1128/AEM.01955-08
    [50] CHURCHILL P F, MORGAN A C, KITCHENS E. Characterization of a pyrene-degrading Mycobacterium sp. strain CH-2[J]. Journal of Environmental Science and Health, Part B,2008,43(8):698-706. doi: 10.1080/03601230802388801
    [51] KRIVOBOK S, KUONY S, MEYER C, et al. Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases[J]. Journal of Bacteriology,2003,185(13):3828-3841. doi: 10.1128/JB.185.13.3828-3841.2003
    [52] KHAN A A, WANG R F, CAO W W, et al. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1[J]. Applied and Environmental Microbiology,2001,67(8):3577-3585. doi: 10.1128/AEM.67.8.3577-3585.2001
    [53] ZHOU H X, ZHANG S F, XIE J L, et al. Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria[J]. International Biodeterioration & Biodegradation,2020,150:104961.
    [54] KIM S J, KWEON O, JONES R C, et al. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology[J]. Journal of Bacteriology,2007,189(2):464-472. doi: 10.1128/JB.01310-06
    [55] CHUN H K, OHNISHI Y, MISAWA N, et al. Biotransformation of phenanthrene and 1-methoxynaphthalene with Streptomyces lividans cells expressing a marine bacterial phenanthrene dioxygenase gene cluster[J]. Bioscience, Biotechnology, and Biochemistry,2001,65(8):1774-1781. doi: 10.1271/bbb.65.1774
    [56] SANGKHARAK K, CHOONUT A, RAKKAN T, et al. The degradation of phenanthrene, pyrene, and fluoranthene and its conversion into medium-chain-length polyhydroxyalkanoate by novel polycyclic aromatic hydrocarbon-degrading bacteria[J]. Current Microbiology,2020,77(6):897-909. doi: 10.1007/s00284-020-01883-x
    [57] HARAYAMA S, REKIK M, WASSERFALLEN A, et al. Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids[J]. Molecular and General Genetics MGG,1987,210(2):241-247. doi: 10.1007/BF00325689
    [58] WU F J, GUO C L, LIU S S, et al. Pyrene degradation by Mycobacterium gilvum: metabolites and proteins involved[J]. Water, Air, & Soil Pollution,2019,230(3):67.
    [59] PATEL A B, SINGH S, PATEL A, et al. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures[J]. Bioresource Technology,2019,284:115-120. doi: 10.1016/j.biortech.2019.03.097
    [60] XU X J, LIU W M, WANG W, et al. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta[J]. Science of the Total Environment,2019,664:1030-1038. doi: 10.1016/j.scitotenv.2019.02.080
    [61] YANG Y, CHEN R F, SHIARIS M P. Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816[J]. Journal of Bacteriology,1994,176(8):2158-2164. doi: 10.1128/jb.176.8.2158-2164.1994
    [62] CHEN X, WANG W W, HU H Y, et al. Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martelella strain AD-3[J]. Ecotoxicology,2021,30(7):1499-1510. doi: 10.1007/s10646-020-02310-4
    [63] MISHRA S, SINGH S N. Biodegradation of benzo(a)pyrene mediated by catabolic enzymes of bacteria[J]. International Journal of Environmental Science and Technology,2014,11(6):1571-1580. doi: 10.1007/s13762-013-0300-6
    [64] PATEL A B, SHAIKH S, JAIN K R, et al. Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches[J]. Frontiers in Microbiology,2020,11:562813. doi: 10.3389/fmicb.2020.562813
    [65] ANOKHINA T O, ESIKOVA T Z, GAFAROV A B, et al. Alternative naphthalene metabolic pathway includes formation of ortho-phthalic acid and cinnamic acid derivatives in the Rhodococcus opacus strain 3D[J]. Biochemistry (Moscow),2020,85(3):355-368. doi: 10.1134/S0006297920030116
    [66] GONG B N, WU P X, RUAN B, et al. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism[J]. Journal of Hazardous Materials,2018,349:51-59. doi: 10.1016/j.jhazmat.2018.01.046
    [67] SUN S S, WANG H Z, CHEN Y Z, et al. Salicylate and phthalate pathways contributed differently on phenanthrene and pyrene degradations in Mycobacterium sp. WY10[J]. Journal of Hazardous Materials,2019,364:509-518. doi: 10.1016/j.jhazmat.2018.10.064
    [68] LI X Z, PAN Y S, HU S, et al. Diversity of phenanthrene and benz[a]anthracene metabolic pathways in white rot fungus Pycnoporus sanguineus 14[J]. International Biodeterioration & Biodegradation,2018,134:25-30.
    [69] POZDNYAKOVA N, DUBROVSKAYA E, CHERNYSHOVA M, et al. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus[J]. Fungal Biology,2018,122(5):363-372. doi: 10.1016/j.funbio.2018.02.007
    [70] PARK H, MIN B, JANG Y, et al. Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613[J]. Applied Microbiology and Biotechnology,2019,103(19):8145-8155. doi: 10.1007/s00253-019-10089-6
    [71] RABANI M S, SHARMA R, SINGH R, et al. Characterization and identification of naphthalene degrading bacteria isolated from petroleum contaminated sites and their possible use in bioremediation[J]. Polycyclic Aromatic Compounds,2022,42(3):978-989. doi: 10.1080/10406638.2020.1759663
    [72] STANINSKA-PIĘTA J, CZARNY J, PIOTROWSKA-CYPLIK A, et al. Heavy metals as a factor increasing the functional genetic potential of bacterial community for polycyclic aromatic hydrocarbon biodegradation[J]. Molecules,2020,25(2):319. doi: 10.3390/molecules25020319
    [73] HUANG Y L, WANG Y L, FENG H, et al. Genome-guided identification and characterization of bacteria for simultaneous degradation of polycyclic aromatic hydrocarbons and resistance to hexavalent chromium[J]. International Biodeterioration & Biodegradation,2019,138:78-86.
    [74] ALI M, SONG X, DING D, et al. Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies[J]. Environmental Pollution,2022,295:118686. doi: 10.1016/j.envpol.2021.118686
    [75] LIU S H, ZENG G M, NIU Q Y, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review[J]. Bioresource Technology,2017,224:25-33. doi: 10.1016/j.biortech.2016.11.095
    [76] 王荔, 张腾飞, 杨苏才, 等.焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报,2021,11(4):720-726. doi: 10.12153/j.issn.1674-991X.20200251

    WANG L, ZHANG T F, YANG S C, et al. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology,2021,11(4):720-726. doi: 10.12153/j.issn.1674-991X.20200251
    [77] GRAN-SCHEUCH A, RAMOS-ZUÑIGA J, FUENTES E, et al. Effect of co-contamination by PAHs and heavy metals on bacterial communities of diesel contaminated soils of South Shetland Islands, Antarctica[J]. Microorganisms,2020,8(11):1749. doi: 10.3390/microorganisms8111749
    [78] YE Q H, LIANG C Y, CHEN X W, et al. Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon[J]. Journal of Environmental Sciences,2019,86:97-106. doi: 10.1016/j.jes.2019.04.027
    [79] PIUBELI F A, dos SANTOS L G, FERNÁNDEZ E N, et al. The emergence of different functionally equivalent PAH degrading microbial communities from a single soil in liquid PAH enrichment cultures and soil microcosms receiving PAHs with and without bioaugmentation[J]. Polish Journal of Microbiology,2018,67(3):365-375. doi: 10.21307/pjm-2018-046
    [80] KUMAR M, BOLAN N S, HOANG S A, et al. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: to immobilize, mobilize, or degrade[J]. Journal of Hazardous Materials,2021,420:126534. doi: 10.1016/j.jhazmat.2021.126534
    [81] GITIPOUR S, SORIAL G A, GHASEMI S, et al. Treatment technologies for PAH-contaminated sites: a critical review[J]. Environmental Monitoring and Assessment,2018,190(9):546. doi: 10.1007/s10661-018-6936-4
    [82] KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al. Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils[J]. Environmental Technology & Innovation,2016,6:204-219.
    [83] BOOPATHY R. Factors limiting bioremediation technologies[J]. Bioresource Technology,2000,74(1):63-67. doi: 10.1016/S0960-8524(99)00144-3
    [84] PERFUMO A, BANAT I M, MARCHANT R, et al. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils[J]. Chemosphere,2007,66(1):179-184. doi: 10.1016/j.chemosphere.2006.05.006
    [85] PREMNATH N, MOHANRASU K, RAO R G R, et al. A crucial review on polycyclic aromatic hydrocarbons: environmental occurrence and strategies for microbial degradation[J]. Chemosphere,2021,280:130608. doi: 10.1016/j.chemosphere.2021.130608
    [86] MARTÍN M, MONTES F J, GALÁN M A. Mass transfer rates from bubbles in stirred tanks operating with viscous fluids[J]. Chemical Engineering Science,2010,65(12):3814-3824. doi: 10.1016/j.ces.2010.03.015
    [87] GARCÍA-OCHOA F, CASTRO E G, SANTOS V E. Oxygen transfer and uptake rates during xanthan gum production[J]. Enzyme and Microbial Technology,2000,27(9):680-690. doi: 10.1016/S0141-0229(00)00272-6
    [88] RATHANKUMAR A K, SAIKIA K, RAMACHANDRAN K, et al. Effect of soil organic matter (SOM) on the degradation of polycyclic aromatic hydrocarbons using Pleurotus dryinus IBB 903-a microcosm study[J]. Journal of Environmental Management,2020,260:110153. doi: 10.1016/j.jenvman.2020.110153
    [89] NOZARI M, SAMAEI M R, DEHGHANI M. Investigation of the effect of co-metabolism on removal of dodecane by microbial consortium from soil in a slurry sequencing bioreactor[J]. Journal of Bioremediation & Biodegradation,2014,5(7):253.
    [90] LEYS N M, BASTIAENS L, VERSTRAETE W, et al. Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil[J]. Applied Microbiology and Biotechnology,2005,66(6):726-736. doi: 10.1007/s00253-004-1766-4
    [91] CHEN W, TENG Y, REN W J, et al. A highly effective polycyclic aromatic hydrocarbon-degrading bacterium, Paracoccus sp. HPD-2, shows opposite remediation potential in two soil types[J]. Pedosphere,2022,32(5):673-685. doi: 10.1016/j.pedsph.2022.06.012
    [92] AMPONSAH N Y, WANG J Y, ZHAO L A. Modelling PAH degradation in contaminated soils in Canada using a modified process-based model (DNDC)[J]. Soil Science Society of America Journal,2019,83(3):605-613. doi: 10.2136/sssaj2018.11.0435
    [93] CHEN B L, YUAN M X, QIAN L B. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers[J]. Journal of Soils and Sediments,2012,12(9):1350-1359. doi: 10.1007/s11368-012-0554-5
    [94] UGOCHUKWU U C, OKONKWO F, SOKARI W, et al. Bioremediation strategy based on risk assessment of exposure to residual polycyclic aromatic hydrocarbons[J]. Journal of Environmental Management,2021,280:111650. doi: 10.1016/j.jenvman.2020.111650
    [95] HALEYUR N, SHAHSAVARI E, JAIN S S, et al. Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: response and dynamics of the bacterial community[J]. Journal of Environmental Management,2019,238:49-58.
    [96] BURY S J, MILLER C A. Effect of micellar solubilization on biodegradation rates of hydrocarbons[J]. Environmental Science & Technology,1993,27(1):104-110.
    [97] RODRÍGUEZ-CRUZ M S, SÁNCHEZ-MARTÍN M J, ANDRADES M S, et al. Retention of pesticides in soil columns modified in situ and ex situ with a cationic surfactant[J]. Science of the Total Environment,2007,378(1/2):104-108.
    [98] JIN D Y, JIANG X, JING X, et al. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene[J]. Journal of Hazardous Materials,2007,144(1/2):215-221.
    [99] GARCIA-OCHOA F, GOMEZ E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[J]. Biotechnology Advances,2009,27(2):153-176. doi: 10.1016/j.biotechadv.2008.10.006
    [100] WOO S H, JEON C O, PARK J M. Phenanthrene biodegradation in soil slurry systems: influence of salicylate and triton X-100[J]. Korean Journal of Chemical Engineering,2004,21(2):412-418. doi: 10.1007/BF02705429
    [101] ZHENG Z M, OBBARD J P. Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium[J]. Journal of Chemical Technology & Biotechnology,2001,76(4):423-429.
    [102] DAVE B P, GHEVARIYA C M, BHATT J K, et al. Enhanced biodegradation of total polycyclic aromatic hydrocarbons (TPAHs) by marine halotolerant Achromobacter xylosoxidans using Triton X-100 and β-cyclodextrin: a microcosm approach[J]. Marine Pollution Bulletin,2014,79(1/2):123-129.
    [103] RATHANKUMAR A K, SAIKIA K, CABANA H, et al. Surfactant-aided mycoremediation of soil contaminated with polycyclic aromatic hydrocarbons[J]. Environmental Research,2022,209:112926. doi: 10.1016/j.envres.2022.112926
    [104] MARCOUX J, DEZIEL E, VILLEMUR R, et al. Optimization of high-molecular-weight polycyclic aromatic hydrocarbons' degradation in a two-liquid-phase bioreactor[J]. Journal of Applied Microbiology,2000,88(4):655-662. doi: 10.1046/j.1365-2672.2000.01011.x
    [105] TIEHM A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants[J]. Applied and Environmental Microbiology,1994,60(1):258-263. doi: 10.1128/aem.60.1.258-263.1994
    [106] VOLKERING F, BREURE A M, RULKENS W H. Microbiological aspects of surfactant use for biological soil remediation[J]. Biodegradation,1997,8(6):401-417. doi: 10.1023/A:1008291130109
    [107] ZHANG G B, YANG X H, ZHAO Z H, et al. Artificial consortium of three E. coli BL21 strains with synergistic functional modules for complete phenanthrene degradation[J]. ACS Synthetic Biology,2022,11(1):162-175. doi: 10.1021/acssynbio.1c00349
    [108] ZENELI A, KASTANAKI E, SIMANTIRAKI F, et al. Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation[J]. Journal of Environmental Chemical Engineering,2019,7(3):103054. doi: 10.1016/j.jece.2019.103054
    [109] ZHANG N C, DAN A, CHAO Y Q, et al. Mechanism of polycyclic aromatic hydrocarbons degradation in the rhizosphere of Phragmites australis: organic acid co-metabolism, iron-driven, and microbial response[J]. Environmental Pollution,2023,327:121608. doi: 10.1016/j.envpol.2023.121608
    [110] SONG L C, NIU X G, ZHOU B, et al. Application of biochar-immobilized Bacillus sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant[J]. Chemosphere,2022,307:136084. doi: 10.1016/j.chemosphere.2022.136084
    [111] REN W J, LIU H R, MAO T Y, et al. Enhanced remediation of PAHs-contaminated site soil by bioaugmentation with graphene oxide immobilized bacterial pellets[J]. Journal of Hazardous Materials,2022,433:128793. doi: 10.1016/j.jhazmat.2022.128793
    [112] QIAO K L, TIAN W J, BAI J, et al. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads[J]. Marine Pollution Bulletin,2020,159:111489. doi: 10.1016/j.marpolbul.2020.111489
    [113] LIANG J D, WU Z J, TENG T T. Biochar prepared from Fe-rich sludge as suitable microbial carriers for facilitating biodegradation of phenanthrene in soil[J]. Journal of Chemical Technology & Biotechnology,2021,96(7):2014-2021.
    [114] FIROOZBAKHT M, SEPAHI A A, RASHEDI H, et al. Investigating the effect of nanoparticle on phenanthrene biodegradation by Labedella gwakjiensis strain KDI[J]. Biodegradation,2022,33(5):441-460. doi: 10.1007/s10532-022-09991-0
    [115] MANDAL S K, OJHA N, DAS N. Optimization of process parameters for the yeast mediated degradation of benzo[a]pyrene in presence of ZnO nanoparticles and produced biosurfactant using 3-level Box-Behnken design[J]. Ecological Engineering,2018,120:497-503. doi: 10.1016/j.ecoleng.2018.07.006
    [116] LIAO X Y, WU Z Y, LI Y, et al. Enhanced degradation of polycyclic aromatic hydrocarbons by indigenous microbes combined with chemical oxidation[J]. Chemosphere,2018,213:551-558. doi: 10.1016/j.chemosphere.2018.09.092
    [117] MORA V C, MADUEÑO L, PELUFFO M, et al. Remediation of phenanthrene-contaminated soil by simultaneous persulfate chemical oxidation and biodegradation processes[J]. Environmental Science and Pollution Research,2014,21(12):7548-7556.
    [118] BACIOCCHI R, D'APRILE L, INNOCENTI I, et al. Development of technical guidelines for the application of in situ chemical oxidation to groundwater remediation[J]. Journal of Cleaner Production,2014,77:47-55. doi: 10.1016/j.jclepro.2013.12.016
    [119] CHEN K F, CHANG Y C, CHIOU W T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study[J]. Journal of Chemical Technology & Biotechnology,2016,91(6):1877-1888.
    [120] 麻俊胜, 苟雅玲, 王兴润, 等.化学氧化后深层土壤中多环芳烃的缺氧微生物降解[J]. 环境工程技术学报,2020,10(1):97-104. doi: 10.12153/j.issn.1674-991X.20190067

    MA J S, GOU Y L, WANG X R, et al. Anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged deep soil pretreated with chemical oxidation[J]. Journal of Environmental Engineering Technology,2020,10(1):97-104. doi: 10.12153/j.issn.1674-991X.20190067
    [121] STELIGA T, KLUK D. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons[J]. Ecotoxicology and Environmental Safety,2020,194:110409. doi: 10.1016/j.ecoenv.2020.110409
    [122] AIMAN U, ANEEQA Z, HASINA W, et al. Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3[J]. AMB Express,2021,11(1):165. doi: 10.1186/s13568-021-01327-0
    [123] GAO H, WU M L, LIU H, et al. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function[J]. Environmental Pollution,2022,293:118511. doi: 10.1016/j.envpol.2021.118511
    [124] XIA M Q, CHAKRABORTY R, TERRY N, et al. Promotion of saltgrass growth in a saline petroleum hydrocarbons contaminated soil using a plant growth promoting bacterial consortium[J]. International Biodeterioration & Biodegradation,2020,146:104808.
    [125] HOU J Y, LIU W X, WANG B B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response[J]. Chemosphere,2015,138:592-598. doi: 10.1016/j.chemosphere.2015.07.025
    [126] ZHU X Z, WANG W Q, CROWLEY D E, et al. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat[J]. Environmental Science and Pollution Research,2017,24(7):6648-6656. doi: 10.1007/s11356-016-8345-y
    [127] SAYARA T, SÁNCHEZ A. Bioremediation of PAH-contaminated soils: process enhancement through composting/compost[J]. Applied Sciences,2020,10(11):3684. ◇ doi: 10.3390/app10113684
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1445
  • HTML全文浏览量:  400
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-25

目录

    /

    返回文章
    返回