留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦化污染场地土壤多环芳烃的生物强化协同降解工艺研究

赵立坤 包仕钰 郭涛 程熠晴 郑焰 余晓龙 刘渊文 杨乐巍 刘鹏 毛旭辉

赵立坤,包仕钰,郭涛,等.焦化污染场地土壤多环芳烃的生物强化协同降解工艺研究[J].环境工程技术学报,2023,13(5):1701-1710 doi: 10.12153/j.issn.1674-991X.20230164
引用本文: 赵立坤,包仕钰,郭涛,等.焦化污染场地土壤多环芳烃的生物强化协同降解工艺研究[J].环境工程技术学报,2023,13(5):1701-1710 doi: 10.12153/j.issn.1674-991X.20230164
ZHAO L K,BAO S Y,GUO T,et al.Study on the collaborative degradation process based on bioaugmentation for the remediation of polycyclic aromatic hydrocarbons in the soil from a coking plant site[J].Journal of Environmental Engineering Technology,2023,13(5):1701-1710 doi: 10.12153/j.issn.1674-991X.20230164
Citation: ZHAO L K,BAO S Y,GUO T,et al.Study on the collaborative degradation process based on bioaugmentation for the remediation of polycyclic aromatic hydrocarbons in the soil from a coking plant site[J].Journal of Environmental Engineering Technology,2023,13(5):1701-1710 doi: 10.12153/j.issn.1674-991X.20230164

焦化污染场地土壤多环芳烃的生物强化协同降解工艺研究

doi: 10.12153/j.issn.1674-991X.20230164
基金项目: 国家重点研发计划项目(2020YFC1807902)
详细信息
    作者简介:

    赵立坤(1995—),男,博士,主要从事土壤微生物修复研究,2295828279@qq.com

    通讯作者:

    毛旭辉(1976—),男,教授,博士,主要从事水土环境修复研究,clab@whu.edu.cn

  • 中图分类号: X53

Study on the collaborative degradation process based on bioaugmentation for the remediation of polycyclic aromatic hydrocarbons in the soil from a coking plant site

  • 摘要:

    以某废弃焦化厂的多环芳烃(PAHs)污染土壤为研究对象,通过耦合表活淋洗、生物降解、化学氧化等技术设计了4种修复工艺,并进行了试验验证。结果表明:针对该实际焦化污染土壤,单一的生物泥浆降解工艺21 d后PAHs可实现58.64%的降解率;采用表活增溶+化学氧化+生物泥浆的降解工艺,26 d降解率可达到65.68%,但前置的化学氧化会抑制生物降解效果;采用干筛分+表活分批淋洗+化学氧化的降解工艺降解率可达到85.36%,有效缩短降解时间到13 d内,但土壤中残留的PAHs与土壤颗粒结合紧密,化学氧化降解率仍难以满足大于90%的要求;采用湿筛分+表活分批淋洗+生物泥浆+化学氧化的生物强化协同降解工艺,29 d降解率可达到95.32%,实现了土壤的修复目标。生物强化协同降解工艺路线,综合了多种修复技术的优点,实现了修复技术组合优化,为焦化污染土壤中多环芳烃降解修复提供了可行的工艺路径。

     

  • 图  1  4种试验工艺路线设计

    Figure  1.  Design of four experimental process routes

    图  2  生物泥浆反应器

    Figure  2.  Soil-slurry bioreactors

    图  3  工艺1生物降解效果

    Figure  3.  Biodegradation effects of Process 1

    图  4  工艺2生物降解效果

    Figure  4.  Biodegradation effects of Process 2

    图  5  工艺3淋洗效果

    Figure  5.  Washing effects of Process 3

    图  6  淋洗液中PAHs的生物水处理降解效果

    Figure  6.  Biodegradation effect of PAHs in washing fluid by biological water treatment

    图  7  工艺4的淋洗及生物降解效果

    Figure  7.  Washing and biodegradation effects of Process 4

    表  1  干筛分后各粒径污染土壤质量占比以及PAHs浓度占比

    Table  1.   Mass proportion and PAHs content proportion of contaminated soil with different particle sizes after dry-sieving

    粒径划分/mm土壤质量
    占比/%
    PAHs浓度/
    (mg/kg)
    PAHs浓度
    占比/%
    ≤0.0755.30±1.00150.00±5.108.52±1.40
    0.075~1.733.15±1.85159.70±2.7056.91±0.80
    >1.761.55±2.8552.15±2.1534.57±2.20
    下载: 导出CSV

    表  2  工艺3对污染土壤中PAHs的降解效果

    Table  2.   PAHs degradation effect of contaminated soil in Process 3

    粒径划分PAHs初始浓度/(mg/kg)PAHs浓度占比%淋洗后PAHs残留率%化学氧化后PAHs残留率/%总PAHs降解率/%
    大粒径土(>1.7 mm)52.15±2.1534.57±2.2011.68±2.184.03±0.2295.97±0.22
    小粒径土(≤1.7 mm)158.41±2.8865.43±2.2028.94±3.7020.24±0.1079.76±0.10
    实际污染土壤93.03±5.46100.0085.36
      注:大粒径土和小粒径土降解率数据为实测值,实际土壤的降解率数据为计算值(实际土壤的降解率=小粒径土的PAHs浓度占比×小粒径土PAHs总降解率+大粒径土的PAHs浓度占比×大粒径土PAHs总降解率)。
    下载: 导出CSV

    表  3  湿筛分后各粒径污染土壤质量占比以及PAHs浓度占比

    Table  3.   Mass proportion and PAHs content proportion of contaminated soil with different particle sizes after wet-sieving

    粒径划分/mm土壤质量占比/%PAHs浓度/(mg/kg)PAHs浓度占比/%
    ≤0.07532.08±1.48209.35±4.3556.51±1.49
    0.075~0.257.82±2.62168.35±11.9520.44±4.38
    0.25~1.710.17±2.44111.5±2.1018.68±5.83
    >1.749.94±1.675.45±0.454.37±0.04
    下载: 导出CSV

    表  4  工艺4对污染土壤中PAHs的降解效果

    Table  4.   PAHs degradation effect of contaminated soil in Process 4

    粒径划分PAHs初始
    浓度/(mg/kg)
    PAHs浓
    度占比/%
    淋洗后PAHs
    残留率/%
    生物降解后PAHs
    残留率/%
    化学氧化后
    PAHs残留率/%
    总PAHs
    降解率/%
    大粒径土(>1.7mm)5.45±0.454.37±0.0410.90±6.5189.10±6.51
    小粒径土(≤1.7mm)182.55±4.0095.63±0.0435.24±3.3013.27±0.244.40±0.2795.60±0.27
    实际土壤94.18±5.18100.0095.32
      注:同表2
    下载: 导出CSV

    表  5  不同工艺PAHs降解效果对比

    Table  5.   Comparison of PAHs degradation effects in different processes

    工艺工艺名称采用的土壤修复技术修复时间/d降解率/%
    工艺1生物泥浆生物修复技术2158.64
    工艺2表活增溶+化学氧化+生物泥浆化学氧化技术、
    生物修复技术
    2665.68
    工艺3干筛分+表活分批淋洗+化学氧化土壤淋洗技术、
    化学氧化技术
    1385.36
    工艺4湿筛分+表活分批淋洗+生物泥浆+化学氧化土壤淋洗技术、
    生物修复技术、
    化学氧化技术
    2995.32
    下载: 导出CSV
  • [1] ZHANG T, LIU F, YU X Z, et al. Risk assessment and ecotoxicological diagnosis of soil from a chemical industry park in Nanjing, China[J]. Ecotoxicology,2021,30(7):1303-1314. doi: 10.1007/s10646-020-02320-2
    [2] OLAYINKA O O, ADEWUSI A A, OLUJIMI O O, et al. Polycyclic aromatic hydrocarbons in sediment and health risk of fish, crab and shrimp around atlas cove, Nigeria[J]. Journal of Health & Pollution,2019,9(24):191204.
    [3] KUMAR M, BOLAN N S, HOANG S A, et al. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: to immobilize, mobilize, or degrade[J]. Journal of Hazardous Materials,2021,420:126534. doi: 10.1016/j.jhazmat.2021.126534
    [4] BAUER A K, VELMURUGAN K, PLÖTTNER S, et al. Environmentally prevalent polycyclic aromatic hydrocarbons can elicit co-carcinogenic properties in an in vitro murine lung epithelial cell model[J]. Archives of Toxicology,2018,92(3):1311-1322. doi: 10.1007/s00204-017-2124-5
    [5] MALETIĆ S P, BELJIN J M, RONČEVIĆ S D, et al. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques[J]. Journal of Hazardous Materials,2019,365:467-482. doi: 10.1016/j.jhazmat.2018.11.020
    [6] ZHANG L G, QIU X Y, HUANG L, et al. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater[J]. Journal of Hazardous Materials,2021,419:126524. doi: 10.1016/j.jhazmat.2021.126524
    [7] 吴枭雄, 王红旗, 刘自力.多环芳烃污染土壤的微生物修复技术研究进展[J]. 环境与发展,2018,30(7):108-109.

    WU X X, WANG H Q, LIU Z L. Progress in research on microbial remediation of polycyclic aromatic hydrocarbon contaminated soil[J]. Inner Mongolia Environmental Sciences,2018,30(7):108-109.
    [8] 李凤梅, 郭书海, 张灿灿, 等.多环芳烃降解菌的筛选及其在焦化场地污染土壤修复中的应用[J]. 环境污染与防治,2016,38(4):1-5.

    LI F M, GUO S H, ZHANG C C, et al. Isolation of PAHs degrading bacteria and its application to mediation of polluted soil in coking site[J]. Environmental Pollution and Control,2016,38(4):1-5.
    [9] KARIYAWASAM T, DORAN G S, HOWITT J A, et al. Polycyclic aromatic hydrocarbon contamination in soils and sediments: sustainable approaches for extraction and remediation[J]. Chemosphere,2022,291:132981. doi: 10.1016/j.chemosphere.2021.132981
    [10] CAO W, YIN L Q, ZHANG D, et al. Contamination, sources, and health risks associated with soil PAHs in rebuilt land from a coking plant, Beijing, China[J]. International Journal of Environmental Research and Public Health,2019,16(4):670. doi: 10.3390/ijerph16040670
    [11] 王荔, 张腾飞, 杨苏才, 等.焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报,2021,11(4):720-726.

    WANG L, ZHANG T F, YANG S C, et al. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology,2021,11(4):720-726.
    [12] TRELLU C, PECHAUD Y, OTURAN N, et al. Remediation of soils contaminated by hydrophobic organic compounds: how to recover extracting agents from soil washing solutions[J]. Journal of Hazardous Materials,2021,404:124137. doi: 10.1016/j.jhazmat.2020.124137
    [13] PREMNATH N, MOHANRASU K, GURU RAJ RAO R, et al. A crucial review on polycyclic aromatic hydrocarbons: environmental occurrence and strategies for microbial degradation[J]. Chemosphere,2021,280:130608. doi: 10.1016/j.chemosphere.2021.130608
    [14] LEMAIRE J, BUÈS M, KABECHE T, et al. Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation[J]. Journal of Environmental Chemical Engineering,2013,1(4):1261-1268. doi: 10.1016/j.jece.2013.09.018
    [15] 陈倩, 蔡武, 陈杰, 等.不同化学氧化剂对土壤中多环芳烃的降解效果[J]. 浙江大学学报(工学版),2019(12):2437-2444.

    CHEN Q, CAI W, CHEN J, et al. Degradation effects of different chemical oxidants on polycyclic aromatic hydrocarbons in soil[J]. Journal of Zhejiang University (Engineering Science),2019(12):2437-2444.
    [16] KUPPUSAMY S, THAVAMANI P, VENKATESWARLU K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions[J]. Chemosphere,2017,168:944-968. doi: 10.1016/j.chemosphere.2016.10.115
    [17] MAO X H, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils: a review[J]. Journal of Hazardous Materials,2015,285:419-435. doi: 10.1016/j.jhazmat.2014.12.009
    [18] SHANTI, LAMICHHANE K C. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review[J]. Journal of Environmental Management,2017,199:46-61.
    [19] GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials,2009,172(2/3):532-549.
    [20] ZENG J, LIN X G, ZHANG J, et al. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil[J]. Journal of Hazardous Materials,2010,183(1/2/3):718-723.
    [21] ZHENG M M, CAO M H, YANG D H, et al. Enhanced desorption of cationic and anionic metals/metalloids from co-contaminated soil by tetrapolyphosphate washing and followed by ferrous sulfide treatment[J]. Environmental Pollution,2022,296:118688. doi: 10.1016/j.envpol.2021.118688
    [22] ZONG Y, MAO Y F, XU L Q, et al. Non-selective degradation of organic pollutants via dioxygen activation induced by Fe(Ⅱ)-tetrapolyphosphate complexes: identification of reactive oxidant and kinetic modeling[J]. Chemical Engineering Journal,2020,398:125603. doi: 10.1016/j.cej.2020.125603
    [23] ZHANG C W, KONG C P, TRATNYEK P G, et al. Generation of reactive oxygen species and degradation of pollutants in the Fe2+/O2/tripolyphosphate system: regulated by the concentration ratio of Fe2+ and tripolyphosphate[J]. Environmental Science & Technology,2022,56(7):4367-4376.
    [24] WANG L, WANG F, LI P N, et al. Ferrous–tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation[J]. Separation and Purification Technology,2013,120:148-155. doi: 10.1016/j.seppur.2013.10.002
    [25] NAKAZAWA M M, GAVAZZA S, KATO M T, et al. Evaluation of rhamnolipid addition on the natural attenuation of estuarine sediments contaminated with diesel oil[J]. Environmental Science and Pollution Research,2017,24(33):25522-25533. doi: 10.1007/s11356-016-7152-9
    [26] 麻俊胜, 苟雅玲, 王兴润, 等.化学氧化后深层土壤中多环芳烃的缺氧微生物降解[J]. 环境工程技术学报,2020,10(1):97-104. doi: 10.12153/j.issn.1674-991X.20190067

    MA J S, GOU Y L, WANG X R, et al. Anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged deep soil pretreated with chemical oxidation[J]. Journal of Environmental Engineering Technology,2020,10(1):97-104. doi: 10.12153/j.issn.1674-991X.20190067
    [27] DU J Q, LIU J X, JIA T, et al. The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants[J]. Environmental Pollution,2022,298:118823. doi: 10.1016/j.envpol.2022.118823
    [28] MORA V C, MORELLI I S, ROSSO J A. Co-treatment of an oily sludge and aged contaminated soil: permanganate oxidation followed by bioremediation[J]. Journal of Environmental Management,2020,261:110169. □ doi: 10.1016/j.jenvman.2020.110169
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  134
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 录用日期:  2023-06-12
  • 修回日期:  2023-04-12

目录

    /

    返回文章
    返回