留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工湿地温室气体排放研究进展与减污降碳优化

马洪运 周磊 张雪琦 孔令为 成水平

马洪运,周磊,张雪琦,等.人工湿地温室气体排放研究进展与减污降碳优化[J].环境工程技术学报,2023,13(6):2043-2052 doi: 10.12153/j.issn.1674-991X.20230175
引用本文: 马洪运,周磊,张雪琦,等.人工湿地温室气体排放研究进展与减污降碳优化[J].环境工程技术学报,2023,13(6):2043-2052 doi: 10.12153/j.issn.1674-991X.20230175
MA H Y,ZHOU L,ZHANG X Q,et al.Research progress of greenhouse gas emissions and optimization of pollution removal and carbon reduction in constructed wetland[J].Journal of Environmental Engineering Technology,2023,13(6):2043-2052 doi: 10.12153/j.issn.1674-991X.20230175
Citation: MA H Y,ZHOU L,ZHANG X Q,et al.Research progress of greenhouse gas emissions and optimization of pollution removal and carbon reduction in constructed wetland[J].Journal of Environmental Engineering Technology,2023,13(6):2043-2052 doi: 10.12153/j.issn.1674-991X.20230175

人工湿地温室气体排放研究进展与减污降碳优化

doi: 10.12153/j.issn.1674-991X.20230175
基金项目: 国家自然科学基金项目(52170168);中央高校基本科研业务费专项(22120220367);浙江省自然科学基金联合基金重点项目(LHZ22E090001)
详细信息
    作者简介:

    马洪运(1997—),男,硕士研究生,研究方向为生态工程,782038245@qq.com

    通讯作者:

    成水平(1969—),男,教授,博士,研究方向为生态工程,shpcheng@tongji.edu.cn

  • 中图分类号: X703;X171

Research progress of greenhouse gas emissions and optimization of pollution removal and carbon reduction in constructed wetland

  • 摘要:

    全球气候变暖问题越来越受到重视,随着人工湿地广泛应用于水处理,人工湿地温室气体排放也受到关注。采用文献计量学方法,筛选分析了Web of Science(WoS)核心数据库中人工湿地温室气体排放相关文献,聚类统计了其中216篇研究文献关键词,总结了主要研究方向及进展。结果表明:1)人工湿地温室气体排放研究相关文献数量于2003年开始逐年增加,文献被引频次同样逐年上升;主要研究热点关键词聚类为四大研究方向,即基质和曝气对温室气体排放的影响、植物对温室气体排放的影响、一氧化二氮(N2O)产生及去除路径、甲烷(CH4)产生及去除路径。2)人工湿地基质种类及配置均会影响人工湿地温室气体排放;而曝气可改变人工湿地内部氧化还原条件导致温室气体排放发生变化;植物能够减少人工湿地温室气体排放总量,且不同植物因通气组织及生物量的差异引起人工湿地温室气体排放差异。3)人工湿地N2O产生于硝化/反硝化、厌氧氨氧化、硝酸盐异化还原成铵等多条路径,但N2O去除路径仅有反硝化;人工湿地CH4产生于有机物厌氧氧化过程,其去除则包括好氧氧化和厌氧氧化2条路径。基于上述综述,提出人工湿地工艺/运行方式优选、内部配置优化、外部条件强化等方面的优化模式,并提出未来需深入研究人工湿地内部N2O 及CH4 转化机制,优化调控人工湿地温室气体排放,以实现人工湿地减污降碳。

     

  • 图  1  人工湿地温室气体排放研究年发文量及被引频次

    Figure  1.  Number of publications and frequency of citations per year for research on GHGs emissions from constructed wetlands

    图  2  人工湿地温室气体排放关键词共现网络云图

    Figure  2.  Cooccurrence network cloud of GHGs emission keywords in constructed wetlands

    图  3  人工湿地中温室气体的产生、迁移及转化机制

    Figure  3.  Mechanism of GHGs production, transport and transformation in constructed wetlands

    图  4  人工湿地减污降碳优化模式

    Figure  4.  Optimized route for pollutant removal and carbon emissions reduction in constructed wetlands

    表  1  人工湿地温室气体排放相关文献关键词聚类统计

    Table  1.   Keyword clustering statistics of papers related to GHGs emissions from constructed wetlands

    聚类 关键词
    1 biochar(生物炭)、dissolved organic-matter(溶解性有机物)、impact(影响)、intermittent aeration(间歇曝气)、media(基质)、nitrogen(氮)、nitrogen removal(脱氮)、nutrient removal(营养物去除)、oxygen(氧)
    2 dinitrogen(脱氮)、efficiency(效率)、GWP(温室效应潜力)、greenhouse gas emissions(温室气体排放)、macrophytes(大型植物)、methane emission(CH4排放)、microbial processes(微生物过程)、Phragmites australis(芦苇)、removal(去除)、temperature(温度)、
    vascular plants(维管束植物)
    3 denitrification(反硝化)、functional genes(功能基因)、microbial communities(微生物群落)、nitrate removal(硝酸盐去除)、
    nitric-oxide(NO)、nitrification(硝化)、nitrogen transformation(氮转化)、nitrous oxide emission(N2O排放)
    4 bacteria(细菌)、biomass(生物量)、community structure(群落结构)、diversity(多样性)、dynamics(动力)、growth(生长)、methanogenesis
    (甲烷生成)、methanotrophs(甲烷营养)、microcosms(微宇宙)、reduction(还原)、rhizosphere(根区)、species richness(物种丰度)
    下载: 导出CSV

    表  2  生物炭作为基质调控人工湿地温室气体排放的效果

    Table  2.   Effects of biochar substrate on GHGs emissions regulation from constructed wetlands

    人工湿地类型 生物炭制备的原料 生物炭填充
    比例/%
    N2O产生量与TN去除量
    平均降低率比值1)/%
    CH4产生量与TOC去除率
    平均降低率比值1)/%
    CO2产生量与TOC去除率
    平均降低率比值1)/%
    水平潜流人工湿地[16] 蔷薇枝 50 33.4 32.0 30.6
    潜流人工湿地[17] 蔷薇枝 50 60.0 50.0 21.5
    潜流人工湿地[28] 桃核 16.7 60.5 −700 5.8
    垂直潜流人工湿地[29-30] 竹片 19.2 0
    垂直潜流人工湿地[19] 香蒲 10 27 −76.6 35.9
    垂直潜流人工湿地[31] 芦竹 40 67.3
    垂直潜流人工湿地[32] 竹片 19.2 35.4
      1)为生物炭基质人工湿地与研究对照组人工湿地相比。
    下载: 导出CSV
  • [1] VYMAZAL J H, BRIX P F, COOPER R, et al. Removal mechanisms and types of constructed wetlands, constructed wetlands for wastewater treatment in europe[M]//Removal mechanisms and types of constructed wetlands. Netherlands: Backhuys Publisher, 1998: 17-66.
    [2] 卢少勇, 万正芬, 康兴生, 等. 《人工湿地水质净化技术指南》编制思路与体系[J]. 环境工程技术学报,2021,11(5):829-836. doi: 10.12153/j.issn.1674-991X.20210377

    LU S Y, WAN Z F, KANG X S, et al. Idea and system of compiling Technical Guidelines for Water Purification by Constructed Wetlands[J]. Journal of Environmental Engineering Technology,2021,11(5):829-836. doi: 10.12153/j.issn.1674-991X.20210377
    [3] 奉小忧, 宋永会, 曾清如, 等. 不同植物人工湿地净化效果及基质微生物状况差异分析[J]. 环境科学研究,2011,24(9):1035-1041. doi: 10.13198/j.res.2011.09.71.fengxy.015

    FENG X Y, SONG Y H, ZENG Q R, et al. Purification effects and differences in substrate microorganism status in constructed wetlands vegetated with different plants[J]. Research of Environmental Sciences,2011,24(9):1035-1041. doi: 10.13198/j.res.2011.09.71.fengxy.015
    [4] DU Y Y, LUO B, HAN W J, et al. Increasing plant diversity offsets the influence of coarse sand on ecosystem services in microcosms of constructed wetlands[J]. Environmental Science and Pollution Research,2020,27(27):34398-34411. doi: 10.1007/s11356-020-09592-5
    [5] DU Y Y, PAN K X, YU C C, et al. Plant diversity decreases net global warming potential integrating multiple functions in microcosms of constructed wetlands[J]. Journal of Cleaner Production,2018,184:718-726. doi: 10.1016/j.jclepro.2018.02.273
    [6] EDENHOFER O, PICHS-MADRUGA R, SOKONA Y, et al. Change 2014: mitigation of climate change. contribution of working group Ⅲ to the fifth assessment report of the intergovernmental panel on climate change[J/OL]. Computational Geometry, 2014. doi: 10.1016/S0925-7721(01)00003-7.
    [7] YUE X L, GAO Q X. Contributions of natural systems and human activity to greenhouse gas emissions[J]. Advances in Climate Change Research,2018,9(4):243-252. doi: 10.1016/j.accre.2018.12.003
    [8] MALTAIS-LANDRY G, MARANGER R, BRISSON J, et al. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands[J]. Environmental Pollution,2009,157(3):748-754. doi: 10.1016/j.envpol.2008.11.019
    [9] MANDER Ü, DOTRO G, EBIE Y, et al. Greenhouse gas emission in constructed wetlands for wastewater treatment: a review[J]. Ecological Engineering,2014,66:19-35. doi: 10.1016/j.ecoleng.2013.12.006
    [10] MAUCIERI C, BARBERA A C, VYMAZAL J, et al. A review on the main affecting factors of greenhouse gases emission in constructed wetlands[J]. Agricultural and Forest Meteorology,2017,236:175-193. doi: 10.1016/j.agrformet.2017.01.006
    [11] CHENG S Y, QIN C L, XIE H J, et al. Comprehensive evaluation of manganese oxides and iron oxides as metal substrate materials for constructed wetlands from the perspective of water quality and greenhouse effect[J]. Ecotoxicology and Environmental Safety,2021,221:112451. doi: 10.1016/j.ecoenv.2021.112451
    [12] ZHANG K, LIU Y H, CHEN Q, et al. Effect of submerged plant species on CH4 flux and methanogenic community dynamics in a full-scale constructed wetland[J]. Ecological Engineering,2018,115:96-104. doi: 10.1016/j.ecoleng.2018.02.025
    [13] CHEN X, ZHU H, YAN B X, et al. Greenhouse gas emissions and wastewater treatment performance by three plant species in subsurface flow constructed wetland mesocosms[J]. Chemosphere,2020,239:124795. doi: 10.1016/j.chemosphere.2019.124795
    [14] JI B, ZHAO Y Q, VYMAZAL J, et al. Mapping the field of constructed wetland-microbial fuel cell: a review and bibliometric analysis[J]. Chemosphere,2021,262:128366. doi: 10.1016/j.chemosphere.2020.128366
    [15] DENG S J, CHEN J Q, CHANG J J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: performance and ecological benefits[J]. Journal of Cleaner Production,2021,293:126156. doi: 10.1016/j.jclepro.2021.126156
    [16] JI B H, CHEN J Q, MEI J, et al. Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface-flow constructed wetlands[J]. Bioresource Technology,2020,302:122890. doi: 10.1016/j.biortech.2020.122890
    [17] JI B H, CHEN J Q, LI W, et al. Greenhouse gas emissions from constructed wetlands are mitigated by biochar substrates and distinctly affected by tidal flow and intermittent aeration modes[J]. Environmental Pollution,2021,271:116328. doi: 10.1016/j.envpol.2020.116328
    [18] ZHENG F F, FANG J H, GUO F C, et al. Biochar based constructed wetland for secondary effluent treatment: waste resource utilization[J]. Chemical Engineering Journal,2022,432:134377. doi: 10.1016/j.cej.2021.134377
    [19] GUO F C, ZHANG J M, YANG X Y, et al. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios[J]. Bioresource Technology,2020,303:122908. doi: 10.1016/j.biortech.2020.122908
    [20] LIANG Y K, WANG Q H, HUANG L, et al. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity[J]. Bioresource Technology,2020,307:123249. doi: 10.1016/j.biortech.2020.123249
    [21] ZOU X, HAO Q, ZHAO M, et al. Effects of hematite and biochar addition on sewage treatment and greenhouse gases emissions in subsurface flow constructed wetland[J]. Chinese Journal of Environmental Engineering,2021,15(2):588-598.
    [22] KASAK K, MANDER Ü, TRUU J, et al. Alternative filter material removes phosphorus and mitigates greenhouse gas emission in horizontal subsurface flow filters for wastewater treatment[J]. Ecological Engineering,2015,77:242-249. doi: 10.1016/j.ecoleng.2015.01.038
    [23] ZHAO Z Y, CHANG J, HAN W J, et al. Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands[J]. Ecological Engineering,2016,95:390-398. doi: 10.1016/j.ecoleng.2016.06.047
    [24] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment,2007,380(1/2/3):48-65.
    [25] ZHOU X, GAO L, ZHANG H, et al. Determination of the optimal aeration for nitrogen removal in biochar-amended aerated vertical flow constructed wetlands[J]. Bioresource Technology,2018,261:461-464. doi: 10.1016/j.biortech.2018.04.028
    [26] LIU X L, ZHANG K, FAN L Q, et al. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment[J]. Environmental Science and Pollution Research,2018,25(24):24426-24444. doi: 10.1007/s11356-018-2226-5
    [27] ZHAO Z J, HAO Q J, MA R Z, et al. Ferric-carbon micro-electrolysis and zeolite reduce CH4 and N2O emissions from the aerated constructed wetland[J]. Journal of Cleaner Production,2022,342:130946. doi: 10.1016/j.jclepro.2022.130946
    [28] CHEN X, ZHU H, BAÑUELOS G, et al. Biochar reduces nitrous oxide but increases methane emissions in batch wetland mesocosms[J]. Chemical Engineering Journal,2020,392:124842. doi: 10.1016/j.cej.2020.124842
    [29] FENG L K, LIU Y, ZHANG J Y, et al. Dynamic variation in nitrogen removal of constructed wetlands modified by biochar for treating secondary livestock effluent under varying oxygen supplying conditions[J]. Journal of Environmental Management,2020,260:110152. doi: 10.1016/j.jenvman.2020.110152
    [30] FENG L K, WANG R G, JIA L X, et al. Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater[J]. Chemical Engineering Journal,2020,379:122273. doi: 10.1016/j.cej.2019.122273
    [31] 王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学,2018,39(10):4505-4511. doi: 10.13227/j.hjkx.201801302

    WANG N, HUANG L, LUO X, et al. Impact of biochar on nitrogen removal and nitrous oxide emission in aerated vertical flow constructed wetland[J]. Environmental Science,2018,39(10):4505-4511. doi: 10.13227/j.hjkx.201801302
    [32] ZHOU X, JIA L X, LIANG C L, et al. Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland: effects of influent strength[J]. Chemical Engineering Journal,2018,334:1842-1850. doi: 10.1016/j.cej.2017.11.066
    [33] McINERNEY E, HELTON A M. The effects of soil moisture and emergent herbaceous vegetation on carbon emissions from constructed wetlands[J]. Wetlands,2016,36(2):275-284. doi: 10.1007/s13157-016-0736-9
    [34] CARBALLEIRA T, RUIZ I, SOTO M. Methanogenic activity of accumulated solids and gas emissions from planted and unplanted shallow horizontal subsurface flow constructed wetlands[J]. Ecological Engineering,2017,98:297-306. doi: 10.1016/j.ecoleng.2016.10.079
    [35] XU G M, LI Y E, WANG S, et al. An overview of methane emissions in constructed wetlands: how do plants influence methane flux during the wastewater treatment[J]. Journal of Freshwater Ecology,2019,34(1):333-350. doi: 10.1080/02705060.2019.1588176
    [36] JIANG X Y, TIAN Y F, JI X Y, et al. Influences of plant species and radial oxygen loss on nitrous oxide fluxes in constructed wetlands[J]. Ecological Engineering,2020,142:105644. doi: 10.1016/j.ecoleng.2019.105644
    [37] FENG L K, HE S F, YU H, et al. A novel plant-girdling study in constructed wetland microcosms: insight into the role of plants in oxygen and greenhouse gas transport[J]. Chemical Engineering Journal,2022,431:133911. doi: 10.1016/j.cej.2021.133911
    [38] WANG Y H, YANG H, YE C, et al. Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands[J]. Environmental Pollution,2013,174:273-278. doi: 10.1016/j.envpol.2012.11.032
    [39] CHANG J, FAN X, SUN H Y, et al. Plant species richness enhances nitrous oxide emissions in microcosms of constructed wetlands[J]. Ecological Engineering,2014,64:108-115. doi: 10.1016/j.ecoleng.2013.12.046
    [40] HAN W J, SHI M M, CHANG J, et al. Plant species diversity reduces N2O but not CH4 emissions from constructed wetlands under high nitrogen levels[J]. Environmental Science and Pollution Research,2017,24(6):5938-5948. doi: 10.1007/s11356-016-8288-3
    [41] LIU F Q, ZHANG Y P, LIANG H, et al. Long-term harvesting of reeds affects greenhouse gas emissions and microbial functional genes in alkaline wetlands[J]. Water Research,2019,164:114936. doi: 10.1016/j.watres.2019.114936
    [42] LIU D, WU X, CHANG J, et al. Constructed wetlands as biofuel production systems[J]. Nature Climate Change,2012,2(3):190-194. doi: 10.1038/nclimate1370
    [43] LIU D, ZOU C X, XU M J. Environmental, ecological, and economic benefits of biofuel production using a constructed wetland: a case study in China[J]. International Journal of Environmental Research and Public Health,2019,16(5):827. doi: 10.3390/ijerph16050827
    [44] WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research,2012,46(4):1027-1037. doi: 10.1016/j.watres.2011.11.080
    [45] PAPEN H, von BERG R, HINKEL I, et al. Heterotrophic nitrification by Alcaligenes faecalis: NO2 , NO3 , N2O, and NO production in exponentially growing cultures[J]. Applied and Environmental Microbiology,1989,55(8):2068-2072. doi: 10.1128/aem.55.8.2068-2072.1989
    [46] ZHU G B, JETTEN M S M, KUSCHK P, et al. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems[J]. Applied Microbiology and Biotechnology,2010,86(4):1043-1055. doi: 10.1007/s00253-010-2451-4
    [47] LIU L Y, XIE G J, XING D F, et al. Sulfate dependent ammonium oxidation: a microbial process linked nitrogen with sulfur cycle and potential application[J]. Environmental Research,2021,192:110282. doi: 10.1016/j.envres.2020.110282
    [48] HUANG L, GAO X, GUO J S, et al. A review on the mechanism and affecting factors of nitrous oxide emission in constructed wetlands[J]. Environmental Earth Sciences,2013,68(8):2171-2180. doi: 10.1007/s12665-012-1900-z
    [49] CHON K, CHANG J S, LEE E, et al. Abundance of denitrifying genes coding for nitrate ( narG), nitrite ( nirS), and nitrous oxide ( nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands[J]. Ecological Engineering,2011,37(1):64-69. doi: 10.1016/j.ecoleng.2009.04.005
    [50] POTH M, FOCHT D D. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology,1985,49(5):1134-1141. doi: 10.1128/aem.49.5.1134-1141.1985
    [51] ZHANG Q L, LIU Y, AI G M, et al. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7[J]. Bioresource Technology,2012,108:35-44. doi: 10.1016/j.biortech.2011.12.139
    [52] TAKAYA N, CATALAN-SAKAIRI M A B, SAKAGUCHI Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology,2003,69(6):3152-3157. doi: 10.1128/AEM.69.6.3152-3157.2003
    [53] ZHANG M P, HUANG J C, SUN S S, et al. Impact of functional microbes on nitrogen removal in artificial tidal wetlands in the Yangtze River Estuary: evidence from molecular and stable isotopic analyses[J]. Journal of Cleaner Production,2021,287:125077. doi: 10.1016/j.jclepro.2020.125077
    [54] CHEN X, ZHU H, YAN B X, et al. Optimal influent COD/N ratio for obtaining low GHG emissions and high pollutant removal efficiency in constructed wetlands[J]. Journal of Cleaner Production,2020,267:122003. doi: 10.1016/j.jclepro.2020.122003
    [55] PANG J L, PAN J, TONG D L, et al. How do hydraulic load and intermittent aeration affect pollutants removal and greenhouse gases emission in wastewater ecological soil infiltration systems[J]. Ecological Engineering,2020,146:105747. doi: 10.1016/j.ecoleng.2020.105747
    [56] HOU L J, YIN G Y, LIU M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments[J]. Environmental Science & Technology,2015,49(1):326-333.
    [57] TAI P D, LI P J,SUN T H,et al. Greenhouse gas emissions from a constructed wetland for municipal sewage treatment[J]. Journal of Environmental Sciences,2002,14(1):27-33.
    [58] LIU W B, XIAO H W, MA H P, et al. Reduction of methane emissions from manganese-rich constructed wetlands: role of manganese-dependent anaerobic methane oxidation[J]. Chemical Engineering Journal,2020,387:123402. doi: 10.1016/j.cej.2019.123402
    [59] CHOWDHURY T R, DICK R P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands[J]. Applied Soil Ecology,2013,65:8-22. doi: 10.1016/j.apsoil.2012.12.014
    [60] THANGARAJAN R, BOLAN N S, TIAN G L, et al. Role of organic amendment application on greenhouse gas emission from soil[J]. Science of the Total Environment,2013,465:72-96. doi: 10.1016/j.scitotenv.2013.01.031
    [61] LI T T, HUANG Y, ZHANG W, et al. CH4MODwetland: a biogeophysical model for simulating methane emissions from natural wetlands[J]. Ecological Modelling,2010,221(4):666-680. doi: 10.1016/j.ecolmodel.2009.05.017
    [62] ZHANG M P, HUANG J C, SUN S S, et al. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water[J]. Science of the Total Environment,2020,716:137054. doi: 10.1016/j.scitotenv.2020.137054
    [63] ZHANG K, WU X L, WANG W, et al. Anaerobic oxidation of methane (AOM) driven by multiple electron acceptors in constructed wetland and the related mechanisms of carbon, nitrogen, sulfur cycles[J]. Chemical Engineering Journal,2022,433:133663. doi: 10.1016/j.cej.2021.133663
    [64] MILUCKA J, FERDELMAN T G, POLERECKY L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature,2012,491(7425):541-546. doi: 10.1038/nature11656
    [65] NIE W B, DING J, XIE G J, et al. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles[J]. Water Research,2021,194:116928. doi: 10.1016/j.watres.2021.116928
    [66] CHENG C, SHEN X X, XIE H J, et al. Coupled methane and nitrous oxide biotransformation in freshwater wetland sediment microcosms[J]. Science of the Total Environment,2019,648:916-922. doi: 10.1016/j.scitotenv.2018.08.185
    [67] EGGER M, RASIGRAF O, SAPART C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology,2015,49(1):277-283.
    [68] BONETTI G, TREVATHAN-TACKETT S M, HEBERT N, et al. Microbial community dynamics behind major release of methane in constructed wetlands[J]. Applied Soil Ecology,2021,167:104163. doi: 10.1016/j.apsoil.2021.104163
    [69] 成水平, 王月圆, 吴娟. 人工湿地研究现状与展望[J]. 湖泊科学,2019,31(6):1489-1498. doi: 10.18307/2019.0625

    CHENG S P, WANG Y Y, WU J. Advances and prospect in the studies on constructed wetlands[J]. Journal of Lake Sciences,2019,31(6):1489-1498. ◇ doi: 10.18307/2019.0625
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  169
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-05
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回