Effect of soil quality on physical and chemical properties of vegetation concrete and plant growth
-
摘要:
植被混凝土在裸露边坡生态修复中广泛应用,因土质类型不同,使得基材强度、保水性等差异较大,影响植物生长。不同土质的本质是土颗粒级配差异,砂粒与粗颗粒构成骨架,细颗粒填充黏结。以室内养护与室外盆栽相结合,探究土质(粉土质砂、低液限粉土、低液限黏土)对植被混凝土理化性质及黑麦草生长的影响。结果表明:渗透系数与大孔径和总孔隙率呈正相关,也与水泥水化有关;饱和含水率与总孔隙率及毛细孔隙率呈正相关;水分蒸发率与毛细孔隙率和含水率呈负相关:黏聚力与级配情况和水泥胶结有关;内摩擦角与粗颗粒呈正相关,与磨圆度和水泥水化有关;硝态氮含量和硝态氮淋失率与毛细孔隙和基材紧实情况有关;铵态氮含量和铵态氮淋失率与毛细孔隙和黏粒含量有关。利用偏光显微镜从细观结构角度阐释不同土质影响植被混凝土宏观特征的原因,综合以上指标分析及实践经验,得出粉土质砂配制的植被混凝土更有利植物生长,各项指标均在可接受范围内。
Abstract:Vegetation concrete is widely used in ecological restoration of exposed slopes at present. Different soil types have great differences in substrate strength and water retention, which affects plant growth. The essence of different soils is the difference of soil particle gradation, where sand particles form a skeleton with coarse particles, and fine particles are filled and bonded. Indoor maintenance and outdoor potted plants were combined to explore the effects of soil quality (silty sand, low liquid limit silty soil and low liquid limit clay) on the physical and chemical properties of vegetation concrete and the growth of ryegrass. The results showed that the permeability coefficient was positively correlated with large pore size and total porosity, and also related to cement hydration. Saturated water content was positively correlated with total porosity and capillary porosity. Water evaporation rate was negatively correlated with capillary porosity and water content, and cohesion was related to gradation and cement cementation. The internal friction angle was positively correlated with coarse particles, which was related to roundness and cement hydration. Nitrate content and nitrate leaching rate were related to capillary pores and substrate compactness. Ammonium nitrogen content and ammonium nitrogen leaching rate were related to capillary pores and clay content. The polarizing microscope was used to explain the reasons why different soil properties affected the macro-characteristics of vegetation concrete from the perspective of meso-structure. Based on the above index analysis and practical experience, it was concluded that vegetation concrete made of silty sand was more conducive to plant growth, and all the indexes were within the acceptable range.
-
表 1 植被混凝土各组分质量比
Table 1. Quality ratio of each component of vegetation concrete
种植土 水泥(P.O 42.5) 有机物料 生境基材改良剂 100 6 6 3 表 2 不同土质植被混凝土的基本特性
Table 2. Basic characteristics of vegetation concrete with different soil qualities
参数 混凝土类型 SMVC MLVC CLVC 干密度/(g/cm3) 1.74 1.52 1.61 pH 7.51 7.60 7.62 塑性指数(${I}_{{\rm{p}}}$) 3.00 9.00 速效氮含量/(mg/kg) 38.70 43.20 48.30 表 3 不同土质植被混凝土的渗透系数
Table 3. Permeability coefficient of vegetation concrete with different soil qualities
混凝土类型 渗透系数$/$(10−3 cm/s) SMVC 1.92±0.05a MLVC 1.52±0.08b CLVC 1.40±0.03b 注:不同小写字母表示达到5%显著性差异水平。 表 4 不同土质植被混凝土黑麦草的生长情况
Table 4. Growth of vegetation concrete ryegrass with different soil qualities
混凝土
类型发芽率/% 发芽势/% 株高/mm 地上生物量/g 地下生物量/g SMVC 77.5±1.2a 37.5±2.5b 6.51±0.03a 0.40±0.03a 0.32±0.05a MLVC 80.0±2.8a 46.7±2.2a 6.57±0.05a 0.43±0.04a 0.36±0.04a CLVC 70.0±3.6b 30.8±1.4c 5.50±0.06b 0.38±0.03a 0.28±0.04a 注:同列不同小写字母表示达到5%显著性差异水平。 表 5 不同土质植被混凝土粗粒质状况
Table 5. Coarse-grained status of vegetation concrete with different soil qualities
混凝土类型 平均直径/µm 周长/µm 面积/µm2 磨圆度 SMVC 23.26 53.18 120.35 0.53 MLVC 15.68 73.02 119.86 0.28 CLVC 10.87 67.35 118.75 0.32 表 6 不同土质植被混凝土的孔隙状况
Table 6. Porosity of vegetation concrete with different soil qualities
混凝土类型 平均孔径/µm 总孔隙占比/% 毛细孔隙占比/% SMVC 10.91 42.86 25.52 MLVC 10.25 48.72 42.51 CLVC 8.54 51.03 48.56 -
[1] 张泽洪, 贾立志, 余建平, 等.干旱河谷区草坡防火工程对坡面径流侵蚀的影响[J]. 水土保持学报,2023,37(1):37-44.ZHANG Z H, JIA L Z, YU J P, et al. Effects of grassy slope fire prevention project on runoff and sediment yield in arid valleys area[J]. Journal of Soil and Water Conservation,2023,37(1):37-44. [2] 刘大翔, 李少丽, 许文年, 等.植被混凝土有机质类型与配比的合理选取[J]. 水利水电科技进展,2012,32(4):37-40.LIU D X, LI S L, XU W N, et al. Selection tests for type and ratio of organic matter in vegetation concrete[J]. Advances in Science and Technology of Water Resources,2012,32(4):37-40. [3] 许文年, 夏振尧, 周明涛, 等. 植被混凝土生态防护技术理论与实践[M]. 北京: 中国水利水电出版社, 2012. [4] LIU D X, XU W N, CHENG Z L, et al. Improvement test on frost resistance of vegetation-concrete and engineering application of test fruitage[J]. Environmental Earth Sciences,2013,69(1):161-170. doi: 10.1007/s12665-012-1944-0 [5] 彭新华, 王云强, 贾小旭, 等.新时代中国土壤物理学主要领域进展与展望[J]. 土壤学报,2020,57(5):1071-1087.PENG X H, WANG Y Q, JIA X X, et al. Some key research fields of Chinese soil physics in the new era: progresses and perspectives[J]. Acta Pedologica Sinica,2020,57(5):1071-1087. [6] 刘黎明,宋岩松,钟斌,等.植被混凝土生态修复技术研究进展[J]. 环境工程技术学报,2022,12(3):916-927.LIU L M,SONG Y S,ZHONG B,et al. Research progress on ecological restoration technology of vegetation concrete[J]. Journal of Environmental Engineering Technology,2022,12(3):916-927. [7] GAO J Z, LIU D X, XU Y K, et al. Effects of two types of activated carbon on the properties of vegetation concrete and cynodon dactylon growth[J]. Scientific Reports,2020,10(1):14483-14495. doi: 10.1038/s41598-020-71440-w [8] 王稷, 陈芳清, 唐彪, 等.两种草本植物光合生理与生化特性对植被混凝土水泥含量的响应[J]. 应用与环境生物学报,2020,26(1):25-30.WANG J, CHEN F Q, TANG B, et al. Responses of photosynthesis-related physiological and biochemical characteristics in two herbaceous plants to cement content in vegetation concrete matrix[J]. Chinese Journal of Applied and Environmental Biology,2020,26(1):25-30. [9] 程虎, 许文年, 罗婷, 等.基于植被混凝土的不同优势物种根际土壤养分及微生物量化学计量特征差异[J]. 长江科学院院报,2020,37(6):55-61.CHENG H, XU W N, LUO T, et al. Stoichiometric differences of nutrients and microbial biomass in rhizosphere soil among different dominant species in vegetation-growing concrete[J]. Journal of Yangtze River Scientific Research Institute,2020,37(6):55-61. [10] WANG L, SONG X F, Yang H M, et al. Pore structural and fractal analysis of the effects of MgO reactivity and dosage on permeability and F–T resistance of concrete[J]. Fractal and Fractional,2022,6(2):113-120. doi: 10.3390/fractalfract6020113 [11] 芮凯军, 李俊才, 杨宇, 等.不同土质水泥土性质的室内试验[J]. 南京工业大学学报(自然科学版),2019,41(2):173-178.RUI K J, LI J C, YANG Y, et al. Laboratory tests on properties of cement soil with different soils[J]. Journal of Nanjing Tech University(Natural Science Edition),2019,41(2):173-178. [12] 姚萌. 崇明东滩吹填区软土微观结构特征与渗透系数变化机理研究[D]. 长春: 吉林大学, 2020. [13] 冯高顺, 余飞, 戴张俊, 等.川中红层泥岩吸水膨胀时效特征的试验研究[J]. 岩石力学与工程学报,2022,41(S1):2780-2790.FENG G S, YU F, DAI Z J, et al. Experimental study on time effect characteristics of red mudstone swelling in Central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S1):2780-2790. [14] 张继文, 穆青翼, 廖红建, 等.考虑土体孔隙比和比表面积影响的未冻结体积含水率曲线模型[J]. 岩土力学,2020,41(9):2913-2921.ZHANG J W, MU Q Y, LIAO H J, et al. A soil freezing characteristic curve model for capturing void ratio and specific surface area effects[J]. Rock and Soil Mechanics,2020,41(9):2913-2921. [15] HUANG H X, SUN W, JI W M, et al. Effects of pore-throat structure on gas permeability in the tight sandstone reservoirs of the upper Triassic yanchang formation in the Western Ordos Basin, China[J]. Journal of Petroleum Science and Engineering,2018,162(162):602-616. [16] 范震, 丁新惠, 赵丹, 等.玉米秸秆基纤维素保水剂对土壤持水性能及冬小麦根系生长的影响[J]. 中国农学通报,2021,37(17):51-57.FAN Z, DING X H, ZHAO D, et al. Effects of maize straw cellulose-based super absorbent polymer on soil water retention capacity and root growth of wheat[J]. Chinese Agricultural Science Bulletin,2021,37(17):51-57. [17] 张继义, 赵哈林.退化沙质草地恢复过程土壤颗粒组成变化对土壤-植被系统稳定性的影响[J]. 生态环境学报,2009,18(4):1395-1401.ZHANG J Y, ZHAO H L. Changes in soil particles fraction and their effects on stability of soil-vegetation system in restoration processes of degraded sandy grassland[J]. Ecology and Environmental Sciences,2009,18(4):1395-1401. [18] 马忠明, 杜少平, 薛亮.覆砂年限对砂田砂层质量、土壤水热状况及西瓜生长的影响[J]. 中国沙漠,2013,33(5):1433-1439.MA Z M, DU S P, XUE L. Influences of sand-mulching years on soil temperature, water content, and growth and water use efficiency of watermelon[J]. Journal of Desert Research,2013,33(5):1433-1439. [19] 李同录, 张辉, 李萍, 等.不同沉积环境下马兰黄土孔隙分布与土水特征的模式分析[J]. 水文地质工程地质,2020,47(3):107-114.LI T L, ZHANG H, LI P, et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology and Engineering Geology,2020,47(3):107-114. [20] 李双洋, 陈芳清, 熊丹伟.外掺料对植被混凝土高羊茅根系生长及抗剪强度的作用[J]. 环境工程技术学报,2023,13(3):1242-1248.LI S Y, CHEN F Q, XIONG D W, et al. Effect of external admixtures on the growth and shear strength of festuca arundinacea roots in vegetated concrete[J]. Journal of Environmental Engineering Technology,2023,13(3):1242-1248. [21] 刘伟韬, 杜衍辉, 庞立夫, 等.不同级配陷落柱充填体力学特征实验研究[J]. 煤田地质与勘探,2023,51(2):220-228.LIU W T, DU Y H, PANG L F, et al. Similar simulation experimental on the influence of the mechanical characteristics of karst column fills in coal mines[J]. Coal Geology and Exploration,2023,51(2):220-228. [22] 苗小龙, 杜燕.与胡修棉的讨论: 水流搬运与沉积过程中掺和作用对碎屑颗粒的重要影响[J]. 古地理学报,2017,19(4):648-652.MIAO X L, DU Y. Discussion with Hu: significant influence of mixing action to clastic particles during the process of flowing transportation and sedimentation[J]. Journal of Palaeogeography (Chinese Edition),2017,19(4):648-652. [23] 代子俊, 赵霞, 李德成, 等.近30年湟水流域土壤全氮时空变异及影响因素[J]. 土壤学报,2018,55(2):338-350.DAI Z J, ZHAO X, LI D C, et al. Spatio-temporal Variation of Soil Total Nitrogen in Huangshui River Basin and Its affecting factors in the past 30 years[J]. Acta Pedologica Sinica,2018,55(2):338-350. [24] 孙玮皓, 申孝军, 司转运, 等.滴灌施肥时序对不同质地土壤水氮分布的影响[J]. 灌溉排水学报,2022,41(3):47-53.SUN W H, SHEN X J, SI Z Y, et al. Optimal timing of fertilization in drip fertigation for bioavailable water and nitrogen in soils of different textures[J]. Journal of Irrigation and Drainage,2022,41(3):47-53. [25] 郑继成, 张刚, 王德建, 等.稻麦轮作下秸秆还田对稻麦产量和稻田可溶性有机碳含量的影响[J]. 中国生态农业学报(中英文),2019,27(3):431-440.ZHENG J C, ZHANG G, WANG D J, et al. Effects of straw incorporation on crop yield and dissolved organic carbon concentration at rice growing season in rice-wheat rotation cropping system[J]. Chinese Journal of Eco-Agriculture,2019,27(3):431-440. [26] 王佳敏, 宋海燕, 陈金艺, 等.多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略[J]. 生态学报,2020,40(13):4566-4572.WANG J M, SONG H Y, CHEN J Y, et al. Response strategies of Lolium perenne L. to karst heterogeneous habitats under drought stress[J]. Acta Ecologica Sinica,2020,40(13):4566-4572. [27] 杨钊, 王晓梅, 周云艳.改性植被混凝土基材力学与植生试验研究[J]. 安全与环境工程,2022,29(1):225-233.YANG Z, WANG X M, ZHOU Y Y. Mechanics and plant growth experiment of modified vegetation concrete substrate[J]. Safety and Environmental Engineering,2022,29(1):225-233. [28] 秦鱼生, 涂仕华, 王正银, 等.长期定位施肥下紫色土土壤微形态特征[J]. 生态环境学报,2009(1):352-356. doi: 10.3969/j.issn.1674-5906.2009.01.065QIN Y S, TU S H, WANG Z Y, et al. Micro-morphological features of a purple soil under different long-term fertilizer treatments[J]. Ecology and Environmental Sciences,2009(1):352-356. doi: 10.3969/j.issn.1674-5906.2009.01.065 [29] 彭妙, 张磊, 陶金雨, 等.玛湖凹陷三叠系百口泉组砂砾岩中砾石磨圆度定量表征[J]. 岩性油气藏,2022,34(5):121-129. doi: 10.12108/yxyqc.20220510PENG M, ZHANG L, TAO J Y, et al. Quantitative characterization of gravel roundness of sandy conglomerates of triassic baikouquan formation in Mahu Sag[J]. Lithologic Reservoirs,2022,34(5):121-129. doi: 10.12108/yxyqc.20220510 [30] 高国瑞, 李俊才.水泥加固(改良)软土地基的研究[J]. 工程地质学报,1996,4(1):45-52.GAO G R, LI J C. Study of effect of reinforcing soft cohesive ground with portland cement[J]. Journal of Engineering Geology,1996,4(1):45-52. ⊕