Distribution characteristics of chlorinated hydrocarbons in contaminated plots of typical organic chemical plants and risk assessment based on Monte Carlo simulation
-
摘要:
以长三角某典型有机化工地块为研究对象,采集651个土壤样品和30个地下水样品,研究氯代烃(CAHs)在环境中的污染程度及其空间分布特征,结合蒙特卡洛模拟方法分析土壤和地下水中CAHs的健康风险概率。结果表明:大部分CAHs浓度呈偏正态分布,浓度随着深度增加整体逐渐降低,土壤和地下水中三氯乙烯的污染程度最严重,污染羽主要集中在地块西南部和西北部。三氯乙烯和氯仿是造成健康风险的主要污染物,土壤中三氯乙烯致癌风险大于10−6 的概率为87.2%,危害商大于1的概率为71.76%,氯仿危害商大于1的概率为81.28%。每日土壤摄入量对土壤致癌风险的敏感性最大(31.9%),皮肤表面黏性系数对地下水致癌风险和危害商的敏感度最大,分别为16.9和23%。吸入室内空气中来自下层土壤的气态污染物是造成土壤致癌和非致癌风险的主要暴露途径,吸入室内来自地下的气态污染物途径是造成地下水致癌和非致癌风险的主要暴露途径。
Abstract:A typical organic chemical plot in the Yangtze River Delta was selected as the research object. A total of 651 soil samples and 30 groundwater samples were collected for analysis and determination. The pollution level and spatial distribution characteristics of chlorinated hydrocarbons (CAHs) in the environment were studied. The health risk probability of CAHs in soil and groundwater was analyzed using Monte Carlo simulation method. The results showed that the concentration of most CAHs was in normal distribution, and gradually decreased with the increase of depth. Trichloroethylene pollution in soil and groundwater was the most serious. The contaminant plumes were mainly concentrated in the southwest and northwest of the plot. Trichloroethylene and chloroform were the main pollutants causing health risks. The probability of a carcinogenic risk greater than 10−6 for trichloroethylene in soil was 87.2%, the probability of hazard quotient exceeding 1 was 71.76%, and the probability of chloroform hazard quotient exceeding 1 was 81.28%. The daily soil intake had the highest sensitivity to soil cancer risk (31.9%). The skin surface viscosity coefficient had the highest sensitivity to groundwater cancer risk and hazard quotient, being 16.9% and 23%, respectively. Inhaling gaseous pollutants from the underlying soil in indoor air was the main exposure pathway that caused both carcinogenic and non-carcinogenic risks in soil. Inhaling gaseous pollutants from underground was the main exposure pathway that caused both carcinogenic and non-carcinogenic risks in groundwater.
-
表 1 地块各土层特征参数
Table 1. Characteristic parameters of each soil layer in the researched site
分层 土层类型 含水率/
%比重/(kg/m3) 容重/
(g/cm3)孔隙比 渗透系数/(cm/s) 有机质含量/
(g/kg)第①层 杂填土 38.1 2.70 1.4 1.23 4.77×10−5 11.1 第②层 淤泥质粉质黏土夹砂 37.7 2.72 1.9 1.06 8.25×10−6 11.4 第③层 粉质黏土 28.7 2.73 1.1 0.81 4.84×10−7 12.3 第④层 黏质粉土 28.6 2.71 1.9 0.81 4.39×10−6 12.7 第⑤层 淤泥质粉质黏土 33.8 2.72 1.8 1.08 7.74×10−6 11.8 第⑥层 粉质黏土 27.4 2.72 1.2 0.77 4.81×10−8 11.1 表 2 蒙特卡洛人体健康概率风险评估输入参数
Table 2. Input parameters of Monte Carlo human health probability risk assessment
参数类型 参数名称 参数含义及单位 概率分布类型 概率模拟参数取值 数据来源
人群暴露参数EDa 成人暴露周期/a 三角分布 min=7,max=64,μ=24 文献[18,27] EFa 成人暴露频率/(d/a) 三角分布 min=180,max=365,μ=345 文献[28] OSIRa 成人每日摄入土壤量/(mg/d) 三角分布 min=20,max=1000,μ=100 文献[24] DAIRa 成人每日空气呼吸量/(m3/d) 三角分布 min=6.24,max=114,μ=16.3 文献[24] BWa 成人体重/kg 正态分布 μ=59.78,σ=1.07 文献[29] SAEa 成人暴露皮肤表面积/cm2 正态分布 μ=18182,σ=1.1 文献[30] SSARa 成人皮肤表面土壤黏附系数/(mg/cm2) 正态分布 μ=0.49,σ=0.54 文献[31] FEIa 成人的室内暴露频率/(d/a) 三角分布 min=104,max=347.7,μ=187.5 文献[32] EFOa 成人的室外暴露频率/(d/a) 三角分布 min=36.5,max=213,μ=62.5 文献[32] 客观环境因素参数 ATnc 非致癌效应平均时间/d 常数 9125 文献[14] ATca 致癌效应平均时间/d 均匀分布 min=25404,max=27156 文献[27,32] ABSo 经口摄入吸收效率因子 常数 1 文献[24] Ev 每日皮肤接触事件频率 常数 1 文献[24] PIAF 吸入土壤颗粒物在体内滞留比例 常数 0.75 文献[24] fspo 室外空气中来自土壤颗粒物所占比例 常数 0.5 文献[24] fspi 室内空气中来自土壤颗粒物所占比例 常数 0.8 文献[24] SAF 暴露于土壤的参考剂量分配系数 常数 0.2 文献[24] PM10 空气中可吸入悬浮颗粒物含量/(mg/m3) 常数 0.119 文献[14] 地块特征参数 d 表层污染土壤层厚度/cm 常数 430 实测值 Ls 下层污染土壤层埋深/cm 常数 430 实测值 dsub 下层污染土壤层厚度/cm 常数 2070 实测值 hv 非饱和土层厚度/cm 常数 190 实测值 fom 有机质含量/(g/kg) 常数 13.8 实测值 ρb 土壤容重/(g/cm3) 常数 1.42 实测值 Pws 含水率/% 常数 23 实测值 Lgw 地下水埋深/cm 常数 196 实测值 注:max代表最大值;min代表最小值;μ代表平均值;σ代表标准偏差。 表 3 土壤和地下水中CAHs检测结果
Table 3. Statistics of chlorinated hydrocarbon detection results in soil and groundwater
介质 CAHs种类 筛选值1) 超标率/% 最大值1) 最小值1) 平均值1) 标准
偏差1)变异系数/% 峰度 偏度 土壤 三氯乙烯 2.80 17.63 82400.00 3.07 1114.98 7699.14 6.91 109.81 10.38 1,1,2,2-四氯乙烷 6.80 2.23 495.00 7.64 118.23 154.08 1.30 0.79 1.40 顺-1,2-二氯乙烯 596.00 0.53 1950.00 663.00 1151.33 569.40 0.49 1.80 1.61 氯乙烯 0.43 0.91 238.00 1.38 66.93 79.44 1.19 4.55 2.06 四氯乙烯 53.00 2.34 600.00 61.8 195.03 156.61 0.80 2.12 1.72 反-1,2-二氯乙烯 54.00 0.51 268.00 71.4 139.87 90.68 0.65 2.60 1.72 氯仿 0.90 1.52 65.00 1.03 16.49 23.59 1.43 1.12 1.65 1,1,2-三氯乙烷 2.80 1.82 118.00 4.47 23.10 30.24 1.31 8.89 2.85 1,1-二氯乙烷 9.00 1.82 186.00 10.8 49.75 51.11 1.03 3.44 1.95 三氯乙烯 0.21 56.67 456.00 0.21 74.93 118.78 1.59 5.48 2.27 1,1,2,2-四氯乙烷 0.35 16.67 3.72 0.57 1.69 1.24 0.73 1.22 0.92 顺-1,2-二氯乙烯 0.06 56.67 63.70 0.16 7.53 15.35 2.04 10.95 3.20 氯乙烯 0.09 43.33 11.30 0.12 2.24 3.27 1.46 3.27 1.85 地下水 四氯乙烯 0.30 30.00 18.30 0.79 6.42 5.93 0.92 1.32 1.04 反-1,2-二氯乙烯 0.06 30.00 31.00 0.15 5.90 9.35 1.58 6.49 2.48 氯仿 0.30 23.33 28.30 0.57 8.08 9.19 1.14 2.97 1.77 1)在土壤介质中,单位为 mg/kg;在地下水介质中,单位为 mg/L。 -
[1] FJORDBØGE A S, RIIS C, CHRISTENSEN A G, et al. ZVI-clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. site description and contaminant source mass reduction[J]. Journal of Contaminant Hydrology,2012,140/141:56-66. doi: 10.1016/j.jconhyd.2012.08.007 [2] 耿治鹏,宋颉,王春林, 等.污染场地土壤重金属污染空间特征分析:以某搬迁电镀厂为例[J]. 环境工程技术学报,2023,13(1):295-302.GENG Z P,SONG J,WANG C L, et al. Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example[J]. Journal of Environmental Engineering Technology,2023,13(1):295-302. [3] FAN T, YANG M, LI Q, et al. A new insight into the influencing factors of natural attenuation of chlorinated hydrocarbons contaminated groundwater: a long-term field study of a retired pesticide site[J]. Journal of Hazardous Materials,2022,439:129595. doi: 10.1016/j.jhazmat.2022.129595 [4] XIAO Z, JIANG W, CHEN D, et al. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: a review[J]. Ecotoxicology and Environmental Safety,2020,202:110925. doi: 10.1016/j.ecoenv.2020.110925 [5] LIU Y, MAJETICH S A, TILTON R D, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties[J]. Environmental Science & Technology,2005,39(5):1338-1345. [6] DOLINOVÁ I, CZINNEROVÁ M, DVOŘÁK L, et al. Dynamics of organohalide-respiring bacteria and their genes followingin-situ chemical oxidation of chlorinated ethenes and biostimulation[J]. Chemosphere,2016,157(157):276-285. [7] 牛真茹, 李飞飞, 张有军, 等.某典型污染场地土壤中氯代烃类污染的空间分布与污染成因[J]. 环境工程,2022,40(3):94-101,228.NIU Z R, LI F F, ZHANG Y J, et al. Spatial Distribution and causes of chlorinated hydrocarbons pollution insoil in a typical contaminated site[J]. Environmental Engineering,2022,40(3):94-101,228. [8] 高尚, 王磊, 龙涛, 等.污染地块中高密度非水相液体(DNAPLs)迁移特征及判定调查技术研究进展[J]. 生态与农村环境学报,2018,34(4):289-299.GAO S, WANG L, LONG T, et al. Research Progress on migration characteristics and investigation technologies of DNAPLs contaminated sites[J]. Journal of Ecology andRural Environment,2018,34(4):289-299. [9] 陆强, 李辉, 林匡飞, 等.上海浦东某氯代烃场地地下水污染现状调查[J]. 环境科学学报,2016,36(5):1730-1737.LU Q, LI H, LIN K F, et al. Investigation of chlorinated hydrocarbons in groundwater from a typical contaminated site in Pudong District, Shanghai[J]. Acta Scientiae Circumstantiae,2016,36(5):1730-1737. [10] 朱瑞利. 上海某污染场地地下水中三氯乙烷的自然衰减机制研究[D]. 上海: 华东理工大学, 2014. [11] 李佳斌, 王硕, 代小丽, 等.MIP系统在某挥发性氯代烃污染地块调查中的应用[J]. 环境工程学报,2022,16(2):546-554.LI J B, WANG S, DAI X L, et al. Application of MIP system in investigation of a volatile chlorinated hydrocarbon contaminated site[J]. Chinese Journalof Environmental Engineering,2022,16(2):546-554. [12] 李佳斌.北京某染料厂污染地块土壤和地下水6种氯苯类化合物的分布特征及迁移转化分析[J]. 环境工程学报,2022,16(7):2296-2307.LI J B. Distribution, migration and transformation of six chlorobenzene compounds in soil and groundwater of a dye factory in Beijing[J]. Chinese Journal of Environmental Engineering,2022,16(7):2296-2307. [13] 刘丽丽, 冯秋园, 钟名誉, 等.典型多环芳烃污染场地土壤健康风险评估及参数敏感性分析[J]. 能源与环保,2021,43(12):85-90.LIU L L, FENG Q Y, ZHONG M Y, et al. Health risk assessment and sensitivity analysis of parameters in typical polycyclicaromatic hydrocarbons contaminated sites[J]. China Energy and Environmental Protection,2021,43(12):85-90. [14] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境科学出版社, 2019. [15] 黄剑波, 姜登登, 温冰, 等.基于蒙特卡罗模拟的铅锌冶炼厂周边农田土壤重金属健康风险评估[J]. 环境科学,2023,44(4):2204-2214.HUANG J B, JIANG D D, WEN B, et al. Contamination and probabilistic health risk assessment of heavy metals inagricultural soils around a lead-zinc smelter[J]. Environmental Science,2023,44(4):2204-2214. [16] 杨湜烟, 刘杏梅, 徐建明.土壤重金属污染健康风险评估新视角: 概率风险评估的源起及展望[J]. 土壤学报,2022,59(1):28-37.YANG S Y, LIU X M, XU J M. New perspectives about health risk assessment of soil heavy metalpollution: origin and prospects of probabilistic risk analysis[J]. Acta Pedologica Sinica,2022,59(1):28-37. [17] 陈卓, 张丹, 吴志远, 等.基于形态及生物可给性的汞污染场地概率风险[J]. 环境科学研究,2021,34(11):2748-2756. doi: 10.13198/j.issn.1001-6929.2021.07.11CHEN Z, ZHANG D, WU Z Y,et al. Probability risk of mercury contaminated site based on species and bioaccessibility[J]. Research of Environmental Sciences,2021,34(11):2748-2756. doi: 10.13198/j.issn.1001-6929.2021.07.11 [18] 方晴, 冼萍, 蒙政成.基于蒙特卡罗模拟的农用地土壤健康风险评价[J]. 环境工程,2021,39(2):147-152.FANG Q, XIAN P, MENG Z C. Environmental Health risk assessment model of agricultural land basedon monte carlo simulation and its application[J]. Environmental Engineerin,2021,39(2):147-152. [19] 韩煦, 陈洁, 孙守钧, 等.染料厂遗留场地中氯仿和苯并(a)芘的污染特征与健康风险评价[J]. 环境工程,2021,39(8):211-216.HAN X, CHEN J, SUN S J, et al. Pollution analysis and spatial distribution of health risk in the residual site of dye factory[J]. Environmental Engineering,2021,39(8):211-216. [20] 吴琳琳,吴荣山,郭玉婷,等.污染场地挥发性有机物蒸气入侵建筑物关键参数的研究[J]. 环境工程技术学报,2023,13(2):881-888.WU L L,WU R S,GUO Y T,et al. Research on key building parameters affecting the vapor intrusion of VOCs in contaminated sites[J]. Journal of Environmental Engineering Technology,2023,13(2):881-888. [21] SUN Y, WANG J, GUO G, et al. A comprehensive comparison and analysis of soil screening values derived and used in China and the UK[J]. Environmental Pollution,2020,256:113404.1-113404.9. [22] 董敏刚, 张建荣, 罗飞, 等.我国南方某典型有机化工污染场地土壤与地下水健康风险评估[J]. 土壤,2015,47(1):100-106.DONG M G, ZHANG J R, LUO F, et al. Health risk assessment of soil and groundwater for a typicalorganic chemical contaminated site in southern China[J]. Soils,2015,47(1):100-106. [23] UNNITHAN A, BEKELE D N, CHADALAVADA S, et al. Insights into vapour intrusion phenomena: current outlook and preferential pathway scenario[J]. Science of the Total Environment,2021,796:148885. doi: 10.1016/j.scitotenv.2021.148885 [24] 佟瑞鹏, 杨校毅.基于蒙特卡罗模拟的土壤环境健康风险评价: 以PAHs为例[J]. 环境科学,2017,38(6):2522-2529.TONG R P, YANG X Y. Environmental Health risk assessment of contaminated soil based on Monte Carlo method: a case of PAHs[J]. Environmental Science,2017,38(6):2522-2529. [25] 杨思言, 段宁, 魏婉婷.基于蒙特卡罗方法的铅酸蓄电池厂土壤健康风险评价[J]. 工业安全与环保,2016,42(12):98-102.YANG S Y, DUAN N, WEI W T. Health risk assessment of the soil from a lead-acid battery factory based on Monte Carlo method[J]. Industrial Safety and Environmental Protection,2016,42(12):98-102. [26] 杨阳, 代丹, 蔡怡敏, 等.基于Monte Carlo模拟的金属综合风险评价与案例分析[J]. 环境科学,2015,36(11):4225-4231.YANG Y, DAI D, CAI Y M, et al. Comprehensive risk assessment of soil heavy metals based on monte carlosimulation and case study[J]. Environmental Science,2015,36(11):4225-4231. [27] 王积才, 张朝, 谢雨呈, 等.重金属污染场地土壤风险筛选值关键影响因子研究: 以砷为例[J]. 生态毒理学报,2018,13(6):175-185.WANG J C, ZHANG C, XIE Y C, et al. Study on key factors of soil screening levels of heavy metal contaminated sites: an example of arsenic[J]. AsianJournal of Ecotoxicology,2018,13(6):175-185. [28] 贾晓洋, 夏天翔, 姜林, 等.PRA在焦化厂污染土壤修复目标值制定中的应用[J]. 中国环境科学,2014,34(1):187-194.JIA X Y, XIA T X, JIANG L, et al. Application of PRA in deriving soil cleanup level for a coking plant site[J]. China Environmental Science,2014,34(1):187-194. [29] 罗庆, 谷雷严, 单岳, 等.基于蒙特卡罗模拟的沈阳城市表层土壤中多环芳烃的健康风险评价[J]. 环境工程,2020,38(5):196-201,222.LUO Q, GU L Y, SHAN Y, et al. Health risk assessment of polycyclic aromatic hydrocarbons in ur ban top soil of Shenyang based on Monte Carlo method[J]. Environmental Engineering,2020,38(5):196-201,222. [30] ZHANG L, HUANG D, YANG J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas[J]. Environmental Pollution,2017,222:118-125. doi: 10.1016/j.envpol.2016.12.074 [31] 陈奔, 邱海源, 郭彦妮, 等.尤溪铅锌矿集区重金属污染健康风险评价研究[J]. 厦门大学学报(自然科学版),2012,51(2):245-251.CHEN B, QIU H Y, GUO Y N, et al. Heavy Metal continuation and health risk assessment in the zinc mine set area of Youxi, China[J]. Journal of Xiamen University (Natural Science),2012,51(2):245-251. [32] 侯捷, 曲艳慧, 宁大亮, 等.暴露参数对苯污染场地健康风险评价的影响[J]. 环境科学与技术,2014,37(11):191-195,200.HOU J, QU Y H, NING D L, et al. Impact of human exposure factors on health risk assessment for benzene contaminated site[J]. Environmental Science & Technology,2014,37(11):191-195,200. [33] LIU Q, WU Y, MA J. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks[J]. Environmental Pollution,2021,284:117191. doi: 10.1016/j.envpol.2021.117191 [34] 李安娜, 王辉, 刘强男, 等.某化工厂爆炸场地土壤污染物的分布特征及风险评估[J]. 环境工程,2022,40(11):189-198.LI A N, WANG H, LIU Q N, et al. Distribution characteristics and risk assessment of soil pollutants in an explosion site of a chemical plant[J]. Environmental Engineering,2022,40(11):189-198. [35] 韩琳, 徐夕博.基于PMF模型及地统计的土壤重金属健康风险定量评价[J]. 环境科学,2020,41(11):5114-5124.HAN L, XU X B. Quantitative Evaluation of human healthrisk of heavy metals in soils based on positive matrix factorization model and geo-statistics[J]. Environmental Science,2020,41(11):5114-5124. [36] 李书迪, 谢湉, 张荣海, 等.西南某退役化工厂场地地下水污染特征及污染物迁移规律分析[J]. 环境工程技术学报,2022,12(5):1555-1563.LI S D, XIE T, ZHANG R H, et al. Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in southwest China[J]. Journal of Environmental Engineering Technology,2022,12(5):1555-1563. [37] 苏安琪, 韩璐, 晏井春, 等.基于保护健康和水环境的氯代烃类污染场地地下水风险评估[J]. 环境工程,2018,36(7):138-143.SU A Q, HAN L, YAN J C, et al. Risk assessment of chlorinated solvents in groundwater based on health and water environment[J]. Environmental Engineering,2018,36(7):138-143. [38] 赵倩, 马琳, 刘翼飞, 等.北京东南郊典型地层重金属分布特征与潜在生态风险[J]. 环境科学,2016,37(5):1931-1937.ZHAO Q, MA L, LIU Y F, et al. Distribution characteristics and potential ecological hazards assessment of soil heavy metals in typical soil profiles in southeast suburb of Beijing[J]. Environmental Science,2016,37(5):1931-1937. [39] 彭进进, 李琳, 郑川, 等.某染料化工厂地块苯系物分布特征分析[J]. 环境工程,2021,39(4):187-194.PENG J J, LI L, ZHENG C, et al. Analysis of distribution characteristics of btex in a dyestuff chemical site[J]. Environmental Engineering,2021,39(4):187-194. [40] 裴芳, 罗泽娇, 彭进进, 等.某炼油厂退役场地土壤与浅层地下水酚类污染特征研究[J]. 环境科学,2012,33(12):4251-4255.PEI F, LUO Z J, PENG J J, et al. Phenols pollutants in soil and shallow groundwater of a retired refinery site[J]. Environmental Science,2012,33(12):4251-4255. [41] 胡文庆, 邢志林, 赵天涛.包气带中氯代烃运移特性及原位生物修复研究进展[J]. 应用与环境生物学报,2022,28(4):1094-1101.HU W Q, XING Z L, ZHAO T T. Migration behavior and in-situ bioremediation of chlorinated hydrocarbon solvent in vadose zone: a review[J]. Chinese Journal of Applied and Environmental,2022,28(4):1094-1101. [42] 张蔚, 施小清, 吴剑锋, 等. 渗透率空间变异性对重非水相流体运移的影响[J]. 高校地质学报, 2013, 19(4): 677-682.ZHANG W, SHI X Q, WU J F, et al. Impacts of the spatial variation of permeability on the transport of dense non-aqueous phase liquids in porous media [J]. Geological Journal of China Universities [J]. 2013, 19(4): 677-682. [43] 邓劲蕾, 张晟, 唐敏, 等.铅在搬迁企业原址场地土壤中的空间分布及生态风险[J]. 环境化学,2011,30(2):435-439.DENG J L, ZHANG S, TANG M, et al. Spatial distribution of lead in soil from former production site of relocated enterprise and its ecological hazard[J]. Environmental Chemistry,2011,30(2):435-439. [44] 刘芬芬, 孙小华, 丁力, 等.搬迁企业原址场地土壤挥发性有机物污染特征: 以北京某搬迁化工厂为例[J]. 城市地质,2021,16(1):18-24.LIU F F, SUN X H, DING L, et al. Characteristics of soil volatile organic compound pollution in the original site of relocated enterprises: a case study of a relocated chemical plant in Beijing[J]. Urban Geology,2021,16(1):18-24. [45] 张婉莹.基于EVS的上海某化工污染场地中1, 4-二氯苯空间分布模拟研究[J]. 环境卫生工程,2021,29(3):31-38.ZHANG W Y. Simulation study on spatial distribution of 1, 4-Dichlorobenzene in a chemical contaminated site in Shanghai based on EVS[J]. Environmental Sanitation Engineering,2021,29(3):31-38. [46] 魏文侠, 宋博宇, 李培中, 等.三维可视化建模方法在污染场地中的应用[J]. 环境工程技术学报,2016,6(4):384-390.WEI W X, SONG B Y, LI P Z, et al. Application in heavy metal contaminated sites of three-dimensional visual modeling[J]. Journal of Environmental Engineering Technology,2016,6(4):384-390. [47] PIEDADE T C, MELO V F, SOUZA L C P, et al. Three-dimensional data interpolation for environmental purpose: lead in contaminated soils in southern Brazil[J]. Environmental Monitoring and Assessment,2014,186(9):5625-5638. doi: 10.1007/s10661-014-3808-4 [48] 肖丽珍, 张兵, 徐世光.基于EVS的汞污染物空间分布模拟[J]. 有色金属工程,2022,12(5):149-156. doi: 10.3969/j.issn.2095-1744.2022.05.19XIAO L Z, ZHANG B, XU S G. Simulation of mercury polutants spatial distribution based on EVS[J]. Nonferrous Metals Engineering,2022,12(5):149-156. doi: 10.3969/j.issn.2095-1744.2022.05.19 [49] 花思雨.土壤污染风险分层评估方法在氯代烃深层污染场地中的应用[J]. 广东化工,2022,49(14):122-127.HUA S Y. Application of soil pollution risk stratification assessment method in deep chlorinated hydrocarbon contaminated sites[J]. Guangzhou Chemical Industry,2022,49(14):122-127. [50] 刘丽丽, 邓一荣, 林挺, 等.粤港澳大湾区典型化工地块地下水分层调查与风险评估[J]. 环境污染与防治,2021,43(1):67-72.LIU L L, DENG Y R, LIN T, et al. Multi layer sampling and healthcare assessment of ground water for typical chemical coordinated sites in Guangdong Hong Kong Macao Greater Bay Area[J]. Environmental Pollution & Control,2021,43(1):67-72. [51] LIU W, CHEN L, NIU H. Comparison of the health risks associated with different exposure pathways of multiple volatile chlorinated hydrocarbons in contaminated drinking groundwater[J].Environmental Pollution, 2019,25(12): 113339. [52] 程全国, 王浩东, 李晔, 等.基于蒙特卡罗模拟的辽宁省某化工园区及周边地下水PAHs健康风险评价[J]. 沈阳大学学报(自然科学版),2022,34(3):175-182.CHENG Q G, WANG H D, LI Y, et al. Health risk assessment of polycyclic aromatic hydrocarbons in groundwater of a chemical park and its surrounding areas in Liaoning Province based on Monte Carlo simulation[J]. Journal of Shenyang University (Natural Science),2022,34(3):175-182. [53] 张应华, 刘志全, 李广贺, 等.基于不确定性分析的健康环境风险评价[J]. 环境科学,2007(7):1409-1415.ZHANG Y H, LIU Z W, LI G H, et al. Uncertainty analysis of health risk assessment caused by benzene contaminationin a contaminated site[J]. Environmental Science,2007(7):1409-1415. [54] 陈莉娜, 张帅, 许石豪, 等.典型有机化工遗留场地的健康风险评估[J]. 广东化工,2017,44(9):192-195.CHEN L N, ZHANG S, XU S H, et al. Health risk assessment of typical organic chemical contaminated site[J]. Guangzhou Chemical Industry,2017,44(9):192-195. [55] HAN L, QIAN L, YAN J, et al. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater[J]. Environmental Science and Pollution Research,2015,23(2):1234-1245. ⊕