Distribution characteristics of Chinese sturgeon in the Yangtze River based on environmental DNA
-
摘要:
中华鲟(Acipenser sinensis)是我国长江流域的旗舰物种,在长江十年禁渔的大背景下,研究中华鲟无损化检测技术具有重要意义。环境DNA(eDNA)技术是一种环境友好型生物监测技术,可以在不直接观察或捕获生物体的情况下对物种进行检测。从文献中筛选出可以用于检测中华鲟eDNA的特异性引物,于2020年9月在长江中下游选取4个中华鲟常出现的区域,进行各断面立体式采样;提取16个点位的eDNA,使用筛选得到的引物对中华鲟进行eDNA的检测,以探究中华鲟的分布特征。结果显示,成功筛选到1组可以检测中华鲟eDNA的引物,使用该引物成功检测到包括中华鲟在内的长江4种鲟类的eDNA,共计测得约300万条鲟类序列。依据测序结果分析不同断面检测到的中华鲟eDNA的差异,发现宜昌江段断面的中华鲟eDNA最多,洞庭湖口断面最少,且表层和底层水体的中华鲟eDNA检出也有显著差异。筛选得到的引物可以用于中华鲟eDNA的检测,中华鲟eDNA的检测结果与中华鲟的历史调查和洄游特征较为吻合。不同水深条件中华鲟eDNA的检出量有显著差异,表明在今后的调查中采用混合或者立体采样可以更加全面地进行中华鲟eDNA的检测。
Abstract:Chinese sturgeon (Acipenser sinensis) is a flagship species in the Yangtze River basin. Under the background of the 10-year fishing ban in the Yangtze River, it is of great significance to study the nondestructive testing technology of Chinese sturgeon. Environmental DNA (eDNA) technology is an environmentally friendly biological monitoring technology, which can detect species without direct observation or capture of the organism. It was tried to screen out the specific primers that could be used to detect the eDNA of Chinese sturgeon from the literature. In September 2020, four areas where Chinese sturgeon often appeared were selected in the middle and lower reaches of the Yangtze River, and three-dimensional sampling was performed on each section. eDNA of 16 sites was extracted, and the screened primers were used to detect the eDNA of Chinese sturgeon, in order to try to explore the distribution characteristics of Chinese sturgeon. A group of primers that could detect the eDNA of Chinese sturgeon was successfully screened. By using this primer, the eDNA of 4 species of sturgeon in the Yangtze River including the Chinese sturgeon was successfully detected, and about 3 million sequences of sturgeon were measured. Based on the sequencing results, the differences in the eDNA of Chinese sturgeon detected in different sections were analyzed. It was found that the eDNA in Yichang River section was the most, and the eDNA in Dongting Lake mouth section was the least, and there were significant differences in the eDNA detection between the surface and bottom waters. The study found that the screened primers could be used for the detection of eDNA of Chinese sturgeon, and the detection results of eDNA were consistent with the historical investigation and migration characteristics of Chinese sturgeon. There were significant differences in the amount of Chinese sturgeon eDNA detected under different water depths, which indicated that mixed or three-dimensional sampling may be more comprehensive for the detection of Chinese sturgeon eDNA in the future investigation.
-
表 1 文献发表的中华鲟基因扩增引物
Table 1. Literature published on Acipenser sinensis gene amplification primers
引物
编号序列 扩增
方式产物
大小/bp数据
来源1 DL:
CAAGAACACAAGATTAATGAGPCR 462 文献[25] H740:
GATCAAGGTATGTCGATGACA2
GAS4-F:
CTACTAAAACTTGGCGGATACG巢氏PCR 第1轮313 文献[22] GAS4-R:TGTGGAGGCGTTCATAGTTAGGA GAS4N-F:
GACCGGGTCAATTTGTCTACG第2轮113 GAS4N-R:
AGCCTCATGGGGTTTGGATG3
Forward:
GGCAATTTTAATCTGGGT
TTCCAddPCR 132 文献[24] Reverse:
TGGATGTTAGATATATGT
CCTTG4
L15925:
TCAAAGCTTACACCAGTCTTGTAAACC
PCR
747
文献[26]H740:
GATCAAGGTATGTCGATGACA表 2 各点位检测到的鲟类OTUs所含reads数
Table 2. Number of reads contained in sturgeon OTUs detected at each site
个 断面 点位编号 中华鲟 杂交鲟 达氏鲟 史氏鲟 宜昌江段 Y1 52 726 141 238 0 201 Y2 48 546 138 097 1 126 Y3 42 129 139 960 1 142 Y4 43 667 121 332 1 139 洞庭湖湖口 D1 42 637 134 637 0 434 D2 3 435 193 462 1 53 D3 4 319 194 798 0 47 D4 3 609 189 642 0 37 鄱阳湖湖口 P1 33 934 118 113 0 73 P2 42 939 132 712 1 396 P3 28 481 120 312 2 54 P4 37 073 124 948 1 133 长江入海口 S1 35 083 109 090 0 118 S2 10 924 186 367 0 97 S3 31 145 120 048 0 117 S4 36 825 145 978 2 183 -
[1] 周虹, 李洋, 张家发, 等.爱国鱼: 中华鲟[J]. 科学世界,2017(5):46-49. [2] 孙丽婷, 赵峰, 张涛, 等.中华鲟资源及其遗传多样性研究进展[J]. 渔业信息与战略,2017,32(2):112-117.SUN L T, ZHAO F, ZHANG T, et al. Review on research progress of population resources and genetic diversity of Chinese sturgeon (Acipenser sinensis Gray 1835)[J]. Fishery Information & Strategy,2017,32(2):112-117. [3] 肖慧.中华鲟保护研究探索历程[J]. 中国三峡,2012(1):22-29.XIAO H. Exploration course of conservation research of Acipenser sinensis[J]. China Three Gorges,2012(1):22-29. [4] 王成友. 长江中华鲟生殖洄游和栖息地选择[D]. 武汉: 华中农业大学, 2012. [5] 王鸿泽, 陶江平, 常剑波.中华鲟濒危状况与物种保护对策的评估分析[J]. 长江流域资源与环境,2019,28(9):2100-2108.WANG H Z, TAO J P, CHANG J B. Endangered levels and conservation options evaluations for Chinese sturgeon, Acipenser sinensis Gary[J]. Resources and Environment in the Yangtze Basin,2019,28(9):2100-2108. [6] 危起伟.从中华鲟 (Acipenser sinensis)生活史剖析其物种保护: 困境与突围[J]. 湖泊科学,2020,32(5):1297-1319. doi: 10.18307/2020.0509WEI Q W. Conservation of Chinese sturgeon (Acipenser sinensis) based on its life history: dilemma and breakthrough[J]. Journal of Lake Sciences,2020,32(5):1297-1319. doi: 10.18307/2020.0509 [7] 林永兵. 非繁殖季节中华鲟繁殖群体在长江中分布与降海洄游初步研究[D]. 武汉: 华中农业大学, 2008. [8] 邢迎春. 基于GIS的中国内陆水域鱼类物种多样性、分布格局及其保育研究[D]. 上海: 上海海洋大学, 2011. [9] 王静.中华鲟放归长江首次采用卫星标记[J]. 中国三峡,2016(5):44-46.WANG J. The Chinese sturgeon was released into the Yangtze River for the first time using satellite markers[J]. China Three Gorges,2016(5):44-46. [10] HU Y C, LIU X Q, YANG J, et al. Development and characterization of a duplex PCR assay in Chinese sturgeon (Acipenser sinensis) for genetic analysis[J]. Scientific Reports,2020,10:3451. doi: 10.1038/s41598-020-60401-y [11] 赵娜. 基于微卫星标记的中华鲟繁殖群体遗传学分析与人工繁殖对自然幼鲟群体的贡献评估[D]. 武汉: 中国科学院研究生院(水生生物研究所), 2006. [12] 孙丽婷, 赵峰, 张涛, 等.基于线粒体D-loop序列的长江口中华鲟幼鱼遗传多样性分析[J]. 海洋渔业,2019,41(1):9-15.SUN L T, ZHAO F, ZHANG T, et al. Population genetic structure of Acipenser sinensis based on the mitochondrial control region sequence[J]. Marine Fisheries,2019,41(1):9-15. [13] 黄彤辉, 夏瑞, 后希康, 等.GIS和RS技术应用于流域水生生物时空分析的研究进展[J]. 环境科学研究,2021,34(11):2674-2685.HUANG T H, XIA R, HOU X K, et al. Research progress in application of GIS and RS technology in spatio-temporal analysis of watershed aquatic organisms[J]. Research of Environmental Sciences,2021,34(11):2674-2685. [14] STEWART K, MA H J, ZHENG J S, et al. Using environmental DNA to assess population-wide spatiotemporal reserve use[J]. Conservation Biology,2017,31(5):1173-1182. doi: 10.1111/cobi.12910 [15] WANG S P, YAN Z G, HÄNFLING B, et al. Methodology of fish eDNA and its applications in ecology and environment[J]. Science of the Total Environment,2021,755:142622. doi: 10.1016/j.scitotenv.2020.142622 [16] BALASINGHAM K D, WALTER R P, MANDRAK N E, et al. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries[J]. Molecular Ecology,2018,27(1):112-127. doi: 10.1111/mec.14395 [17] FICETOLA G F, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters,2008,4(4):423-425. doi: 10.1098/rsbl.2008.0118 [18] 郁斯贻.环境DNA技术在水生生物监测中的应用研究[J]. 科技视界,2019(22):78-79.YU S Y. Study on application of environmental DNA technology in aquatic organism monitoring[J]. Science & Technology Vision,2019(22):78-79. [19] ZHANG S, ZHENG Y T, ZHAN A B, et al. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity[J]. Science Advances,2022,8(6):eabk0097. doi: 10.1126/sciadv.abk0097 [20] 王学昉, 孟维钊, 王丛丛, 等.环境DNA技术在长江口水生生物监测中的应用潜力[J]. 应用海洋学学报,2021,40(3):547-554.WANG X F, MENG W Z, WANG C C, et al. Potential application of environmental DNA technology in monitoring aquatic organisms in the Yangtze Estuary[J]. Journal of Applied Oceanography,2021,40(3):547-554. [21] 徐念, 常剑波.长江中下游干流环境DNA样本鱼类物种检测的初步研究[J]. 水生态学杂志,2016,37(5):49-55.XU N, CHANG J B. Preliminary study on fish species detection in the middle and Lower Yangtze River using environmental DNA[J]. Journal of Hydroecology,2016,37(5):49-55. [22] XU N, ZHU B, SHI F, et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA[J]. The Science of Nature,2018,105(11):62. [23] 吴建辉. 长江口中华鲟种群特征及栖息地鱼类群落结构的研究[D]. 上海: 上海海洋大学, 2020. [24] YU D, SHEN Z Y, CHANG T, et al. Using environmental DNA methods to improve detectability in an endangered sturgeon (Acipenser sinensis) monitoring program[J]. BMC Ecology and Evolution,2021,21(1):216. doi: 10.1186/s12862-021-01948-w [25] 张四明, 吴清江, 张亚平.中华鲟(Acipenser sinensis)及相关种类的mtDNA控制区串联重复序列及其进化意义[J]. 中国生物化学与分子生物学报,2000,16(4):458-461.ZHANG S M, WU Q J, ZHANG Y P. Tandem repeats of Chinese sturgeon (Acipenser sinensis) and related species and its significance in evolution[J]. Chinese Journal of Biochemistry and Molecular Biology,2000,16(4):458-461. [26] 张四明, 邓怀, 汪登强, 等.中华鲟(Acipenser sinensis)间的长度变异与个体内的长度异质性[J]. 遗传学报,1999,26(5):489-496.ZHANG S M, DENG H, WANG D Q, et al. Mitochondrial DNA length variation and heteroplasmy in Chinese sturgeon (Acipenser sinensis)[J]. Acta Genetica Sinica,1999,26(5):489-496. [27] 李翀, 李玮, 周睿萌, 等.长江大保护战略下科技支撑长江生态环境治理的几点思考[J]. 环境工程技术学报,2022,12(2):356-360.LI C, LI W, ZHOU R M, et al. Some thoughts on the scientific support to the eco-environmental management of the Yangtze River under Great Protection of the Yangtze River[J]. Journal of Environmental Engineering Technology,2022,12(2):356-360. [28] 王金南, 孙宏亮, 赵越, 等.持续打好长江保护修复攻坚战, 谱写生态优先绿色发展新篇章[J]. 环境工程技术学报,2022,12(2):329-335.WANG J N, SUN H L, ZHAO Y, et al. Fighting against the battle of protection and restoration of the Yangtze River Basin to start a new chapter of ecological-oriented and green development[J]. Journal of Environmental Engineering Technology,2022,12(2):329-335. [29] 房敏, 蔡露, 王从锋, 等.长江珍稀鱼类中华鲟物种特性及资源保护[J]. 生态学杂志,2014,33(4):1121-1127.FANG M, CAI L, WANG C F, et al. Species characteristics and resource protection of Chinese sturgeon, Acipenser sinensis, the rare fish in the Yangtze River: a review[J]. Chinese Journal of Ecology,2014,33(4):1121-1127. [30] 徐念, 熊美华, 邵科, 等.长江中下游环境DNA宏条形码生物多样性检测技术初步研究[J]. 环境科学研究,2020,33(5):1187-1196.XU N, XIONG M H, SHAO K, et al. Preliminary study on environmental DNA metabarcoding for detecting biodiversity in the middle and lower reaches of the Yangtze River[J]. Research of Environmental Sciences,2020,33(5):1187-1196. [31] 巴日斯.环境DNA及其在水生生态系统保护中的应用研究[J]. 资源节约与环保,2018(3):17.BA R S. Study on environmental DNA and its application in aquatic ecosystem protection[J]. Resources Economization & Environmental Protection,2018(3):17. [32] 赵梦迪. 利用环境DNA分析冬季中国东黄海水域的鱼类多样性[D]. 上海: 上海海洋大学, 2017. [33] SIGSGAARD E E, NIELSEN I B, BACH S S, et al. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA[J]. Nature Ecology & Evolution,2017,1:4. [34] 王梦, 杨鑫, 王维, 等.基于eDNA技术的长江上游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性研究[J]. 水生生物学报,2022,46(1):2-16.WANG M, YANG X, WANG W, et al. Fish diversity in Chongqing section of the national nature reserve for rare and endemic fish in the Upper Yangtze River based on eDNA technology[J]. Acta Hydrobiologica Sinica,2022,46(1):2-16. [35] 吴昀晟, 唐永凯, 李建林, 等.环境DNA在长江江豚监测中的应用[J]. 中国水产科学,2019,26(1):124-132. doi: 10.3724/SP.J.1118.2019.18133WU Y S, TANG Y K, LI J L, et al. The application of environmental DNA in the monitoring of the Yangtze finless porpoise, Neophocaena phocaenoides asaeorientalis[J]. Journal of Fishery Sciences of China,2019,26(1):124-132. doi: 10.3724/SP.J.1118.2019.18133 [36] 杨海乐, 沈丽, 何勇凤, 等.长江水生生物资源与环境本底状况调查(2017—2021)[J]. 水产学报,2023,47(2):3-30.YANG H L, SHEN L, HE Y F, et al. Status of aquatic organisms resources and their environments in the Yangtze River system (2017-2021)[J]. Journal of Fisheries of China,2023,47(2):3-30. [37] 吴建辉, 陈锦辉, 徐嘉楠. 中华鲟自然产卵间断以来中华鲟幼鱼抵达与离开长江口时间及其生长的年际变化观察[J/OL]. 上海海洋大学学报, 2023. https://kns.cnki.net/kcms/detail/31.2024.S.20230302.1652.002.html. [38] 骆辉煌. 中华鲟繁殖的关键环境因子及适宜性研究[D]. 北京: 中国水利水电科学研究院, 2013. [39] 贺刚, 方春林, 陈文静, 等.鄱阳湖通长江水道洄游鱼类及影响因素分析[J]. 江西水产科技,2014(2):39-41. [40] 彭平波, 胡军华, 何木盈.西洞庭湖鱼类资源调查与研究[J]. 岳阳职业技术学院学报,2012,27(2):27-32. [41] ZHANG S, LU Q, WANG Y Y, et al. Assessment of fish communities using environmental DNA: effect of spatial sampling design in lentic systems of different sizes[J]. Molecular Ecology Resources,2020,20(1):242-255. ◇ doi: 10.1111/1755-0998.13105