Study on methods for determining the remediation target value of soil arsenic in contaminated sites
-
摘要:
修复目标值的确定是污染地块环境监管的重要环节,通常基于风险评估方法计算风险控制值来确定。而对于砷污染地块,采用HJ 25.3—2019《建设用地土壤污染风险评估技术导则》推荐模型和参数推算得到的修复目标值往往低于土壤砷环境背景值,难以满足监管需求。系统梳理了国内外污染地块土壤砷修复目标值确定方法,探讨了基于土壤环境标准值、传统风险评估、层次化风险评估、等效风险评估及土壤砷环境背景值修正方法的实现路径与实践应用。结合我国污染地块监管策略和砷污染地块开发再利用现状,提出了基于土壤环境背景值、层次化风险评估和生物可给性相关参数修正的土壤砷修复目标值确定方法,旨在为我国砷污染地块的修复和再利用提供更加科学合理的方案。
Abstract:The determination of remediation target value is an important part of the process of environmental regulation for contaminated sites, and is usually obtained based on risk assessment to calculate risk control values. However, when it comes to arsenic-contaminated sites, the remediation target values obtained by using the recommended model and parameter derived from Technical Guidelines for Risk Assessment of Soil Contamination of Land for Construction (HJ 25.3-2019) are often lower than the soil arsenic environmental background values, making it difficult to meet regulatory requirements. The methods for determining the target values of soil arsenic remediation in contaminated sites were systematically reviewed, and the implementation paths and practical applications based on soil environmental criteria values, traditional risk assessment, tiered risk assessment, equivalent risk assessment and soil arsenic environmental background values correction were discussed. Combining with China's regulatory strategy for contaminated sites and the current situation of arsenic-contaminated sites development and reuse, a method for determining soil arsenic remediation target values based on soil environmental background values, tiered risk assessment, and bioaccessibility-related parameter correction was proposed, aiming to provide more scientific and reasonable solutions for the remediation and safe reuse of arsenic contaminated sites in China.
-
Key words:
- contaminated site /
- arsenic /
- remediation target value /
- risk assessment /
- background value /
- bioaccessibility
-
图 5 我国各地区土壤砷环境背景值[37]
Figure 5. Background values of soil arsenic by regions in China
表 1 不同国家土壤砷环境标准出处、名称及取值
Table 1. Sources, names and values of screening values for different countries
国家 出处 名称 取值/(mg/kg) 数据来源 中国1) 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 筛选值 20(一类用地);
60(二类用地)文献[17] 加拿大1) 《加拿大土壤环境质量指南》
《保护环境和人体健康土壤质量
指导值的指南》土壤质量指导值
(soil quality guidelines)12(除特定地点外);
160(黄刀地区居住用地),
340(黄刀地区工业用地),
220(黄刀地区公共场所)文献[18-19] 德国1) 《联邦土壤保护与污染场地条例》 触发值
(trigger values)25(儿童乐园);
50(住宅区);
125(公园-休闲设施);
140(工商业用地)文献[20] 日本1) 《土壤环境质量标准》 土壤环境质量标准
(environment quality standards for soil)150 文献[21] 美国2) 《区域筛选值表》 区域筛选值
(regional screening levels)0.68(居住用地);
3(工业用地)文献[22] 英国2) 《土壤中无机砷的指导值》 土壤指导值
(soil guideline values)32(居住用地);
43(菜地);
640(商业用地)文献[23] 荷兰2) 《土壤修复通告》 干预值(intervention value) 76 文献[24] 1)土壤砷环境标准值可作为土壤砷修复目标值;2)土壤砷环境标准值通常不作为土壤砷修复目标值。 -
[1] 孙兴凯, 黄海, 王海东, 等. 大型污染场地修复过程中的问题探讨与工程实践[J]. 环境工程技术学报,2020,10(5):883-890.SUN X K, HUANG H, WANG H D, et al. Discussion of problems in the process of large-scale contaminate sites remediation and project practice[J]. Journal of Environmental Engineering Technology,2020,10(5):883-890. [2] 廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地: 中国环境修复领域的新课题[J]. 环境科学,2011,32(3):784-794.LIAO X Y, CHONG Z Y, YAN X L, et al. Urban industrial contaminated sites: a new issue in the field of environmental remediation in China[J]. Environmental Science,2011,32(3):784-794. [3] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报,2016,6(1):90-99. doi: 10.3969/j.issn.1674-991X.2016.01.014JI D L, MENG F S, XUE H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology,2016,6(1):90-99. doi: 10.3969/j.issn.1674-991X.2016.01.014 [4] 呼红霞, 丁贞玉, 孙宁, 等. 省级风险管控与修复名录中污染地块特征初步探析[J]. 环境保护科学,2022,48(1):5-10.HU H X, DENG Z Y, SUN N, et al. A preliminary analysis of characteristics of contaminated sites in provincial risk control and remediation directory[J]. Environmental Protection Science,2022,48(1):5-10. [5] WCISLO E. Polish soil quality standards versus risk-based soil screening levels for metals and arsenic[J]. Human and Ecological Risk Assessment,2012,18(3):569-587. doi: 10.1080/10807039.2012.672888 [6] LI J, FAN J T, JIANG J Y, et al. Human health risk assessment of soil in an abandoned arsenic plant site: implications for contaminated site remediation[J]. Environmental Earth Sciences,2019,78(24):673. doi: 10.1007/s12665-019-8715-0 [7] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版社, 2019. [8] United States Environmental Protection Agency. Soil screening guidance: user’s guide[R]. Washington DC: Office of Solid Waste and Emergency Response, 1996. [9] United Kingdom Environment Agency. Human health toxicological assessment of contaminants in soil[R]. Bristol: United Kingdom Environment Agency, 1983. [10] 雷城英, 李玉进, 王梦珂, 等. C-RAG模型在砷污染场地中的修正及应用研究[J]. 生态毒理学报,2021,16(1):147-154.LEI C Y, LI Y J, WANG M K, et al. Research on modification and application of C-RAG model in arsenic contaminated site[J]. Asian Journal of Ecotoxicology,2021,16(1):147-154. [11] 王硕, 代小丽, 李佳斌等. 某钢铁厂土壤重金属砷修复目标值推导方法研究[J]. 环境保护科学,2021,47(4):122-126. doi: 10.16803/j.cnki.issn.1004-6216.2021.04.020WANG S, DAI X L, LI J B, et al. Study on deducing method of target value of arsenic remediation in soil of a steel plant[J]. Environmental Protection Science,2021,47(4):122-126. doi: 10.16803/j.cnki.issn.1004-6216.2021.04.020 [12] 徐猛, 颜增光, 贺萌萌, 等. 不同国家基于健康风险的土壤环境基准比较研究与启示[J]. 环境科学,2013,34(5):1667-1678.XU M, YAN Z G, HE M M, et al. Human health risk-based environmental criteria for soil: a comparative study between countries and implication for China[J]. Environmental Science,2013,34(5):1667-1678. [13] FORSLUND J, SAMAKOVLIS E, VREDINJOHANSSON M, et al. Does remediation save lives: on the cost of cleaning up arsenic-contaminated sites in Sweden[J]. Science of the Total Environment,2010,408(16):3085-3091. doi: 10.1016/j.scitotenv.2010.03.042 [14] CHRISTOPHER M T, DOUGLAS J C, PATRICK A T, et al. Arsenic cleanup criteria for soils in the US and abroad: comparing guidelines and understanding inconsistencies[J]. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy,2010,15:10. [15] 王积才. 辽宁省建设用地土壤污染风险筛选值制定研究[D]. 北京: 中国环境科学研究院, 2019. [16] 宋静, 陈梦舫, 骆永明, 等. 制订我国污染场地土壤风险筛选值的几点建议[J]. 环境监测管理与技术,2011,23(3):26-33.SONG J, CHEN M F, LUO Y M, et al. Suggestion on derivation of soil screening values and remediation goals for contaminated sites in China[J]. The Administration and Technique of Environmental Monitoring,2011,23(3):26-33. [17] 生态环境部. 土壤环境质量建设用地土壤污染风险管控标准(试行): GB 36600—2018[S]. 北京: 中国环境科学出版社, 2018. [18] Canadian Council of Ministers of the Environment. Canadian environmental quality guidelines[R]. Winnipeg-Manitoba: Canadian Council of Ministers of the Environment, 1999. [19] Canadian Council of Ministers of the Environment. A protocol for the derivation of environmental and human health soil quality guidelines[R]. Winnipeg-Manitoba: Canadian Council of Ministers of the Environment, 2006. [20] Federal Ministry of Justice in Germany. Federal soil protection and contaminated sites ordinance[S]. Berlin: The Federal Republic of Germany, 1999. [21] Japan Ministry of the Environment. Environment quality standard for soil[S]. Tokyo: Japan Ministry of the Environment, 1991. [22] United States Environmental Protection Agency. Regional screening levels(RSLs)-generic tables[S]. Washington, DC: United States Environmental Protection Agency, 2022. [23] United Kingdom Environmental Agency. Soil guideline values for inorganic arsenic in soil[R]. Bristol: United Kingdom Environment Agency, 2009. [24] Netherlands Environmental Assessment Agency. Soil remediation circular[S]. Amsterdam: Ministry of Infrastructure and Water Management, 2013. [25] 焦文涛, 方引青, 李绍华, 等. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报,2021,15(5):1821-1830.JIAO W T, FANG Y Q, LI S H, et al. Risk management and control of contaminated sites in the United States: development process, evolution characteristics and enlightenment[J]. Chinese Journal of Environmental Engineering,2021,15(5):1821-1830. [26] 王红梅, 吴健芳, 田自强, 等. 土壤污染物健康风险评价技术现状及发展趋势[J]. 环境工程技术学报,2023,13(2):778-784.WANG H M, WU J F, TIAN Z Q, et al. Status of soil pollutant health risk assessment technology and perspective[J]. Journal of Environmental Engineering Technology,2023,13(2):778-784. [27] 张述习, 蒋喜艳, 田勇, 等. 土壤和食物中砷生物可给性与生物有效性研究进展[J]. 生态毒理学报,2022,17(5):239-250.ZHANG S X, JIANG X Y, TIAN Y, et al. Research progress of arsenic bioaccessibility and bioavailability in soils and foods[J]. Asian Journal of Ecotoxicology,2022,17(5):239-250. [28] WANG P F, YIN N Y, CAI X L, et al. Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran: the in vitro with PBET/SHIME and in vivo with mice model[J]. Chemosphere,2020,259:127443. doi: 10.1016/j.chemosphere.2020.127443 [29] United States Environmental Protection Agency. Guidelines for exposure assessment[S]. Washington DC: Risk Assessment Forum, United States Environmental Protection Agency, 1992. [30] 袁贝, 杜平, 李艾阳, 等. 污染地块层次化风险评估发展历程与研究进展[J]. 环境科学研究, 2023, 36(1): 19-29.YUAN B, DU P, LI A Y, ea al. Development and research progress of tiered risk assessment for contaminated site[J]. Research of Environmental Sciences. 2023, 36(1): 19-29. [31] United States Environmental Protection Agency. Compilation and review of data on relative bioavailability of arsenic in soil[S]. Washington DC: Risk Assessment Forum, United States Environmental Protection Agency, 1992. [32] 陈晓晨, 黄艺佳, 赵桐, 等. 中国典型土壤中镉的生物可给性影响因素研究及其健康风险评估[J]. 环境化学,2021,40(10):3015-3023. doi: 10.7524/j.issn.0254-6108.2021040204CHEN X C, HUANG Y J, ZHAO T, et al. Influencing factors of Cd bioaccessibility in China's representative soils and the human health risk assessment[J]. Environmental Chemistry,2021,40(10):3015-3023. doi: 10.7524/j.issn.0254-6108.2021040204 [33] 姚冬菊, 刘恩光, 宁增平, 等. 贵州某锑冶炼厂周边农田土壤锑、砷污染与人体健康风险评估[J]. 地球与环境,2021,49(6):673-683.YAO D J, LIU E G, NING Z P, et al. Contamination and human health risks of Sb and As in farmsite soils around a typical antimony smelter in Guizhou, China[J]. Earth and Environment,2021,49(6):673-683. [34] Environmental Agency. Guidance on the legal definition of contaminated site[R]. Bristol: Environment Agency, 2009. [35] 生态环境部. 建设用地土壤污染状况调查与风险评估技术导则: HJ 25.1—2019[S]. 北京: 中国环境科学出版社, 2019. [36] 吴运金, 周艳, 杨敏, 等. 国内外土壤环境背景值应用现状分析及对策建议[J]. 生态与农村环境学报,2021,37(12):1524-1531. doi: 10.19741/j.issn.1673-4831.2021.0321WU Y J, ZHOU Y, YANG M, et al. Analysis of the applies of soil environmental background value at home and abroad and suggestions on countermeasures[J]. Journal of Ecology and Rural Environment,2021,37(12):1524-1531. doi: 10.19741/j.issn.1673-4831.2021.0321 [37] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. [38] 生态环境部. 区域性土壤环境背景含量统计技术导则(试行): HJ 1185—2021[S]. 北京: 中国环境科学出版社, 1990. [39] United States Environmental Protection Agency. Role of background in the CERCLA cleanup program[S]. Washington DC: Office of Emergency and Remedial Response, 2002. [40] JUHASZ A L, WEBER J, SMITH E, et al. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils[J]. Environmental Science & Technology,2009,43(24):9487-9494. [41] California Department of Toxic Substances Control. Human health risk assessment note 6: recommended methodology for evaluating site-specific arsenic bioavailability in california soils[R]. California: Human and Ecological Risk Office, 2017. ⊗