Effects of activated sludge extraction on rhizosphere soil microbial community structure of rice
-
摘要:
通过根箱试验,从土壤根际微生物角度揭示活性污泥萃取液(简称萃取液)调控水稻苗期生长和改良土壤理化性质的机理。试验设计不同萃取液配施减氮处理(T1,空白对照;T2,常规施肥对照;T3,减氮30%配施0.2 g/kg萃取液;T4,减氮30%配施0.4 g/kg萃取液;T5,施用8 g/kg萃取液全量替代化肥氮,即减氮75%),研究萃取液配合氮肥减施对水稻根际土壤理化性质和微生物群落结构的影响。结果表明:配施萃取液可显著增加水稻幼苗的叶面积、生物量和叶绿素含量;与常规施肥相比,配施萃取液可以显著提高土壤pH,降低土壤电导率,增加可溶性有机碳含量,降低硝态氮和铵态氮含量。β多样性结果显示,萃取液对土壤微生物性质的影响主要作用在根际及近根际土壤中,不同萃取液处理组与空白及常规施肥对照组间细菌群落结构及多样性存在显著性差异(P<0.05);萃取液的施用可增加有机污染物降解和碳水化合物代谢相关微生物的相对丰度,如黄色土源菌、Candidatus_Udaeobacter、鞘氨醇单胞菌属,相对丰度分别增加151%~541%、26%~320%和55%~364%。采用FAPROTAX土壤功能预测分析发现,施用萃取液后土壤菌群主要增加的功能为化能异养、有氧化能异养、硝酸盐还原、固氮作用、硝化作用和芳香化合物降解等,这类功能与土壤碳源物质代谢、氮循环及有机污染物降解等行为相关。萃取液施用可通过改善土壤根际及近根际微生物群落结构,增加相关菌群丰度,调控土壤根际及近根际碳、氮循环,进而达到促进水稻幼苗生长和土壤改良的效果。研究结果可为活性污泥的资源化提供新路径。
Abstract:A root box experiment was conducted to reveal the mechanisms by activated sludge extracts regulating rice growth and improving soil physicochemical properties from the perspective of soil rhizosphere microorganisms. The experiment was designed to investigate the effects of the extracts application with nitrogen reduction on rice soil physicochemical properties and rhizosphere microorganisms by conducting different treatments (T1, blank control; T2, conventional fertilizer control; T3, 30% nitrogen reduction with 0.2 g/kg extract solution; T4, 30% nitrogen reduction with 0.4 g/kg extract solution; T5, full replacement of fertilizer nitrogen with 8 g/kg extract solution equivalent to 75% nitrogen reduction). The results showed that the application of extracts significantly increased the leaf area, biomass and chlorophyll content of rice seedlings. Compared with conventional fertilizer applications, the application of extracts could significantly increase soil pH, reduce soil conductivity, increase soil soluble organic carbon and reduce soil nitrate and ammonium nitrogen content. β-diversity results showed that the effect of extracts application on soil microbial properties was more prominent in rhizosphere and near-rhizosphere soils, with significant differences in bacterial community structure and diversity between the different extracts treated groups, blank group and the control group (P<0.05). Application of extracts significantly increased the relative abundance of microorganisms associated with organic pollutant degradation and carbohydrate metabolism, such as Flavisolibacter, Candidatus_Udaeobacter, and Sphingomonas, which increased by 151% to 541%, 26% to 320% and 55% to 364%, respectively. By FAPROTAX soil function prediction analysis, it was found that the main soil microbial communities enhanced after the application of the extracts were chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, nitrogen fixation, nitrification and aromatic compound degradation, which were related to the behaviours of soil carbon cycling, nitrogen cycling and organic pollutant degradation. The results of the study indicated that the application of extracts could improve the structure of soil rhizosphere and near-rhizosphere microbial communities, increase the abundance of related bacteria communities, and regulate carbon and nitrogen cycles of rhizosphere and near-rhizosphere soil, thereby promoting the growth of rice seedlings and improving soil characteristics. Therefore, the results of this study can provide a new pathway for the resource utilization of activated sludge.
-
表 1 各处理不同根区土壤微生物α多样性指数
Table 1. α diversity index of soil microorganisms in different rhizosphere regions for each treatment
根区 组别 Sobs指数 Chao指数 Ace指数 Simpson指数 Shannon指数 根际 T1 3 701±876.9a 4 178±775.4a 4 453±812.5a 1.0±0.0a 9.5±0.2a T2 4 081±237.6a 4 331±220.7a 4 620±231.2a 1.0±0.0a 8.9±0.4a T3 3 669±245.0a 3 774±269.4a 4 037±281.4a 1.0±0.0a 9.1±0.3a T4 3 832±151.6a 4 109±158.7a 4 377±163.8a 1.0±0.0a 9.4±0.1a T5 3 833±71.1a 4 220±93.0a 4 485±120.8a 1.0±0.0a 9.3±0.1a 近根际 T1 3 572±69.5b 4 040±53.1b 4 311±63.5b 1.0±0.0b 8.7±0.4b T2 3 637±13.0b 4 051±15.3b 4 297±48.9b 1.0±0.0a 9.4±0.3ab T3 3 499±38.7b 3 898±63.2b 4 144±71.6b 1.0±0.0a 9.3±0.1ab T4 3 739±136.7ab 4 246±122.0ab 4 520±138.7ab 1.0±0.0a 9.4±0.0a T5 3 941±124.0a 4 474±132.4a 4 765±124.4a 1.0±0.0a 9.6±0.1a 远根际 T1 3 580±167.8b 3 995±205.5b 4 272±216.0b 1.0±0.0a 8.7±0.4a T2 3 780±95.2ab 4 194±96.6ab 4 473±69.6ab 1.0±0.0a 8.6±0.4a T3 3 657±97.1ab 4 235±90.3ab 4 492±72.9ab 1.0±0.0a 9.3±0.5a T4 3 882±81.9a 4 403±118.5a 4 673±126.2a 1.0±0.0a 9.4±0.1a T5 3 652±33.5ab 4 074±38.6ab 4 292±42.9ab 1.0±0.0a 9.1±0.2a -
[1] ENGELHART M, KRÜGER M, KOPP J, et al. Effects of disintegration on anaerobic degradation of sewage excess sludge in downflow stationary fixed film digesters[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research,2000,41(3):171-179. doi: 10.2166/wst.2000.0069 [2] 张馨月. 剩余污泥碳氮分质资源回收工艺系统参数调控[D]. 沈阳: 辽宁大学, 2019. [3] 路瑞娟, 付杰, 王晨晨, 等. 城市污泥处理过程中重金属迁移转化特性研究进展[J]. 环境工程技术学报,2023,13(1):318-324. doi: 10.12153/j.issn.1674-991X.20210762LU R J, FU J, WANG C C, et al. Research progress on the characteristics of heavy metal transfer and transformation in municipal sludge treatment[J]. Journal of Environmental Engineering Technology,2023,13(1):318-324. doi: 10.12153/j.issn.1674-991X.20210762 [4] 刘浏. 污泥资源化: 污泥填料的研制及其应用研究[D]. 重庆: 重庆大学, 2005. [5] 国家城市给水排水工程技术研究中心. 污水生物与化学处理技术[M]. 北京: 中国建筑工业出版社, 1999. [6] 谭煜, 付丽亚, 周鉴, 等. 胞外聚合物(EPS)对污水处理影响的研究进展[J]. 环境工程技术学报, 2021, 11(2): 307-313.TAN Y, FU L Y , ZHOU J, et al. Research progress of the effects of extracellular polymeric substances (EPS) on wastewater treatment system[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 307-313. [7] 袁宇杰, 杨英, 储明, 等. 胞外聚合物对重金属及抗生素吸附研究进展[J]. 水处理技术,2022,48(5):24-28. doi: 10.16796/j.cnki.1000-3770.2022.05.005YUAN Y J, YANG Y, CHU M, et al. Advances in adsorption of heavy metals and antibiotics by extracellular polymers[J]. Technology of Water Treatment,2022,48(5):24-28. doi: 10.16796/j.cnki.1000-3770.2022.05.005 [8] TANG Y F, XIE H, SUN J, et al. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants[J]. Water Research,2022,211:118036. doi: 10.1016/j.watres.2021.118036 [9] 童彤, 纪荣婷, 许秋瑾, 等. 活性污泥萃取液的安全性及对水稻苗期生长和土壤环境的影响[J]. 环境科学研究,2022,35(11):2568-2577. doi: 10.13198/j.issn.1001-6929.2022.09.08TONG T, JI R T, XU Q J, et al. Safety of activated sludge extract and its effect on rice seedling growth and soil environment[J]. Research of Environmental Sciences,2022,35(11):2568-2577. doi: 10.13198/j.issn.1001-6929.2022.09.08 [10] 程林, 章力干, 张国漪, 等. 氨基酸增值尿素对水稻苗期生长及根际微生物菌群的影响[J]. 植物营养与肥料学报,2021,27(1):35-44.CHENG L, ZHANG L G, ZHANG G Y, et al. Effects of urea containing amino acid on rice seedling growth and rhizosphere microbial community[J]. Plant Nutrition and Fertilizer Science,2021,27(1):35-44. [11] 吴杨潇影. 种植模式及氮肥分配对稻田根际与非根际土壤氮素及微生物影响的研究[D]. 杭州: 浙江大学, 2019. [12] SINGH B K, BARDGETT R D, SMITH P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology,2010,8(11):779-790. doi: 10.1038/nrmicro2439 [13] 王甜甜, 闫冰, 陈彦君, 等. 不同生育期转基因抗虫棉根际土壤细菌群落特征[J]. 环境科学研究,2021,34(7):1728-1736. doi: 10.13198/j.issn.1001-6929.2021.04.11WANG T T, YAN B, CHEN Y J, et al. Characteristics of bacterial community of rhizosphere soil of transgenic insectresistant cotton at different growth stage[J]. Research of Environmental Sciences,2021,34(7):1728-1736. doi: 10.13198/j.issn.1001-6929.2021.04.11 [14] JACOBSEN C S, HJELMSØ M H. Agricultural soils, pesticides and microbial diversity[J]. Current Opinion in Biotechnology,2014,27:15-20. doi: 10.1016/j.copbio.2013.09.003 [15] 李桂龙, 李朋发, 吴萌, 等. 化肥配施有机肥对花生根际细菌群落结构及共存网络的影响[J]. 土壤,2022,54(3):498-507. doi: 10.13758/j.cnki.tr.2022.03.009LI G L, LI P F, WU M, et al. Effects of chemical fertilizer combined with organic manure on peanut rhizosphere bacterial community structure and co-occurrence network[J]. Soils,2022,54(3):498-507. doi: 10.13758/j.cnki.tr.2022.03.009 [16] 张红雪, 吴凤英, 陈宇琳, 等. 烟秆生物炭对土壤不同形态钾含量及烟草光合特性的影响[J]. 福建农林大学学报(自然科学版),2022,51(4):468-477. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.004ZHANG H X, WU F Y, CHEN Y L, et al. Effects of tobacco stem-derived biochar on different forms of soil potassium and photosynthetic characteristics of tobacco[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2022,51(4):468-477. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.004 [17] 马永财, 滕达, 衣淑娟, 等. 秸秆覆盖还田及腐解率对土壤温湿度与玉米产量的影响[J]. 农业机械学报,2021,52(10):90-99. doi: 10.6041/j.issn.1000-1298.2021.10.009MA Y C, TENG D, YI S J, et al. Effects of straw mulching and decomposition rate on soil temperature and humidity and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):90-99. doi: 10.6041/j.issn.1000-1298.2021.10.009 [18] 李佳乐, 梁泳怡, 刘文杰, 等. 有机肥替代化学氮肥对橡胶幼苗生长和土壤环境的影响[J]. 应用生态学报,2022,33(2):431-438. doi: 10.13287/j.1001-9332.202202.028LI J L, LIANG Y Y, LIU W J, et al. Effects of manure substituting chemical nitrogen fertilizer on rubber seedling growth and soil environment[J]. Chinese Journal of Applied Ecology,2022,33(2):431-438. doi: 10.13287/j.1001-9332.202202.028 [19] JI R T, DONG G Q, SHI W M, et al. Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of Chrysanthemum[J]. Sustainability,2017,9(5):841. doi: 10.3390/su9050841 [20] 史文欣. 玉米秸秆还田配施微生物菌剂对小麦产量及土壤碳氮组分的影响[D]. 泰安: 山东农业大学, 2022. [21] de LAS HERAS J, MAÑAS P, LABRADOR J. Effects of several applications of digested sewage sludge on soil and plants[J]. Journal of Environmental Science and Health, Part A,2005,40(2):437-451. doi: 10.1081/ESE-200045646 [22] 肖列, 刘国彬, 李鹏, 等. 氮素添加和CO2浓度升高对白羊草根际和非根际土壤水溶性有机碳、氮的影响[J]. 应用生态学报,2017,28(1):64-70.XIAO L, LIU G B, LI P, et al. Effects of nitrogen addition and elevated CO2 concentration on soil dissolved organic carbon and nitrogen in rhizosphere and non-rhizosphere of Bothriochloa ischaemum[J]. Chinese Journal of Applied Ecology,2017,28(1):64-70. [23] 申圆圆. 土壤中石油污染物行为特征及植物根际修复研究[D]. 西安: 长安大学, 2013. [24] 邹春琴, 范晓云, 石荣丽, 等. 铵态氮和硝态氮对旱稻、水稻生长及铁营养状况的影响[J]. 中国农业大学学报,2007,12(4):45-49. doi: 10.3321/j.issn:1007-4333.2007.04.009ZOU C Q, FAN X Y, SHI R L, et al. Effect of ammonium and nitrate nitrogen on the growth and iron nutrition of up- and lowland rice[J]. Journal of China Agricultural University,2007,12(4):45-49. doi: 10.3321/j.issn:1007-4333.2007.04.009 [25] KIBA T, KRAPP A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture[J]. Plant and Cell Physiology,2016,57(4):707-714. doi: 10.1093/pcp/pcw052 [26] 李玉浩, 何杰, 王昌全, 等. 控释氮肥配施尿素对土壤无机氮、微生物及水稻生长的影响[J]. 土壤,2018,50(3):469-475. doi: 10.13758/j.cnki.tr.2018.03.005LI Y H, HE J, WANG C Q, et al. Effects of controlled release nitrogen fertilizer combined with urea on soil inorganic nitrogen, microorganism and rice growth[J]. Soils,2018,50(3):469-475. doi: 10.13758/j.cnki.tr.2018.03.005 [27] 林叶春, 李雨, 陈伟, 等. 绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响[J]. 中国土壤与肥料,2018(3):161-167.LIN Y C, LI Y, CHEN W, et al. Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue-cured tobacco[J]. Soils and Fertilizers Sciences in China,2018(3):161-167. [28] PAZ-FERREIRO J, LIANG C F, FU S L, et al. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils[J]. PLoS One,2015,10(4):e0124891. doi: 10.1371/journal.pone.0124891 [29] 张青, 王辰, 孙宗湜, 等. 土壤微生物生物量及多样性影响因素研究进展[J]. 北方园艺,2022(8):116-121.ZHANG Q, WANG C, SUN Z S, et al. Research progress on influencing factors of soil microbial biomass and diversity[J]. Northern Horticulture,2022(8):116-121. [30] FANG H, TANG F F, ZHOU W, et al. Persistence of repeated triadimefon application and its impact on soil microbial functional diversity[J]. Journal of Environmental Science and Health, Part B,2012,47(2):104-110. doi: 10.1080/03601234.2012.616775 [31] LI J Y, CHEN Q F, LI Q, et al. Influence of plants and environmental variables on the diversity of soil microbial communities in the Yellow River Delta Wetland, China[J]. Chemosphere,2021,274:129967. doi: 10.1016/j.chemosphere.2021.129967 [32] YUAN Y L, SI G C, WANG J, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau[J]. FEMS Microbiology Ecology,2014,87(1):121-132. doi: 10.1111/1574-6941.12197 [33] RIVETT D W, BELL T. Abundance determines the functional role of bacterial phylotypes in complex communities[J]. Nature Microbiology,2018,3(7):767-772. doi: 10.1038/s41564-018-0180-0 [34] 苟敏, 曲媛媛, 杨桦, 等. 鞘氨醇单胞菌: 降解芳香化合物的新型微生物资源[J]. 应用与环境生物学报,2008,14(2):276-282. doi: 10.3321/j.issn:1006-687X.2008.02.027GOU M, QU Y Y, YANG H, et al. Sphingomonas sp. : a novel microbial resource for biodegradation of aromatic compounds[J]. Chinese Journal of Applied and Environmental Biology,2008,14(2):276-282. □ doi: 10.3321/j.issn:1006-687X.2008.02.027