留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭材料特征及其在灰水处理中应用研究进展

戴畅 何志琴 李云 王斌 陈晓冬 方菲 秦晓鹏 李志涛

戴畅,何志琴,李云,等.生物炭材料特征及其在灰水处理中应用研究进展[J].环境工程技术学报,2024,14(1):268-277 doi: 10.12153/j.issn.1674-991X.20230301
引用本文: 戴畅,何志琴,李云,等.生物炭材料特征及其在灰水处理中应用研究进展[J].环境工程技术学报,2024,14(1):268-277 doi: 10.12153/j.issn.1674-991X.20230301
DAI C,HE Z Q,LI Y,et al.Research progress on the characteristics of biochar material and its application in greywater treatment[J].Journal of Environmental Engineering Technology,2024,14(1):268-277 doi: 10.12153/j.issn.1674-991X.20230301
Citation: DAI C,HE Z Q,LI Y,et al.Research progress on the characteristics of biochar material and its application in greywater treatment[J].Journal of Environmental Engineering Technology,2024,14(1):268-277 doi: 10.12153/j.issn.1674-991X.20230301

生物炭材料特征及其在灰水处理中应用研究进展

doi: 10.12153/j.issn.1674-991X.20230301
基金项目: 科技基础资源调查专项(2021FY101004)
详细信息
    作者简介:

    戴畅(2000—),女,硕士研究生,主要从事农村生活污水处理研究,daichang202222@163.com

    通讯作者:

    李云(1987—),女,副研究员,博士,主要从事水处理技术及资源化利用研究,liyunliyun1234567@163.com

    王斌(1991— ),男,工程师,主要研究方向为农村生态环境治理技术,wangbin@tcare-mee.cn

  • 中图分类号: X703

Research progress on the characteristics of biochar material and its application in greywater treatment

  • 摘要:

    生物炭具有比表面积大、孔隙度高、表面官能团丰富等优点,在灰水处理方面有较大的应用潜力。介绍了灰水的水质水量特点及常见处理技术,重点对生物炭的性质、改性方法以及生物炭基质在灰水处理方面的国内外应用研究进展进行了综述,并分析了生物炭的再生性能。结果表明:目前应用于灰水处理的生物炭大多是木质源生物炭,木质源生物炭pH处于碱性范围,具有大比表面积、高孔隙度等优点,其比表面积和孔隙度大多数在0~520 m2/g和48%~83%;众多改性方法中,金属盐生物炭改性的研究较多,采用该方法改性后提高了生物炭的吸附能力,并使其磁化从而方便后期的分离回收;生物炭基质多应用于人工湿地、绿墙等生态处理系统进行灰水处理,在最优运行条件下对灰水中有机物、营养物质的去除率均能达到90%,具有良好的应用前景。最后对生物炭在灰水处理应用中存在的问题进行了总结,并从加强新污染物去除、生物炭再生及节能减耗3个方面对未来研究进行了展望。

     

  • 表  1  不同来源灰水水质

    Table  1.   Water quality analysis of greywater from different sources

    灰水来源 地区 年份 COD/(mg/L) 浊度/NTU 氨氮浓度/
    (mg/L)
    TN浓度/
    (mg/L)
    TP浓度/
    (mg/L)
    表面活性剂
    浓度/(mg/L)
    总大肠菌群数/
    (MPN/mL)
    洗浴灰水 中国北京[8] 2017 80.4~145.6 50.3~80.7 12.3~17.8 1.3~1.9 6.2~9.5
    中国成都[9] 2021 70.2~182.5 3.5~8.7 5.2~13.3 0.8~3.7 4.1~12.6
    巴西圣保罗州[7] 2017 273 50.3 5.3 4×103
    洗衣灰水 韩国首尔[10] 2022 139.2±5.5 4.2±0.4 0.1±0.0
    中国宿迁[11] 2022 286 2.06 0.083 33.4
    中国南方某村庄[6] 2021 503±234 4.3±3.9 11.4±5.9 0.5±0.3 45.4±26.9
    厨房灰水 意大利帕多瓦市[12] 2021 855 139 6.89 15.7
    印度卡拉格普尔[13] 2022 30±3 13±2
    中国南方某村庄[6] 2021 478±110 4.7±2.1 14.3±4.4 1.1±0.4 14.1±8.5
    混合灰水 希腊克里特岛[14] 2016 466 162 33 1.3 4.8×103
    印度乌塔拉汗省[15] 2020 554 150 14 8
    中国重庆[16] 2016 39~251 2.8~16.8 3.4~23.2 0.3~3.8 5.7~44
    下载: 导出CSV

    表  2  相关研究中应用于灰水处理的生物炭性质对比

    Table  2.   Comparison of the properties of biochar applied in greywater treatment in related studies

    制备原料 制备温度/℃ 粒径/mm 孔体积/(cm3/g) 比表面积/(m2/g) 总孔隙度/% 容重/(kg/m3) pH
    柳树[43] 450 1~1.4、2.8~5 63.3 270
    木材[44] 1.4、2.8、5 170~200 48~53
    硬木[45] 450 800.2 9.46
    硬木[40] 450 1.4~5 170~200 72~74 187
    椰壳[46] 0.15 0.1716 130.5
    牛油果树[47] 2~4.7、2 71~83 296~307
    木材[48] 1~5
    柳树和松树[49] 1~1.4和2.8~5 63.3 270 9
    下载: 导出CSV

    表  3  生物炭不同改性方法原理

    Table  3.   Principles of different modification methods for biochar

    改性方法 常用改性试剂 改性原理
    酸改性[51] HCl、H3PO4、HNO3 引入酸性官能团,改变
    生物炭的多孔结构
    碱改性[52] NaOH、KOH等 引入含氧官能团,增加
    生物炭的比表面积
    蒸汽活化
    改性[53]
    蒸汽 使高温蒸汽通过生物炭的孔隙,以增加比表面积;引入多孔结构
    有机试剂
    改性[54]
    壳聚糖、甲醇、
    尿素等
    增加生物炭表面的
    官能团和吸附位点
    金属氧化物/
    金属盐改性[55]
    FeSO4、FeCl3、KMnO4 改变表面结构和性质,提高
    吸附能力,增强磁性
    下载: 导出CSV

    表  4  国内外不同生物炭工艺处理灰水效果对比

    Table  4.   Comparison of the effects of different biochar processes at home and abroad in treating greywater

    生物炭工艺 生物炭原料 进水浓度/(mg/L) 去除率/%
    COD NH4 +-N TP 表面活性剂 COD NH4 +-N TP 表面活性剂
    潮汐流人工湿地 核桃壳[25] 185 30 5 50 69.6±8.2 36.2±9.1 79.3
    吸附-生物处理系统 果壳、木材等[8] 80.4~145.6 12.3~17.8 1.3~1.9 6.2~9.5 80.4 80 90
    椰壳[16] 169~332 1.7~2.8 87.6 1.16 1)
    吸附-催化体系 椰壳[46] 120~180 20~50 2.5~4 5~25 88 75 66 88
    绿墙 木屑[27] 250~300 4.36±6.33 50.7±28.5 16.7±33.9 71.4±21.7
    香蕉[5] 2 004 16.9 71 99
    硬木[40] 332±103 7±3 19±6 95
    柳树[42] 1389 3.7 3.6 99.1 89.3
      1)为出水浓度,mg/L。
    下载: 导出CSV

    表  5  不同生物炭再生技术特点对比

    Table  5.   Comparison of the characteristics of different biochar regeneration technologies

    生物炭再生方法特点
    微波辐射再生[72]再生时间短,降低污染风险,成本高
    热再生[73]再生效率高,应用广泛,再生损失大
    生物再生[63]成本低,设备简单,再生周期长
    溶剂再生[72]设备简单,再生时间长,可能存在环境污染
    超临界流体再生[74]生物炭损失大,操作维护成本高,
    仅处于实验室阶段
    下载: 导出CSV
  • [1] ORON G, ADEL M, AGMON V, et al. Greywater use in Israel and worldwide: standards and prospects[J]. Water Research,2014,58:92-101. doi: 10.1016/j.watres.2014.03.032
    [2] PIDOU M, MEMON F A, STEPHENSON T, et al. Greywater recycling: treatment options and applications[J]. Proceedings of the Institution of Civil Engineers - Engineering Sustainability,2007,160(3):119-131. doi: 10.1680/ensu.2007.160.3.119
    [3] DIENER S, MOREL A. Greywater management in low and middle-income countries, review of different treatment systems for households or neighbourhoods[J]. Turkish Journal of Fisheries & Aquatic Sciences,2006,45(4/5):428-432.
    [4] SHAIKH I N, AHAMMED M M. Quantity and quality characteristics of greywater: a review[J]. Journal of Environmental Management,2020,261:110266. doi: 10.1016/j.jenvman.2020.110266
    [5] BIRUKTAWIT G. Greywater treatment using banana peel biochar and sand filtration[D]. Addis Ababa: Addis Ababa University, 2019.
    [6] LI Y H, ZHU S K, ZHANG Y, et al. Constructed wetland treatment of source separated washing wastewater in rural areas of Southern China[J]. Separation and Purification Technology,2021,272:118725. doi: 10.1016/j.seppur.2021.118725
    [7] CHRISPIM M C, NOLASCO M A. Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil[J]. Journal of Cleaner Production,2017,142:290-296. doi: 10.1016/j.jclepro.2016.07.162
    [8] 李婉妮. 过滤吸附和生物活性炭技术处理洗浴废水的研究[D]. 北京: 北京交通大学, 2017.
    [9] 李洋涛, 陈佼, 陆一新, 等. 基于双池人工快渗系统的洗浴废水处理效果研究[J]. 成都工业学院学报,2021,24(1):60-63. doi: 10.13542/j.cnki.51-1747/tn.2021.01.014

    LI Y T, CHEN J, LU Y X, et al. Study on the treatment effect of bathing wastewater based on double pool constructed rapid infiltration systems[J]. Journal of Chengdu Technological University,2021,24(1):60-63. doi: 10.13542/j.cnki.51-1747/tn.2021.01.014
    [10] KIM S, PARK C. Fouling behavior and cleaning strategies of ceramic ultrafiltration membranes for the treatment and reuse of laundry wastewater[J]. Journal of Water Process Engineering,2022,48:102840. doi: 10.1016/j.jwpe.2022.102840
    [11] 田川, 刘江, 陈诗扬, 等. 宿迁市西南片区阳台洗衣废水处理模式研究[J]. 中国给水排水,2022,38(12):68-75.

    TIAN C, LIU J, CHEN S Y, et al. Research on treatment mode of balcony laundry wastewater in southwest downtown of Suqian[J]. China Water & Wastewater,2022,38(12):68-75.
    [12] NICOLA D F, CHIARA D M, ANDRES G M, et al. Green walls to treat kitchen greywater in urban areas: performance from a pilot-scale experiment[J]. Science of the Total Environment,2021,757:144189. doi: 10.1016/j.scitotenv.2020.144189
    [13] SHEKHAR B R, ZAKARIA BASEM S, RANJAN D B, et al. Effect of salinity and surfactant on volatile fatty acids production from kitchen wastewater fermentation[J]. Bioresource Technology Reports,2022,18:101017. doi: 10.1016/j.biteb.2022.101017
    [14] FOUNTOULAKIS M S, MARKAKIS N, PETOUSI I, et al. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing[J]. Science of the Total Environment,2016,551/552:706-711. doi: 10.1016/j.scitotenv.2016.02.057
    [15] PATEL P, MUTEEN A, MONDAL P. Treatment of greywater using waste biomass derived activated carbons and integrated sand column[J]. Science of the Total Environment,2020,711:134586. doi: 10.1016/j.scitotenv.2019.134586
    [16] 陈欢欢. 农村灰水污染特性及吸附-生物处理系统对其净化效能研究[D]. 重庆: 重庆大学, 2021.
    [17] WINWARD G P, AVERY L M, STEPHENSON T, et al. Chlorine disinfection of grey water for reuse: effect of organics and particles[J]. Water Research,2008,42(1/2):483-491.
    [18] EKEREN K M, HODGSON B A, SHARVELLE S E, et al. Investigation of pathogen disinfection and regrowth in a simple graywater recycling system for toilet flushing[J]. Desalination and Water Treatment,2016,57(54):26174-26186. doi: 10.1080/19443994.2016.1159992
    [19] DING A, LIANG H, LI G B, et al. A low energy gravity-driven membrane bioreactor system for grey water treatment: permeability and removal performance of organics[J]. Journal of Membrane Science,2017,542:408-417. doi: 10.1016/j.memsci.2017.08.037
    [20] MAHMOUDI A, MOUSAVI S A, DARVISHI P. Greywater as a sustainable source for development of green roofs: characteristics, treatment technologies, reuse, case studies and future developments[J]. Journal of Environmental Management,2021,295:112991. doi: 10.1016/j.jenvman.2021.112991
    [21] NAUTIYAL R, ULIANA S, RAJ I, et al. Decentralized treatment of grey water by natural coagulants in the presence of coagulation aid[C]//Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering", "World Congress on Civil, Structural, and Environmental Engineering. April 2-4, 2017. Avestia Publishing, 2017.
    [22] PRIYANKA K, REMYA N, BEHERA M. Greywater treatment using modified solar photocatalyst- degradation, kinetics, pathway and toxicity analysis[J]. Separation and Purification Technology,2020,251:117319. doi: 10.1016/j.seppur.2020.117319
    [23] KHALIL M, LIU Y. Greywater biodegradability and biological treatment technologies: a critical review[J]. International Biodeterioration & Biodegradation,2021,161:105211.
    [24] 何志琴, 陈盛, 李云. MBR技术在农村生活污水处理中的研究进展[J]. 环境工程技术学报,2022,12(1):137-144. doi: 10.12153/j.issn.1674-991X.20210177

    HE Z Q, CHEN S, LI Y. Research progress of MBR in rural domestic wastewater treatment[J]. Journal of Environmental Engineering Technology,2022,12(1):137-144. doi: 10.12153/j.issn.1674-991X.20210177
    [25] ZHOU Y, JI B H, JIANG M, et al. Performance and microbial community features of tidal-flow biochar-amended constructed wetlands treating sodium dodecyl sulfate (SDS)-containing greywater[J]. Journal of Cleaner Production,2023,396:136545. doi: 10.1016/j.jclepro.2023.136545
    [26] BARRON N J, HATT B, JUNG J, et al. Seasonal operation of dual-mode biofilters: the influence of plant species on stormwater and greywater treatment[J]. Science of the Total Environment,2020,715:136680. doi: 10.1016/j.scitotenv.2020.136680
    [27] BOANO F, COSTAMAGNA E, CARUSO A, et al. Evaluation of the influence of filter medium composition on treatment performances in an open-air green wall fed with greywater[J]. Journal of Environmental Management,2021,300:113646. doi: 10.1016/j.jenvman.2021.113646
    [28] 李云, 何志琴, 夏训峰, 等. 国内外灰水处理技术研究进展[J]. 环境工程技术学报,2021,11(5):935-941. doi: 10.12153/j.issn.1674-991X.20200301

    LI Y, HE Z Q, XIA X F, et al. Research progress of greywater treatment technology at home and abroad[J]. Journal of Environmental Engineering Technology,2021,11(5):935-941. doi: 10.12153/j.issn.1674-991X.20200301
    [29] WANG H X, XU J L, SHENG L X, et al. A review of research on substrate materials for constructed wetlands[J]. Materials Science Forum,2018,913:917-929. doi: 10.4028/www.scientific.net/MSF.913.917
    [30] YAASHIKAA P R, KUMAR P S, VARJANI S, et al. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy[J]. Biotechnology Reports,2020,28:e00570. doi: 10.1016/j.btre.2020.e00570
    [31] 郭彦秀, 李旭光, 侯太磊, 等. 生物炭基材料活化过一硫酸盐降解有机污染物的研究进展[J]. 环境科学研究,2021,34(4):936-944. doi: 10.13198/j.issn.1001-6929.2021.01.12

    GUO Y X, LI X G, HOU T L, et al. Review of biochar-based materials for catalyzing peroxymonosulfate degradation of organic pollutants[J]. Research of Environmental Sciences,2021,34(4):936-944. doi: 10.13198/j.issn.1001-6929.2021.01.12
    [32] ENAIME G, BAÇAOUI A, YAACOUBI A, et al. Biochar for wastewater treatment: conversion technologies and applications[J]. Applied Sciences,2020,10(10):3492. doi: 10.3390/app10103492
    [33] 彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究,2017,30(10):1637-1644. doi: 10.13198/j.issn.1001-6929.2017.02.95

    PENG C F, XIAO T X, LI Z J. Effects of pyrolysis temperature on structural properties of sludge-based biochar and its adsorption for heavy metals[J]. Research of Environmental Sciences,2017,30(10):1637-1644. doi: 10.13198/j.issn.1001-6929.2017.02.95
    [34] 洪亚军, 徐祖信, 冯承莲, 等. 水葫芦/污泥共热解法制备生物炭粒及其对Cr3+的吸附特性[J]. 环境科学研究,2020,33(4):1052-1061.

    HONG Y J, XU Z X, FENG C L, et al. Co-pyrolysis of water hyacinth and sewage sludge for preparation of biochar particles and its adsorption properties for Cr3+[J]. Research of Environmental Sciences,2020,33(4):1052-1061.
    [35] 郑永昕, 魏东宁, 余学, 等. 氧化石墨烯改性污泥基生物炭对培氟沙星的去除机理研究[J]. 环境科学研究,2020,33(12):2879-2887. doi: 10.13198/j.issn.1001-6929.2020.06.19

    ZHENG Y X, WEI D N, YU X, et al. Removal mechanism of pefloxacin by graphene oxide modified sludge biochar[J]. Research of Environmental Sciences,2020,33(12):2879-2887. doi: 10.13198/j.issn.1001-6929.2020.06.19
    [36] GAYATHRI R, GOPINATH K P, KUMAR P S. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: application in electroplating industrial wastewater[J]. Chemosphere,2021,262:128031. doi: 10.1016/j.chemosphere.2020.128031
    [37] SILBER A, LEVKOVITCH I, GRABER E R. pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications[J]. Environmental Science & Technology,2010,44(24):9318-9323.
    [38] BAUTISTA QUISPE J I, CAMPOS L C, MAŠEK O, et al. Use of biochar-based column filtration systems for greywater treatment: a systematic literature review[J]. Journal of Water Process Engineering,2022,48:102908. doi: 10.1016/j.jwpe.2022.102908
    [39] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报,2016,22(5):1402-1417. doi: 10.11674/zwyf.14539

    YUAN S, ZHAO L X, MENG H B, et al. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizer,2016,22(5):1402-1417. doi: 10.11674/zwyf.14539
    [40] DALAHMEH S S. Capacity of biochar filters for wastewater treatment in onsite systems[D]. Uppsala: Swedish University of Agricultural Sciences, 2016.
    [41] SULIMAN W, HARSH J B, ABU-LAIL N I, et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J]. Biomass and Bioenergy,2016,84:37-48. doi: 10.1016/j.biombioe.2015.11.010
    [42] BERGER C M. Biochar and activated carbon filters for greywater treatment: comparison of organic matter and nutrients removal [D]. Uppsala: Swedish University of Agricultural Sciences, 2012.
    [43] SIDIBÉ M. Comparative study of bark, bio-char, activated charcoal filters for upgrading grey-water from a hygiene aspect[D]. Uppsala: Swedish University of Agricultural Sciences, 2014.
    [44] PEREZ-MERCADO L F, LALANDER C, JOEL A, et al. Biochar filters as an on-farm treatment to reduce pathogens when irrigating with wastewater-polluted sources[J]. Journal of Environmental Management,2019,248:109295. doi: 10.1016/j.jenvman.2019.109295
    [45] BASNET M. Application of ferric enriched biochar to capture N and P from greywater[D]. Helsinki: Helsinki Metropolia University of Applied Sciences, 2015.
    [46] 操家顺, 赵宇杰, 薛朝霞, 等. 吸附-催化材料的制备及对生活洗衣废水的处理[J]. 水处理技术,2019,45(5):116-120. doi: 10.16796/j.cnki.1000-3770.2019.05.026

    CAO J S, ZHAO Y J, XUE Z X, et al. Preparation of adsorption-catalytic material and its performance on laundry wastewater treatment[J]. Technology of Water Treatment,2019,45(5):116-120. doi: 10.16796/j.cnki.1000-3770.2019.05.026
    [47] SAMUEL S W. Comparative studies of the performance of filter media made using biochar and activated carbon in greywater remediation[D]. Zaria: Ahmadu Bello University, 2017.
    [48] DALAHMEH S S, LALANDER C, PELL M, et al. Quality of greywater treated in biochar filter and risk assessment of gastroenteritis due to household exposure during maintenance and irrigation[J]. Journal of Applied Microbiology,2016,121(5):1427-1443. doi: 10.1111/jam.13273
    [49] MOLAEI R. Pathogen and indicator organisms removal in artificial greywater subjected to aerobic treatment[D]. Uppsala: Swedish University of Agricultural Sciences, 2014.
    [50] 孙建财, 周丹丹, 王薇, 等. 生物炭改性及其对污染物吸附与降解行为的研究进展[J]. 环境化学,2021,40(5):1503-1513. doi: 10.7524/j.issn.0254-6108.2020102106

    SUN J C, ZHOU D D, WANG W, et al. Research progress on modification of biochar and its adsorption and degradation behavior[J]. Environmental Chemistry,2021,40(5):1503-1513. doi: 10.7524/j.issn.0254-6108.2020102106
    [51] JIN J, LI S W, PENG X Q, et al. HNO3 modified biochars for uranium (Ⅵ) removal from aqueous solution[J]. Bioresource Technology,2018,256:247-253. doi: 10.1016/j.biortech.2018.02.022
    [52] FENG Z J, ZHU L Z. Sorption of phenanthrene to biochar modified by base[J]. Frontiers of Environmental Science & Engineering,2018,12(2):1.
    [53] BANERJEE S, MUKHERJEE S, LAMINKA-OT A, et al. Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost estimation[J]. Journal of Advanced Research,2016,7(5):597-610. doi: 10.1016/j.jare.2016.06.002
    [54] SIZMUR T, FRESNO T, AKGÜL G, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology,2017,246:34-47. doi: 10.1016/j.biortech.2017.07.082
    [55] BAO Z J, SHI C Z, TU W Y, et al. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation[J]. Environmental Pollution,2022,313:120184. doi: 10.1016/j.envpol.2022.120184
    [56] PATEL P, GUPTA S, MONDAL P. Modeling of continuous adsorption of greywater pollutants onto sawdust activated carbon bed integrated with sand column[J]. Journal of Environmental Chemical Engineering,2022,10(2):107155. doi: 10.1016/j.jece.2022.107155
    [57] CAROLINA R, FERNANDA C, RAFAEL S, et al. Performance and treatment assessment of a pilot-scale decentralized greywater reuse system in rural schools of north-central Chile[J]. Ecological Engineering,2022,174:106460. doi: 10.1016/j.ecoleng.2021.106460
    [58] SUN Y B, WU Z Y, WANG X X, et al. Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J]. Environmental Science & Technology,2016,50(8):4459-4467.
    [59] ZHAO L, ZHENG W, MAŠEK O, et al. Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity[J]. Journal Of Environmental Quality, 2017, 46(2): 393-401.
    [60] DING Z H, HU X, WAN Y S, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests[J]. Journal of Industrial and Engineering Chemistry,2016,33:239-245. doi: 10.1016/j.jiec.2015.10.007
    [61] AbdURREHMAN H M, DELETIC A, ZHANG K, et al. The comparative performance of lightweight green wall media for the removal of xenobiotic organic compounds from domestic greywater[J]. Water Research,2022,221:118774. doi: 10.1016/j.watres.2022.118774
    [62] JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal,2014,248:168-174. doi: 10.1016/j.cej.2014.03.006
    [63] LIAO Y, JIANG L, CAO X K, et al. Efficient removal mechanism and microbial characteristics of tidal flow constructed wetland based on in situ biochar regeneration (BR-TFCW) for rural gray water[J]. Chemical Engineering Journal,2022,431:134185. doi: 10.1016/j.cej.2021.134185
    [64] 兰淑澄. 过滤-生物活性炭技术处理洗浴废水[J]. 环境保护,2002,30(8):16-17. doi: 10.3969/j.issn.0253-9705.2002.08.005

    LAN S C. Wash-bath wastewater treatd by filtration-biological activated carbon technology[J]. Environmental Protection,2002,30(8):16-17. doi: 10.3969/j.issn.0253-9705.2002.08.005
    [65] ADDO-BANKAS O, ZHAO Y Q, VYMAZAL J, et al. Green walls: a form of constructed wetland in green buildings[J]. Ecological Engineering,2021,169:106321. doi: 10.1016/j.ecoleng.2021.106321
    [66] LAKHO F H, VERGOTE J, KHAN H I U H, et al. Total value wall: full scale demonstration of a green wall for grey water treatment and recycling[J]. Journal of Environmental Management,2021,298:113489. doi: 10.1016/j.jenvman.2021.113489
    [67] NIWAGABA C B, DINNO P, WAMALA I, et al. Experiences on the implementation of a pilot grey water treatment and reuse based system at a household in the slum of Kyebando-Kisalosalo, Kampala[J]. Journal of Water Reuse and Desalination,2014,4(4):294-307. doi: 10.2166/wrd.2014.016
    [68] WUROCHEKKE A A, HARUN N A, MOHAMED R M S R, et al. Constructed wetland of Lepironia articulata for household greywater treatment[J]. APCBEE Procedia,2014,10:103-109. doi: 10.1016/j.apcbee.2014.10.025
    [69] SUSILAWATI, SIHOMBING Y A, RAHAYU S U, et al. Filter material based on zeolite-activated charcoal from cocoa shells as ammonium adsorbent in greywater treatment[J]. South African Journal of Chemical Engineering,2023,43:266-272. doi: 10.1016/j.sajce.2022.11.006
    [70] DENG S J, CHEN J Q, CHANG J J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: performance and ecological benefits[J]. Journal of Cleaner Production,2021,293:126156. doi: 10.1016/j.jclepro.2021.126156
    [71] KAETZL K, LÜBKEN M, UZUN G, et al. On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries[J]. Science of the Total Environment,2019,682:601-610. doi: 10.1016/j.scitotenv.2019.05.142
    [72] ODEGA C A, AYODELE O O, OGUTUGA S O, et al. Potential application and regeneration of bamboo biochar for wastewater treatment: a review[J]. Advances in Bamboo Science,2023,2:100012. doi: 10.1016/j.bamboo.2022.100012
    [73] 叶华明, 王孝青, 王红萍. 活性炭的循环再生[J]. 染料与染色,2018,55(3):56-57.

    YE H M, WANG X Q, WANG H P. The recycling method of activated carbon[J]. Dyestuffs and Coloration,2018,55(3):56-57.
    [74] SALVADOR F, MARTIN-SANCHEZ N, SANCHEZ-HERNANDEZ R, et al. Regeneration of carbonaceous adsorbents: part Ⅱ. chemical, microbiological and vacuum regeneration[J]. Microporous and Mesoporous Materials,2015,202:277-296. doi: 10.1016/j.micromeso.2014.08.019
    [75] ZENG S Q, KAN E. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR[J]. Chemosphere,2021,273:129649. doi: 10.1016/j.chemosphere.2021.129649
    [76] HUANG A X, BAI W L, YANG S L, et al. Adsorption characteristics of chitosan-modified bamboo biochar in Cd(Ⅱ) contaminated water[J]. Journal of Chemistry,2022,2022:1-10.
    [77] HU H, SUN L L, JIANG B Q, et al. Low concentration Re(Ⅶ) recovery from acidic solution by Cu-biochar composite prepared from bamboo ( Acidosasa longiligula) shoot shell[J]. Minerals Engineering,2018,124:123-136. doi: 10.1016/j.mineng.2018.05.021
    [78] SHEN T Y, WANG P, HU L M, et al. Adsorption of 4-chlorophenol by wheat straw biochar and its regeneration with persulfate under microwave irradiation[J]. Journal of Environmental Chemical Engineering,2021,9(4):105353. ⊗ doi: 10.1016/j.jece.2021.105353
  • 加载中
表(5)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  171
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17

目录

    /

    返回文章
    返回