留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远洋船舶尾气碳捕集技术及发展趋势研究

屈紫懿 孔存金 印洪浩 张德荣 杜敏

屈紫懿,孔存金,印洪浩,等.远洋船舶尾气碳捕集技术及发展趋势研究[J].环境工程技术学报,2024,14(1):17-24 doi: 10.12153/j.issn.1674-991X.20230303
引用本文: 屈紫懿,孔存金,印洪浩,等.远洋船舶尾气碳捕集技术及发展趋势研究[J].环境工程技术学报,2024,14(1):17-24 doi: 10.12153/j.issn.1674-991X.20230303
QU Z Y,KONG C J,YIN H H,et al.Study on carbon capture technology and development trend of exhaust gas from ocean-going ships[J].Journal of Environmental Engineering Technology,2024,14(1):17-24 doi: 10.12153/j.issn.1674-991X.20230303
Citation: QU Z Y,KONG C J,YIN H H,et al.Study on carbon capture technology and development trend of exhaust gas from ocean-going ships[J].Journal of Environmental Engineering Technology,2024,14(1):17-24 doi: 10.12153/j.issn.1674-991X.20230303

远洋船舶尾气碳捕集技术及发展趋势研究

doi: 10.12153/j.issn.1674-991X.20230303
基金项目: 重庆市教委科学技术研究项目(201902194007)
详细信息
    作者简介:

    屈紫懿(1981—),女,副教授,主要研究方向为船舶尾气排放控制技术,quziyiyi@163.com

    通讯作者:

    孔存金(1997—),男,硕士,主要研究方向为船舶绿色动力技术,jfdyx178@163.com

  • 中图分类号: X51

Study on carbon capture technology and development trend of exhaust gas from ocean-going ships

  • 摘要:

    二氧化碳(CO2)作为主要的温室气体,减排的迫切性日益凸显,一系列国际航运碳减排措施已逐步进入强制执行阶段。碳捕集技术被认为是最直接有效的碳减排技术。然而,船舶尾气碳捕集技术的研究和应用还处于起步阶段,亟需大量深入的针对性研究。因此,针对远洋船舶的尾气碳捕集技术及其发展趋势进行了探讨。首先,介绍船舶尾气碳捕集技术的背景及现状,对当前工业源尾气处理方案及主流的碳捕集技术进行分析和研究。其次,量化国际海事组织对航运业的碳排放要求,对比各种碳减排技术在船舶领域中的可行性和适用性,详细研究了远洋船舶使用碳捕集技术的影响因素与面临的挑战,包括技术要求、技术成本、设备可靠性、能源消耗、二次污染等。最后,结合历史数据和未来趋势预测,对远洋船舶尾气碳捕集技术的发展趋势做出展望,并提出改进方法,以帮助减少船舶排放的碳足迹。

     

  • 图  1  国际航运业CO2排放趋势[8]

    Figure  1.  Trends in CO2 emissions from international shipping industry [8]

    图  2  各国船用碳捕集技术实船应用代表性研究成果

    Figure  2.  Representative research achievements on the application of marine carbon capture technologies in various countries

    表  1  碳捕集技术基本特性

    Table  1.   Basic characteristics of carbon capture technology

    碳捕集
    技术
    捕集原理[15]优点缺点捕集效率/%
    燃烧前化石燃料在燃烧前经过气化、重整等过程,生成CO2和H2,将CO2分离、收集后,H2单独作为燃料使用捕集过程中CO2分压较高,
    捕集成本相对较低[16-18]
    配套的氢燃料发动机技术不成熟,
    应用场景具有局限性[19]
    85~95[16]
    燃烧中在燃料燃烧过程中注入O2,生成高浓度的CO2,促进CO2气体的分离和捕集CO2捕集能耗相对较低[20]需额外加装制氧装置,制氧成本较高,对原有设备改动较大[13]>95[21-22]
    燃烧后在燃料燃烧装置后加装捕集装置,对废气中的CO2进行捕集对原有设备改动小,适用于低
    CO2分压的气源[23-24]
    捕集成本相对较高[25]85~95[26-28]
    下载: 导出CSV

    表  2  全球代表性机构船用碳捕集技术研究现状

    Table  2.   Current status of research on marine carbon capture technologies by global representative institutions

    区域第一作者单位第一作者发表
    年份
    研究方法主要研究内容研究结果
    国外谢菲尔德大学(英国)Luo[30]2017模拟仿真计算以乙醇胺(MEA)为吸收剂,研究船用燃烧后碳捕集技术脱除船基CO2的潜力碳捕集效率可达73%
    荷兰国家应用科学院
    (荷兰)
    Feenstra[31]2019模拟仿真计算分别以MEA和哌嗪(PZ)为吸收剂,对船用柴油发动机和船用LNG发动机脱除船基CO2进行经济分析在60%碳捕集效率的条件下,柴油机最低碳捕集成本为389欧元/t,LNG发动机最低碳捕集成本为323欧元/t
    克兰菲尔德大学(英国)Awoyomi[32]2019模拟仿真计算以氨水为吸收剂,研究10.3 MW LNG船燃烧后碳捕集系统的捕集效果,并进行了经济分析在90%的碳捕集效率前提下,最低碳捕集成本为117美元/t,液化天然气在气化过程中获得的冷能可以用于液化捕集后的CO2
    波兰煤化学加工研究所(波兰)Marcin[6]2021模拟仿真计算基于一艘47 000 t油轮,以MEA为吸收剂,研究燃烧后碳捕集技术降低船舶EEDI的潜力燃烧后碳捕集技术具有巨大的降低EEDI潜力,且MEA溶液可同时脱除尾气中的含硫气体
    阿德莱德大学
    (澳大利亚)
    van Duc Long[33]2021模拟仿真计算针对3 000 kW的船舶柴油发动机,以混合醇胺溶液为吸收剂,探究改进后的船用碳捕集技术的优化效果与单一醇胺溶液相比,混合醇胺溶液有更高的碳捕集效率、更低的能耗
    挪威科技工程研究院
    (挪威)
    Einbu[34]2021模拟仿真计算基于MEA的燃烧后碳捕集系统,对船舶发动机上捕集CO2所需能量进行综合评估燃烧后碳捕集系统会增加船舶燃料消耗,LNG船会增加6%~9%的燃料消耗,传统柴油船会增加8%~12%的燃料消耗
    皮里雷斯海事
    大学(土耳其)
    Engin[35]2021模拟仿真计算基于一家全球运营的船舶管理公司提供的数据,建立数学模型,从燃料价格、碳税等方面分析船用碳捕集技术的应用前景更换替代能源、缴纳碳税的支出远远高于安装碳捕集系统的成本,船用碳捕集技术是一种具有成本效益的航运碳减排方案
    韩国科学技术院(韩国)Lee[36]2021模拟仿真计算基于一艘18.2 MW的集装箱船,以PZ活化的N-甲基二乙醇胺(MDEA)为吸收剂,研究船用碳捕集技术降低EEDI的潜力该技术可减少船舶尾气中70%以上的CO2,可满足当前在IMO规划中2050
    年EEDI的要求
    首尔国立大学(韩国)Oh[37]2021模拟仿真计算基于一艘LNG船,设计了一套膜吸收系统,用于船舶尾气中CO2的捕集与醇胺法相比,该捕集系统的主尺寸较小,但捕集能耗和维护成本较高
    国内上海海事大学王忠诚[38-39]2021模拟仿真计算+试验研究优化船用6135型脱碳塔性能当入口倾斜角度为15°、喷嘴喷雾锥角为90°、最上部的喷嘴向上喷射且高度与中部喷嘴位于同水平面时,碳捕集效率能够提高4.42%
    哈尔滨工程大学吴云金[40]2022模拟仿真计算提出一种碳捕集、有机朗肯循环(ORC)等后处理方式与LNG发动机集成的方案,研究发动机不同工况下排气热量与碳捕集系统集成的可行性当发动机以90%以上负荷运行时,可实现80%以上的碳捕集效率;计算结果表明ORC系统所输出净功满足联合系统用电设备需求
    中国船级社简炎钧[41]2022理论研究研究废气碳捕集系统对EEDI的影响提出安装碳捕集系统的船舶的EEDI计算公式
    武汉理工大学Zhang[42]2023模拟仿真计算研究碳基材料吸附脱除LNG船舶尾气中CO2的能力,分析尾气中其他成分对CO2吸附效果的影响大的碳质表面材料具有明显的CO2吸附作用,低浓度的CH4、H2O、NO可以促进CO2的吸附,O2、NO2会抑制CO2的吸附
    下载: 导出CSV

    表  3  船舶碳捕集相关参数

    Table  3.   Relevant parameters of ship carbon capture

    参数 数值
    夏季载重线吃水的载重/t 91 400
    主机最大持续功率/kW 27 180
    主机油耗率/〔g/(kW·h)〕 205
    主机台数 1
    辅机最大持续功率/kW 2 130
    辅机油耗率/〔g/(kW·h)〕 280
    辅机台数 2
    集装箱船CII计算公式参数 a=1 984,c=0.489
    集装箱船CII评级边界线参数 d1=0.83,d2=0.94,d3=1.07,d4=1.19
      注:ac为集装箱船的CII参考基线计算参数;d1d2d3d4为集装箱船CII评级边界参数(以2019年IMO收集的集装箱船数据为样本,采用分位数回归方法估算得出)。
    下载: 导出CSV

    表  4  不同化学吸收剂对比

    Table  4.   Comparison of different chemical absorbents

    吸收剂 特点 适用工况 解吸能耗/
    (GJ/t)
    碳捕集
    效率/%
    有机胺类
    (MEA、AMP等)
    优点:吸收效率高,处理能力大,可循环利用,技术成熟。缺点:吸收
    剂不能完全再生,解吸耗能高,设备腐蚀问题,胺类降解问题
    20~40 ℃、常压、低CO2浓度(20%以下)的气体 3.7 90以上
    冷氨水溶液 优点:吸收速率快、吸收容量大,再生能耗低,可同时吸收多种酸性
    污染物,无污染。缺点:氨水具有高挥发性,要考虑防漏、防爆问题
    0~10 ℃、常压、低CO2浓度
    (20%以下)的气体
    2.5 80~99
    热钾碱 优点:可用于多污染物捕集,毒性低,无挥发性,对设备腐蚀性小,
    无管路系统污染。缺点:吸收速率较低,设备体积大,解吸耗能高
    40~110 ℃、加压、CO2浓度
    在10%以上的气体
    2.5
    强碱(NaOH、KOH等) 优点:碱性强,吸收效果好,价格低廉,反应不可逆,反应稳定。
    缺点:吸水性强,易潮解,再生困难
    常温、常压气体 无需
    解吸
    85以上
    下载: 导出CSV
  • [1] Climate change: atmospheric carbon dioxide[EB/OL]. [2023-04-23].https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.html.
    [2] 吴佳阳. 燃烧后二氧化碳捕集系统的全生命周期环境评价[D]. 杭州: 浙江大学, 2019.
    [3] BP. BP energy outlook 2019[EB/OL]. [2023-04-23]. https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-energy-outlook-2019.
    [4] ARI I, SARI R. Differentiation of developed and developing countries for the Paris Agreement[J]. Energy Strategy Reviews,2017,18:175-182. doi: 10.1016/j.esr.2017.09.016
    [5] 黄连城, 张贤勇, 阚安康, 等. 中国航运业碳减排变化趋势与碳中和措施[J]. 青岛远洋船员职业学院学报,2021,42(3):48-52.

    HUANG L C, ZHANG X Y, KAN A K, et al. China's shipping industry carbon emissions status, changing trends and carbon neutral measures[J]. Journal of Qingdao Ocean Shipping Mariners College,2021,42(3):48-52.
    [6] MARCIN S, ADAM T, TOMASZ I, et al. Reducing the energy efficiency design index for ships through a post-combustion carbon capture process[J]. International Journal of Greenhouse Gas Control,2021,108:103333. doi: 10.1016/j.ijggc.2021.103333
    [7] IMO. Fourth greenhouse gas study 2020 [EB/OL]. [2023-04-23]. https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx.
    [8] JOUNG T H, KANG S G, LEE J K, et al. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050[J]. Journal of International Maritime Safety, Environmental Affairs, and Shipping,2020,4(1):1-7. doi: 10.1080/25725084.2019.1707938
    [9] 中国船级社. 船舶CO2排放监测、报告和验证实施指南[EB/OL]. [2023-04-25]. https://www.ccs.org.cn/ccswz/specialDetail?id=201900001000008822.
    [10] Marine Environment Protection Committee. Further shipping GHG emissions reduction measures adopted[EB/OL]. [2023-04-23]. https://www.imo.org/en/MediaCentre/PressBriefings/pages/MEPC76.aspx.
    [11] IMO. IMO's work to cut GHG emissions from ships[EB/OL]. [2023-04-23]. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.aspx.
    [12] BOB D. BP statistical review of world energy 2019[R/OL]. [2023-04-23]. https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-statistical-review-of-world-energy-2019.html.
    [13] 翟明洋. 二氧化碳捕集、利用与封存全流程系统优化模型的开发及应用[D]. 北京: 华北电力大学, 2018.
    [14] 汪旭颖, 李冰, 吕晨, 等. 中国钢铁行业二氧化碳排放达峰路径研究[J]. 环境科学研究,2022,35(2):339-346.

    WANG X Y, LI B, LÜ C, et al. China's iron and steel industry carbon emissions peak pathways[J]. Research of Environmental Sciences,2022,35(2):339-346.
    [15] 王丹. 二氧化碳捕集、利用与封存技术全链分析与集成优化研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
    [16] 宋阳, 何少林, 薛华, 等. 二氧化碳捕集、地质利用与封存项目环境管理研究[J]. 中国环境管理,2022,14(5):28-36.

    SONG Y, HE S L, XUE H, et al. Environmental management of carbon dioxide capture, geological utilization and storage projects[J]. Chinese Journal of Environmental Management,2022,14(5):28-36.
    [17] 陈兵, 肖红亮, 李景明, 等. 二氧化碳捕集、利用与封存研究进展[J]. 应用化工,2018,47(3):589-592.

    CHEN B, XIAO H L, LI J M, et al. Advances in research on carbon capture, utilization and storage[J]. Applied Chemical Industry,2018,47(3):589-592.
    [18] 桂霞, 王陈魏, 云志, 等. 燃烧前CO2捕集技术研究进展[J]. 化工进展,2014,33(7):1895-1901.

    GUI X, WANG C W, YUN Z, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress,2014,33(7):1895-1901.
    [19] 何卉. 二氧化碳化学吸收系统的工艺流程改进和集成优化研究[D]. 杭州: 浙江大学, 2018.
    [20] 武永健. 化学链燃烧的特性及应用研究[D]. 北京: 北京科技大学, 2019.
    [21] ADÁNEZ J, ABAD A. Chemical-looping combustion: status and research needs[J]. Proceedings of the Combustion Institute,2019,37(4):4303-4317. doi: 10.1016/j.proci.2018.09.002
    [22] NANDY A, LOHA C, GU S, et al. Present status and overview of chemical looping combustion technology[J]. Renewable and Sustainable Energy Reviews,2016,59:597-619. doi: 10.1016/j.rser.2016.01.003
    [23] KOHLE E E. Petra Nova carbon capture project successfully completed the 240 MW efacility is the largest post-combustion carbon capture project in the world CO2 to enhance oil recovery[J]. Erdol Erdgas Kohle,2017(6):133.
    [24] 刘珍珍. 燃煤烟气二氧化碳捕集吸收剂的研究及工艺优化运行模拟[D]. 杭州: 浙江大学, 2021.
    [25] 陆诗建, 张娟娟, 刘玲, 等. 工业源二氧化碳捕集技术进展与发展趋势[J]. 现代化工,2022,42(11):59-64.

    LU S J, ZHANG J J, LIU L, et al. Progress and development trend of industry-sourced carbon dioxide capture technology[J]. Modern Chemical Industry,2022,42(11):59-64.
    [26] 李红. 醇胺溶液捕集CO2过程的氧化、热降解研究[D]. 大连: 大连理工大学, 2021.
    [27] 张楠, 吕连宏, 王斯一, 等. 基于文献计量分析的碳中和研究进展[J]. 环境工程技术学报,2023,13(2):464-472.

    ZHANG N, LÜ L H, WANG S Y, et al. Analysis of research progress in carbon neutrality based on bibliometrics[J]. Journal of Environmental Engineering Technology,2023,13(2):464-472.
    [28] 吐尔逊·吐尔洪, 苏比努尔·吾麦尔江, 阿不都热依木·卡德尔, 等. 葡萄树基活性炭的制备及其CO2吸附特性[J]. 环境科学研究,2021,34(7):1621-1629.

    TUERXUN T, SUBINUER W, ABUDOUREYIMU K, et al. Preparation of grape tree based activated carbon and its CO2 adsorption capacity[J]. Research of Environmental Sciences,2021,34(7):1621-1629.
    [29] WILBERFORCE T, BAROUTAJI A, SOUDAN B, et al. Outlook of carbon capture technology and challenges[J]. Science of the Total Environment,2019,657:56-72. doi: 10.1016/j.scitotenv.2018.11.424
    [30] LUO X B, WANG M H. Study of solvent-based carbon capture for cargo ships through process modelling and simulation[J]. Applied Energy,2017,195:402-413. doi: 10.1016/j.apenergy.2017.03.027
    [31] FEENSTRA M, MONTEIRO J, van den AKKER J T, et al. Ship-based carbon capture onboard of diesel or LNG-fuelled ships[J]. International Journal of Greenhouse Gas Control,2019,85:1-10. doi: 10.1016/j.ijggc.2019.03.008
    [32] AWOYOMI A, PATCHIGOLLA K, ANTHONY E J. Process and economic evaluation of an onboard capture system for LNG-fueled CO2 carriers[J]. Industrial & Engineering Chemistry Research,2020,59(15):6951-6960.
    [33] van DUC LONG N, LEE D Y, KWAG C, et al. Improvement of marine carbon capture onboard diesel fueled ships[J]. Chemical Engineering and Processing:Process Intensification,2021,168:108535. doi: 10.1016/j.cep.2021.108535
    [34] EINBU A, PETTERSEN T, MORUD J, et al. Energy assessments of onboard CO2 capture from ship engines by MEA-based post combustion capture system with flue gas heat integration[J]. International Journal of Greenhouse Gas Control,2022,113:103526. doi: 10.1016/j.ijggc.2021.103526
    [35] ENGIN G, SELMA E. An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships[J]. International Journal of Greenhouse Gas Control,2021,110:103438. doi: 10.1016/j.ijggc.2021.103438
    [36] LEE S, YOO S, PARK H, et al. Novel methodology for EEDI calculation considering onboard carbon capture and storage system[J]. International Journal of Greenhouse Gas Control,2021,105:103241. doi: 10.1016/j.ijggc.2020.103241
    [37] OH J, ANANTHARAMAN R, ZAHID U, et al. Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships[J]. Separation and Purification Technology,2022,282:120052. doi: 10.1016/j.seppur.2021.120052
    [38] 王忠诚, 李品友, 李珂, 等. 船用6135型脱碳塔的性能优化[J]. 推进技术,2021,42(6):1425-1434.

    WANG Z C, LI P Y, LI K, et al. Performance optimization of marine 6135 decarbonization tower[J]. Journal of Propulsion Technology,2021,42(6):1425-1434.
    [39] 王忠诚, 刘晓宇, 周培林, 等. 基于碱法机理减少船舶CO2排放研究[J]. 北京理工大学学报,2018,38(3):241-246.

    WANG Z C, LIU X Y, ZHOU P L, et al. Reducing CO2 emission from ship based on alkali mechanism[J]. Transactions of Beijing Institute of Technology,2018,38(3):241-246.
    [40] 吴云金, 冯永明, 刘俊廷, 等. 基于能量综合回收利用的船舶碳捕获集成系统[J]. 船舶工程,2022,44(7):47-53.

    WU Y J, FENG Y M, LIU J T, et al. Integrated ship carbon capture system based on comprehensive energy recovery and utilization[J]. Ship Engineering,2022,44(7):47-53.
    [41] 简炎钧, 傅夏明, 杨培青. 废气碳捕集系统对EEDI的影响分析[J]. 中国船检,2022(10):71-74.

    JIAN Y J, FU X M, YANG P Q. Analysis of the influence of exhaust gas carbon capture system on EEDI[J]. China Ship Survey,2022(10):71-74.
    [42] ZHANG Y, LI G S, ZHANG Z H, et al. Insights into CO2 removal mechanism via the carbonaceous surface in the exhaust gas of marine NG engines: a first-principles study[J]. Applied Surface Science,2023,617:156542. doi: 10.1016/j.apsusc.2023.156542
    [43] 邝展婷. 全球船企抢占CCUS风口[N]. 中国船舶报, 2022-02-18(5).
    [44] IEA. Energy technology perspectives 2020[EB/OL]. [2023-04-23]. https://www.iea.org/reports/energy-technology-perspectives-2020.html.
    [45] 刘东宇. 船舶柴油机废气模拟系统的设计与测试[D]. 大连: 大连海事大学, 2014.
    [46] 袁勤辉. 大型集装箱船舶柴油机余热利用系统建模及优化[D]. 武汉: 武汉理工大学, 2020.
    [47] 穆振仟. 大型船用柴油机进排气性能的模拟仿真与试验研究[D]. 济南: 山东大学, 2018.
    [48] 薛树业, 何利东. 国际航运碳强度规则下的船舶分类[J]. 世界海运,2022,45(8):23-27.

    XUE S Y, HE L D. Classification of ships under the carbon intensity rules of international shipping[J]. World Shipping,2022,45(8):23-27.
    [49] 张亚萍. 燃煤CO2的回收利用技术研究进展[J]. 化工时刊,2022,36(4):25-27.

    ZHANG Y P. Research progress of coal-fired CO2 recovery and utilization technology[J]. Chemical Industry Times,2022,36(4):25-27.
    [50] 丁洁. 燃料发电厂燃烧后CO2捕获技术研究进展[J]. 广东化工,2022,49(8):100-101.

    DING J. Study on the capture of carbon dioxide of post-combustion from fossil fuel fired power plants[J]. Guangdong Chemical Industry,2022,49(8):100-101.
    [51] 于伟. 纳米颗粒强化的二氧化碳吸收剂及新型再生工艺研究[D]. 杭州: 浙江大学, 2019.
    [52] LI J H, SHI C, BAO A. Design of boron-doped mesoporous carbon materials for multifunctional applications: dye adsorption and CO2 capture[J]. Journal of Environmental Chemical Engineering,2021,9(3):105250. doi: 10.1016/j.jece.2021.105250
    [53] LU S J, LIU H, ZHAO D Y, et al. The research of net carbon reduction model for CCS-EOR projects and cases study[J]. International Journal of Simulation and Process Modelling,2017,12(5):401. □ doi: 10.1504/IJSPM.2017.087601
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  725
  • HTML全文浏览量:  280
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 录用日期:  2023-08-15
  • 修回日期:  2023-08-08

目录

    /

    返回文章
    返回