Real driving NOx emission characteristics of China Ⅵ heavy-duty diesel vehicles at different altitudes
-
摘要:
为了解不同海拔下国Ⅵ重型柴油车的NOx排放特性,利用便携式排放测试系统(PEMS)在4个不同海拔城市(襄阳、昆明、丽江和香格里拉)对国Ⅵ重型柴油车进行实际道路排放测试。结果表明:随着海拔高度的升高,NOx排放呈现增加趋势,高海拔下的平均NOx排放速率是平原的4.65~20.58倍,NOx综合排放因子是平原的2.80~13.75倍;不同载荷条件下香格里拉的NOx 综合排放因子是襄阳、昆明和丽江的1.27~13.75 倍;市区路的NOx排放因子是市郊路和高速路的1.05~6.49倍,且香格里拉市区路的排放因子超过400 mg/km;在Bin 11~Bin 14和Bin 21~Bin 28区间,随着机动车比功率(VSP)的升高,NOx排放速率表现出先增大后减小的趋势;不同海拔下车辆从市区路到市郊路、市郊路到高速路行驶时,NOx瞬时排放速率出现峰值;NOx高排放区域集中在高转速、高扭矩区间;海拔与平均NOx排放因子的决定系数为0.86,表现出较强的正相关关系。
Abstract:To understand the NOx emission characteristics of China Ⅵ heavy-duty diesel vehicles at different altitudes, a portable emission measurement system (PEMS) was used to conduct real driving emission tests on China Ⅵ heavy-duty diesel vehicles in four cities with different altitudes (including Xiangyang, Kunming, Lijiang and Shangri-la). This study showed that with the increase of altitude, NOx emission showed an increasing trend, and the average NOx emission rate under high altitude was 4.65-20.58 times that of the plain, and NOx emission factor was 2.80-13.75 times that of the plain. NOx emission factors of Shangri-la were 1.27-13.75 times higher than those of Xiangyang, Kunming and Lijiang under different load conditions. NOx emission factors of urban road were 1.05-6.49 times higher than those of suburban road and freeway, and the emission factors of urban road in Shangri-la exceeded 400 mg/km. In the interval of Bin 11-Bin 14 and Bin 21-Bin 28, NOx emission rates showed a trend of increases followed by decreases with the increase of VSP. NOx instantaneous emission rate peaked when the vehicles drove from urban road to suburban road and suburban road to freeway at different altitudes. The high NOx emission area was concentrated in the high speed and high torque range. The coefficient of determination between altitude and the average NOx emission factor was 0.86, which showed a fair positive correlation.
-
表 1 重型柴油车在不同测试路线下的信息
Table 1. Information on heavy-duty diesel vehicle under different test routes
测试城市 试验路线
平均海拔/m测试路段
长度/km平均环境
温度/℃平均相对
湿度/%襄阳 104.46±1.77 127.62±5.18 32.87±2.73 54.17±14.15 昆明 1 961.06±4.02 136.23±0.46 28.37±2.52 52.21±9.15 丽江 2 371.30±20.56 147.53±5.43 15.07±1.36 93.50±5.22 香格里拉 3 293.42±1.90 149.59±2.65 10.35±4.83 77.53±20.44 表 2 基于速度、加速度和VSP的工况区间划分
Table 2. Definition of driving condition bins based on velocity, acceleration and VSP
VSP/(kW/t) 加速度/(m/s2) 车速/(km/h) <−0.9 <1.6 1.6~40 40~80 ≥80 Bin 0(减速/
制动工况)Bin 1
(怠速工况)<0 Bin 11 Bin 21 0~3 Bin 12 Bin 22 3~6 Bin 13 Bin 23 6~9 Bin 14 Bin 24 9~12 Bin 25 12~18 Bin 27 Bin 37 18~24 Bin 28 Bin 38 24~30 Bin 39 <6 Bin 33 6~12 Bin 35 表 3 本研究测试车辆的平均NOx排放因子与其他研究结果比较
Table 3. Comparison of the average NOx emission factor of the vehicles tested in this study with the results of other studies
测试城市(县) 测试平均
海拔/m后处理技术 排放
标准NOx排放因
子/(g/km)数据
来源襄阳 104.46±1.77 DOC+DPF+
SCR+ASC国Ⅵ 0.01 本研究 昆明 1 961.06±4.02 0.04 丽江 2 371.30±20.56 0.07 香格里拉 3 293.42±1.90 0.12 天津 0 DOC+DPF+
SCR欧Ⅵ 0.11 文献[24] 太原 765 0.07 建水 1 344 0.15 昆明 1 914 0.09 丽江/西宁 2 322/2 334 0.14 海晏 3 050 0.09 厦门/北京 DOC+DPF+
SCR国Ⅵ 0.12 文献[25] 赤峰 DOC+SCR 国Ⅵ 0.11 文献[26] 晋中 DOC+SCR+
ASC国Ⅵ 0.18 文献[27] 注:DOC为氧化催化转化器,DPF为柴油机颗粒捕集器,SCR为选择性催化还原系统,ASC为氨逃逸催化器。 -
[1] 生态环境部. 中国移动源环境管理年报(2022)[A/OL]. [2023-04-20].https://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202212/W020221207387013521948.pdf. [2] McCAFFERY C, ZHU H W, TANG T B, et al. Real-world NO x emissions from heavy-duty diesel, natural gas, and diesel hybrid electric vehicles of different vocations on California roadways[J]. Science of the Total Environment,2021,784:147224. doi: 10.1016/j.scitotenv.2021.147224 [3] 解淑霞, 黄志辉, 王鑫, 等. 阳泉市2017年基于交通流量的机动车排放清单[J]. 环境工程技术学报,2021,11(2):226-233.XIE S X, HUANG Z H, WANG X, et al. Emission inventory of motor vehicle based on traffic flow for Yangquan City in 2017[J]. Journal of Environmental Engineering Technology,2021,11(2):226-233. [4] 陈婷, 何潇, 陈文倩, 等. 基于车载测试的轻型汽车排放特征[J]. 环境工程技术学报,2022,12(4):1033-1040.CHEN T, HE X, CHEN W Q, et al. Emission characteristics of light-duty vehicles based on portable emission measurement system (PEMS)[J]. Journal of Environmental Engineering Technology,2022,12(4):1033-1040. [5] GIECHASKIEL B. Solid particle number emission factors of Euro Ⅵ heavy-duty vehicles on the road and in the laboratory[J]. International Journal of Environmental Research and Public Health,2018,15(2):304. doi: 10.3390/ijerph15020304 [6] GIECHASKIEL B, SCHWELBERGER M, DELACROIX C, et al. Experimental assessment of solid particle number Portable Emissions Measurement Systems (PEMS) for heavy-duty vehicles applications[J]. Journal of Aerosol Science,2018,123:161-170. doi: 10.1016/j.jaerosci.2018.06.014 [7] 余林啸, 葛蕴珊, 谭建伟, 等. 重型柴油机在不同海拔地区的燃烧与排放特性[J]. 内燃机学报,2013,31(6):507-512.YU L X, GE Y S, TAN J W, et al. Combustion and emission characteristics of a heavy-duty diesel engine at different altitudes[J]. Transactions of CSICE,2013,31(6):507-512. [8] FANG L, LOU D M, HU Z Y, et al. The emission characteristics of a diesel engine during start-up process at different altitudes[J]. Energies,2019,12(18):3556. doi: 10.3390/en12183556 [9] CEBALLOS J J, MELGAR A, TINAUT F V. Influence of environmental changes due to altitude on performance, fuel consumption and emissions of a naturally aspirated diesel engine[J]. Energies,2021,14(17):5346. doi: 10.3390/en14175346 [10] 毕玉华, 聂学选, 刘少华, 等. 排气温度、排气流量和海拔高度对SCR系统NO x 转化率和NH3泄漏量的影响研究[J]. 汽车工程,2021,43(3):350-357.BI Y H, NIE X X, LIU S H, et al. Study on the effects of exhaust temperature, exhaust flow rate and altitude on NO x conversion rate and NH3 slip of SCR system[J]. Automotive Engineering,2021,43(3):350-357. [11] 张凡, 李梁, 于津涛. 用不同算法时载荷条件对重型车比排放影响的对比试验[J]. 汽车安全与节能学报,2022,13(2):397-405.ZHANG F, LI L, YU J T. Comparative test of influence of load conditions on specific emissions of heavy-duty vehicles with different calculation methods[J]. Journal of Automotive Safety and Engergy,2022,13(2):397-405. [12] 葛蕴珊, 丁焰, 尹航. 机动车实际行驶排放测试系统研究现状[J]. 汽车安全与节能学报,2017,8(2):111-121.GE Y S, DING Y, YIN H. Research status of real driving emission measurement system for vehicles[J]. Journal of Automotive Safety and Engergy,2017,8(2):111-121. [13] FU M L, GE Y S, WANG X, et al. NO x emissions from Euro Ⅳ busses with SCR systems associated with urban, suburban and freeway driving patterns[J]. Science of the Total Environment,2013,452/453:222-226. doi: 10.1016/j.scitotenv.2013.02.076 [14] GRIGORATOS T, FONTARAS G, GIECHASKIEL B, et al. Real world emissions performance of heavy-duty Euro Ⅵ diesel vehicles[J]. Atmospheric Environment,2019,201:348-359. doi: 10.1016/j.atmosenv.2018.12.042 [15] KO S, PARK J, KIM H, et al. NO x emissions from Euro 5 and Euro 6 heavy-duty diesel vehicles under real driving conditions[J]. Energies,2020,13(1):218. doi: 10.3390/en13010218 [16] 吕立群, 尹航, 王军方, 等. 基于功基窗口法的国六重型柴油车实际道路排放研究[J]. 中国环境科学,2021,41(8):3539-3545. doi: 10.3969/j.issn.1000-6923.2021.08.008LÜ L Q, YIN H, WANG J F, et al. Research on real driving emissions from China-Ⅵ heavy-duty diesel vehicles based on work-based window method[J]. China Environmental Science,2021,41(8):3539-3545. doi: 10.3969/j.issn.1000-6923.2021.08.008 [17] SU S, GE Y, HOU P, et al. China Ⅵ heavy-duty moving average window (MAW) method: quantitative analysis of the problem, causes, and impacts based on the real driving data[J]. Energy,2021,225:120295. doi: 10.1016/j.energy.2021.120295 [18] 宋东, 郑永明, 刘爽, 等. 重型柴油车不同载荷下实际道路行驶排放特性[J]. 汽车工程,2020,42(10):1364-1368.SONG D, ZHENG Y M, LIU S, et al. Road driving emission characteristics of heavy-duty diesel vehicles with different loads[J]. Automotive Engineering,2020,42(10):1364-1368. [19] 生态环境部, 国家市场监督管理总局. 重型柴油车污染物排放限值及测量方法(中国第六阶段): GB 17691—2018[S/OL]. [2023-04-20].https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqydywrwpfbz/201807/W020180703397013304274.pdf. [20] 赵琛, 王军方, 付明亮, 等. 重型天然气车实际道路排放特征与机理研究[J]. 环境科学研究,2022,35(7):1573-1580.ZHAO C, WANG J F, FU M L, et al. Real world driving emission characteristics and mechanism of heavy duty liquefied natural gas vehicles[J]. Research of Environmental Sciences,2022,35(7):1573-1580. [21] US Environmental Protection Agency. Exhaust emission rates for heavy-duty onroad vehicles in MOVES3[R]. Washington DC: Office of Transportation and Air Quality, 2020. [22] WU Y, ZHANG S J, LI M L, et al. The challenge to NO x emission control for heavy-duty diesel vehicles in China[J]. Atmospheric Chemistry and Physics,2012,12(19):9365-9379. doi: 10.5194/acp-12-9365-2012 [23] 王俊, 申立中, 毕玉华, 等. 不同海拔下基于VNT驱动的EGR对轻型柴油机燃烧与排放的影响[J]. 汽车工程,2022,44(7):1088-1097.WANG J, SHEN L Z, BI Y H, et al. Effect of EGR driven by VNT on combustion and emission of light-duty diesel engine at different altitudes[J]. Automotive Engineering,2022,44(7):1088-1097. [24] 高忠明. 欧六重型车高海拔排放研究[D]. 天津: 河北工业大学, 2017. [25] 马帅, 黄志辉, 纪亮, 等. 基于车载测试的国Ⅵ重型柴油车CO2和NO x排放研究[J]. 环境科学学报,2022,42(2):341-350.MA S, HUANG Z H, JI L, et al. CO2 and NO x emission characteristics from a heavy-duty China Ⅵ diesel truck based on portable emission measurement system[J]. Acta Scientiae Circumstantiae,2022,42(2):341-350. [26] LI X Y, AI Y, GE Y S, et al. Integrated effects of SCR, velocity, and Air-fuel Ratio on gaseous pollutants and CO2 emissions from China Ⅴ and Ⅵ heavy-duty diesel vehicles[J]. Science of the Total Environment,2022,811:152311. doi: 10.1016/j.scitotenv.2021.152311 [27] 赵琛. 国Ⅵ重型车NO x排放特征及评价方法研究[D]. 北京: 中国环境科学研究院, 2022. □