Whole process simulation of MSW gasification and melting system based on Aspen Plus
-
摘要:
城市固体废物(MSW)气化熔融工艺能够减少二噁英的生成和熔融固化重金属,是一种清洁高效的固体废物处理方式。已有研究多针对MSW的热解特性以及污染物的生成与排放,而对气化熔融工艺系统模块之间的影响和各反应器间物质流、能量流的联动变化过程研究不足。利用Aspen Plus模拟平台,基于吉布斯自由能最小化原理,对MSW气化熔融工艺进行了全流程模拟研究,分析了垃圾干燥温度、垃圾含水率、气化温度、气化介质以及灰熔点对工艺流程节点参数、物质流和能量流的影响,并提出了优化的工艺流程和运行参数。结果表明:在垃圾热解模拟时,垃圾含水率为9%,通过烟气循环能达到能量自给;在相同条件下,以水蒸气作为气化介质的气化效率最高,且在气化温度为850 ℃,水蒸气当量比为50%时,达到最佳工艺效果;当气化后产生的焦炭在熔融炉内燃烧刚满足灰熔点温度时,灰熔点的升高使气化剂比例、气化气有效气体摩尔流量和碳转化率不断降低。不同工况下的物质流、能量流的变化对实际工程具有指导意义。
-
关键词:
- 城市固体废物(MSW) /
- 气化熔融 /
- 全流程模拟 /
- 节点参数 /
- 熔融炉
Abstract:The gasification and melting process of municipal solid waste (MSW) can reduce the formation of dioxins and melt heavy metals, which is a clean and efficient solid waste treatment method. At present, most of the research is on the pyrolysis characteristics of MSW and the generation and emission of pollutants, while the research on the influence between the modules of the gasification and melting process system and the linkage change process of material flow and energy flow between each reactor is insufficient. The whole process simulation of MSW gasification and melting process was carried out by using Aspen Plus simulation platform based on Gibbs free energy minimization principle. The effects of waste drying temperature, waste moisture content, gasification temperature, gasification medium and ash melting point on the process node parameters, material flow and energy flow were analyzed, and the optimized process flow and operation parameters were proposed. The results showed that when the moisture content of garbage was 9%, the simulation of garbage pyrolysis could achieve energy self-sufficiency through flue gas circulation. Under the same conditions, different gasification agent media had the highest gasification efficiency using water vapor as the gasification medium, and the optimal process was achieved at a gasification temperature of 850 ℃ and a water vapor equivalence ratio of 50%. When the char produced after gasification was burned in the melting furnace to meet the ash melting point temperature, the increase of ash melting point made the proportion of gasification agent, the effective gas molar flow of gasification gas and the carbon conversion rate decreased continuously. The changes of material flow and energy flow under different working conditions has guiding significance for practical engineering.
-
表 1 Aspen Plus中部分常用单元
Table 1. Some commonly used units in Aspen Plus
单元模块 模块名称 用途 适用条件 Flash2 分流器 把入口物流分成多个规定的出口物流 用于水蒸气与固体分离 SSplit 分流器 把每个入口子物流分成多个规定的出口物流 分流器,流体固体分离器 Mixer 股流混合器 把多个股流混合成一个股流 股流混合器 RStoic 化学计量反应器 具有规定反应程度和转化率的化学计量反应器模型 用于模拟单一或多个反应的反应器 RYield 收率反应器 具有规定收率的反应器模型 只考虑质量平衡而不考虑元素平衡的反应器 RGibbs 吉布斯自由能最小的平衡反应器 通过吉布斯自由能最小化实现化学和相平衡 化学平衡和相平衡同时发生的反应器 表 2 MSW的工业分析和元素分析
Table 2. Industrial analysis and elemental analysis of MSW
% 工业分析 元素分析 Mar Vd ASHd FCd Cd Hd Od Nd Sd Cld 50.78 58.10 30.52 11.38 40.56 4.69 21.15 0.98 1.74 0.36 注:M为水分,V为挥发分,ASH为灰分,FC为固定碳;下标ar为收到基,d为干燥基。 表 3 主要的还原反应和氧化反应
Table 3. Major reduction and oxidation reactions
序号 化学反应 反应热(ΔH)/(MJ/kmol) 反应类型 R1 C+CO2→2CO 172 还原反应 R2 C+H2O→CO+H2 131 R3 CO+H2O→CO2+H2 −41 R4 CH4+H2O→CO+3H2 206 R5 CO+3H2→CH4+H2O −227 R6 C+2H2→CH4 −75 R7 C+1/2O2→ CO −111 氧化反应 R8 CO+1/2O2→CO2 −283 R9 C+O2→CO2 −394 R10 H2+1/2O2→H2O −242 表 4 热解气化模拟结果与试验数据对比
Table 4. Comparison of pyrolysis and gasification simulation results and experimental data
气化气组分 各组分所占气化气体积分数/% 相对误差/% 模拟数据 试验数据[24] H2 43.16 41.36 4.35 CO 23.52 23.34 0.77 CO2 13.86 14.77 6.16 CH4 17.73 18.66 4.98 C2H4 1.24 1.34 7.46 C2H6 0.49 0.53 7.54 表 5 气化介质工况
Table 5. Working conditions of gasification media
% 工况 气化介质占比 水蒸气 CO2 烟气 1 100 0 0 2 0 100 0 3 60 40 0 4 60 0 40 表 6 不同气化剂对气化气特性的影响
Table 6. Effect of different gasification agents on gasification gas characteristics
工况 气化剂种类 气化气组分占比/% 热值/
(MJ/m3)H2O H2 CO CO2 CH4 1 水蒸气 1.62 55.85 40.60 1.11 0.82 11.46 2 CO2 1.83 46.32 48.76 2.63 0.69 11.41 3 水蒸气和CO2 1.66 52.47 43.60 1.55 0.72 11.43 4 水蒸气和烟气 1.81 54.62 40.49 2.38 0.70 11.26 -
[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. [2] 杨小妮, 张凯轩, 杨宏刚, 等. 西安市城市生活垃圾产生量的多元回归及ARIMA模型预测[J]. 环境卫生工程,2020,28(2):37-41. doi: 10.19841/j.cnki.hjwsgc.2020.02.008YANG X N, ZHANG K X, YANG H G, et al. Multiple regression and ARIMA model prediction on the yield of MSW in Xi'an[J]. Environmental Sanitation Engineering,2020,28(2):37-41. doi: 10.19841/j.cnki.hjwsgc.2020.02.008 [3] KARAK T, BHAGAT R M, BHATTACHARYYA P. Municipal solid waste generation, composition, and management: the world scenario[J]. Critical Reviews in Environmental Science and Technology,2012,42(15):1509-1630. doi: 10.1080/10643389.2011.569871 [4] 朱铭珠, 杨延梅, 徐亚, 等. 填埋场防渗系统高密度聚乙烯膜漏洞修补技术探析[J]. 环境工程技术学报,2022,12(5):1647-1652. doi: 10.12153/j.issn.1674-991X.20210640ZHU M Z, YANG Y M, XU Y, et al. Discussion on repair technologies of high-density polyethylene membrane leaks in landfill anti-seepage system[J]. Journal of Environmental Engineering Technology,2022,12(5):1647-1652. doi: 10.12153/j.issn.1674-991X.20210640 [5] 吴昊, 刘宏博, 田书磊, 等. 城市生活垃圾焚烧飞灰利用处置现状及环境管理[J]. 环境工程技术学报,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083WU H, LIU H B, TIAN S L, et al. Current situation for utilization and disposal and environmental management of fly ash from municipal solid waste incineration[J]. Journal of Environmental Engineering Technology,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083 [6] 张明远, 万新. 冶金高炉高温熔融处理垃圾飞灰[J]. 环境工程学报,2012,6(8):2859-2864.ZHANG M Y, WAN X. High-temperature melting treatment of fly ash by blast furnace[J]. Techniques and Equipment for Environmental Pollution Control,2012,6(8):2859-2864. [7] 武建业. 城市生活垃圾焚烧处理技术综述[J]. 甘肃科技,2020,36(5):22-26. doi: 10.3969/j.issn.1000-0952.2020.05.010WU J Y. Summary of incineration treatment technology of municipal solid waste[J]. Gansu Science and Technology,2020,36(5):22-26. doi: 10.3969/j.issn.1000-0952.2020.05.010 [8] 曲金星. 水分对城市生活垃圾热解气化特性影响的试验研究[D]. 杭州: 浙江大学, 2007. [9] LIN C J, ZHANG J, ZHAO P T, et al. Gasification of real MSW-derived hydrochar under various atmosphere and temperature[J]. Thermochimica Acta,2020,683:178470. doi: 10.1016/j.tca.2019.178470 [10] 刘雨豪. 垃圾低温热解特性的模拟研究以及全生命周期分析[D]. 武汉: 华中科技大学, 2019. [11] 别如山, 张庆红, 惠阳. 垃圾焚烧飞灰旋风炉高温熔融试验研究[J]. 工业锅炉,2009(4):1-4. doi: 10.3969/j.issn.1004-8774.2009.04.001BIE R S, ZHANG Q H, HUI Y. Test study on fly ash from MSWI molten at high temperature in cyclone furnace[J]. Industrial Boiler,2009(4):1-4. doi: 10.3969/j.issn.1004-8774.2009.04.001 [12] NATARIANTO I, SAVEED M, AJAY K, et al. Modeling low temperature plasma gasification of municipal solid waste[J]. Environmental Technology & Innovation,2019,15:100412. [13] 熊杰明, 李江保. 化工流程模拟Aspen Plus实例教程[M]. 2版. 北京: 化学工业出版社, 2016. [14] DUAN W J, YU Q B, WANG K, et al. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system[J]. Energy Conversion and Management,2015,100:30-36. doi: 10.1016/j.enconman.2015.04.066 [15] RUDRA S, TESFAGABER Y K. Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production[J]. Energy,2019,180:881-892. doi: 10.1016/j.energy.2019.05.125 [16] TUNGALAG A, LEE B, YADAV M, et al. Yield prediction of MSW gasification including minor species through ASPEN plus simulation[J]. Energy,2020,198:117296. doi: 10.1016/j.energy.2020.117296 [17] AVDHESH K, SHARMA. Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier[J]. Enconman,2008,49(4):832-842. [18] WANG H M, REN R W, LIU B J, et al. Hydrogen production with an auto-thermal MSW steam gasification and direct melting system: a process modeling[J]. International Journal of Hydrogen Energy,2022,47(10):6508-6518. doi: 10.1016/j.ijhydene.2021.12.009 [19] 郝彦龙, 侯成林, 付丽霞, 等. 生活垃圾无害化处理工程设计实例[J]. 环境工程,2020,38(2):135-139. doi: 10.13205/j.hjgc.202002019HAO Y L, HOU C L, FU L X, et al. Engineering design of a municipal solid waste disposal project[J]. Environmental Engineering,2020,38(2):135-139. doi: 10.13205/j.hjgc.202002019 [20] KECHE A J, GADDALE A P R, TATED R G. Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS[J]. Clean Technologies and Environmental Policy,2015,17(2):465-473. doi: 10.1007/s10098-014-0804-x [21] 郑志行, 张家元, 李俊宇, 等. 下吸式固定床的生物质O2/CO2分段气化流程模拟[J]. 太阳能学报,2022,43(6):239-245.ZHENG Z H, ZHANG J Y, LI J Y, et al. Process simulation of biomass O2/CO2 staged gasification in downdraft fixed bed[J]. Acta Energiae Solaris Sinica,2022,43(6):239-245. [22] 孙兰义. 化工过程模拟实训: Aspen Plus教程[M]. 2版. 北京: 化学工业出版社, 2017. [23] RENGANATHAN T, YADAV M V, PUSHPAVANAM S, et al. CO2 utilization for gasification of carbonaceous feedstocks: a thermodynamic analysis[J]. Chemical Engineering Science,2012,83:159-170. doi: 10.1016/j.ces.2012.04.024 [24] 潘春鹏. 生活垃圾固定床热解气化的实验研究[D]. 杭州: 浙江大学, 2012. [25] 李志, 杜学森, 汪宇, 等. 低温等离子体催化水煤气变换反应: 催化剂载体的影响[J]. 工程热物理学报,2022,43(8):2202-2211.LI Z, DU X S, WANG Y, et al. Water gas shift reaction by non-thermal plasma-catalysis: effect of catalyst supports[J]. Journal of Engineering Thermophysics,2022,43(8):2202-2211. [26] 窦明辉, 孙洋, 韩嘉伟, 等. 焦炭在H2O+CO2气氛中的溶损反应特性[J]. 钢铁,2022,57(7):26-33.DOU M H, SUN Y, HAN J W, et al. Solution loss characteristics of cokes in H2O+CO2 atmosphere[J]. Iron & Steel,2022,57(7):26-33. [27] 王超, 王华, 刘颖琳, 等. 煤灰主要成分与流动温度关系预测[J]. 山东电力技术,2019,46(12):72-75. doi: 10.3969/j.issn.1007-9904.2019.12.015WANG C, WANG H, LIU Y L, et al. Prediction of relationship between main components of coal ash and flow temperature[J]. Shandong Electric Power,2019,46(12):72-75. □ doi: 10.3969/j.issn.1007-9904.2019.12.015