Study on the composition and risk of chlorinated organic compounds in landfills and surrounding groundwater
-
摘要:
氯代有机物降解难、毒性大,填埋场是氯代有机物的重要汇集地。针对填埋场渗滤液泄漏进入地下水中氯代有机物风险不明现状,采集了一个非正规填埋场的地下水样品,并结合收集的中国、德国、美国、西班牙、波兰、挪威共6个国家13个填埋场附近地下水氯代有机物组成与浓度数据,采用风险评价模型对其健康风险进行评估。结果显示:所研究填埋场地下水总共检出10类41种氯代有机物,这些氯代有机物中,氯代环烷烃类的致癌风险最大,均超过了10−4,远超人体可接受的水平,具有明确风险;氯代多氟烷基醚磺酸盐的F-53B的致癌风险最低,为10−6~10−4,具有可能致癌风险。氯代烷烃类的非致癌风险最大,其中α-六氯环己烷的非致癌风险值均超过1,超过人类可接受水平;而氯代有机农药类如丙环唑和氯菊酯的非致癌风险最低,其非致癌风险值未超过人体可接受的水平。需要加强关注γ-六氯环己烷、氯苯、1,2-二氯苯等氯代有机物风险管控,可采用氧化脱氯、还原脱氯及共代谢脱氯等途径,加速其脱氯和降解,消除其风险。
Abstract:Chlorinated organic compounds are difficult to degrade and highly toxic, and landfills are important gathering places for chlorinated organic compounds. To evaluate the uncertain risk of landfill leachate contaminating groundwater with chlorinated organic compounds, a groundwater sample was collected from an informal landfill site. Combined with the collected data on the composition and concentration of chlorinated organic compounds in groundwater near 13 landfills in 6 countries including China, Germany, the United States, Spain, Poland, and Norway, a risk assessment model was used to assess their health risks. A total of 41 different types of chlorinated organic compounds, categorized into 10 classes, were identified in the groundwater near the landfills studied. The chlorinated cycloalkanes pose the highest carcinogenic risk, with all measurements surpassing 10−4, far exceeding the tolerable limits for human exposure, and presenting significant health hazards. The F-53B of chloropolyfluoroalkyl ether sulfonate has the lowest carcinogenic risk, between 10−6 and 10−4, and has a possible carcinogenic risk. The non-carcinogenic risk of chlorinated alkanes is the highest, among which the non-carcinogenic risk value of α-hexachlorocyclohexane (HCH) exceeds 1, more than the acceptable level for human beings. However, chlorinated organic pesticides such as propiconazole and permethrin have the lowest non-carcinogenic risk, and their non-carcinogenic risk value does not exceed the acceptable level for human body. Greater emphasis should be placed on risk management strategies for specific chlorinated organic compounds, namely γ-HCH, chlorobenzene, and 1,2-dichlorobenzene. Various methods, including oxidative dechlorination, reductive dechlorination, and co-metabolism dechlorination, can be employed to expedite the dechlorination and degradation processes, ultimately eliminating associated risks.
-
Key words:
- chlorinated organic compounds /
- groundwater /
- landfill /
- health risk assessment
-
表 1 填埋场场地信息
Table 1. Landfill Site Information
时间(年-月) 场地类型 地下水类型 地点 特征污染物 2014-06 医疗及建筑垃圾堆场 孔隙水 中国河南省开封市 1,2,4-三氯苯 2021-06 非正规填埋场 裂隙水 中国四川省资阳市 重金属、氯苯、氯仿等 2021-03 非正规填埋场 孔隙水 中国江苏省徐州市 三氯甲烷、四氯化碳、甲苯 2021-01 非正规填埋场 孔隙水 中国浙江省杭州市 全氟烷基物 2020-10 非正规填埋场 中国福建省某县 重金属 2015-04 正规垃圾填埋场 美国佛罗里达州 铁、氨、氯苯 2016-05 小型垃圾堆场 孔隙水 美国内布拉斯加州 三氯乙烯 2009-03 非正规填埋场 美国印第安纳州 PPCP 2018-12 农药类垃圾堆场 孔隙水 西班牙萨比尼亚尼戈 六氯环己烷、氯苯类化合物 2017-07 农药类垃圾堆场 孔隙水 德国萨克森州 六氯环己烷 2018-04 非正规填埋场 孔隙水 德国杜塞尔多夫 1,4-二噁烷 2021-01 危险废物填埋场 波兰华沙 多氯联苯 2008-12 农药类垃圾堆场 孔隙水 挪威奥斯陆 DDT 表 2 风险计算过程中污染物相关参数
Table 2. Pollutant related parameters in the risk calculation process
污染物 q/
〔mg/(kg·d)〕−1RfD/
〔mg/(kg·d)〕PC/(cm/h) α-六氯环己烷 6.30 β-六氯环己烷 1.80 γ-六氯环己烷 1.10 3.00×10−4 氯苯 2.00×10−2 2.66×10−2 1,4-二氯苯 5.40×10−3 5.57×10−2 1,2-二氯苯 9.00×10−2 5.25×10−2 1,2,4-三氯苯 1.00×10−2 6.87×10−2 1,2,4,5-四氯苯 3.00×10−4 0.21 五氯苯 8.00×10−4 0.36 2和4-一氯酚 3.02×10−4 2,4-二氯酚 3.00×10−3 2.40×10−2 四氯酚 3.00×10−2 5.41×10−5 一氯乙烯 0.72 5.77×10−3 1,1-二氯乙烯 5.00×10−2 3.38×10−3 反式1,2-二氯乙烯 2.00×10−2 9.49×10−3 顺式1,2-二氯乙烯 2.00×10−3 9.49×10−3 三氯乙烯 4.60×10−2 5.00×10−4 1.12×10−2 二氯甲烷 2.00×10−3 6.00×10−3 3.54×10−3 三氯甲烷 3.10×10−2 1.00×10−2 6.79×10−3 四氯化碳 7.00×10−2 4.00×10−3 1.21×10−2 二氯乙烷 5.70×10−3 4.19×10−3 1,2-二氯丙烷 9.10×10−2 7.95×10−3 1,1-二氯乙醚 3.70×10−2 1.78×10−3 丙环唑 1.30×10−3 1.92×10−5 氯菊酯 5.00×10−2 1.02×10−5 滴滴涕 0.34 5.00×10−4 1.64×10−5 氯代多氟烷基醚磺酸盐F-53B 5.00×10−4 1.01×10−6 二氯二氟甲烷 0.20 8.88×10−3 表 3 国内外填埋场地下水中氯代有机物组成与浓度分布
Table 3. Composition and concentration of chlorinated organic compounds in groundwater of landfill sites at home and abroad
μg/L 类别 污染物 样本数 浓度范围 均值 地点 数据来源 氯代环烷烃类化合物 α-六氯环己烷 26 ND~1 740.1 237.85 德国萨克森州、西班牙萨比尼亚尼戈 文献[16-17] β-六氯环己烷 26 ND~735.6 129.27 δ-六氯环己烷 26 ND~17 886.4 3 116.93 γ-六氯环己烷 39 ND~7 051.5 533.06 德国萨克森州、西班牙萨比尼亚尼戈、
挪威奥斯陆文献[11,16-17] ε-六氯环己烷 8 7.3~1 030.7 565.83 西班牙萨比尼亚尼戈 文献[17] 氯苯类化合物 氯苯 43 ND~32 730 5 384.09 美国佛罗里达州、西班牙萨比尼亚尼戈、中国四川、中国江苏(实测) 文献[8,17,26]、实测数据 1,3-二氯苯 8 0.1~188 101.36 西班牙萨比尼亚尼戈 文献[17] 1,4-二氯苯 15 ND~3 895 822.02 美国佛罗里达州、西班牙萨比尼亚尼戈 文献[8,17] 1,2-二氯苯 35 0.1~2 068.1 317.97 西班牙萨比尼亚尼戈、中国河南 文献[17-18] 1,3,5-三氯苯 8 0.1~13.9 5.59 西班牙萨比尼亚尼戈 文献[17] 1,2,4-三氯苯 35 0.76~1 316 161.52 西班牙萨比尼亚尼戈、中国河南 文献[17-18] 1,2,3-三氯苯 35 0.2~101 18.58 1,2,3,5-四氯苯 8 0.8~39.8 21.4 西班牙萨比尼亚尼戈 文献[17] 1,2,4,5-四氯苯 8 0.3~58.3 28.34 五氯苯 8 0.2~7.8 2.85 氯酚类化合物 2-氯酚和4-氯酚 8 0.1~271 160.23 西班牙萨比尼亚尼戈 文献[17] 3-氯酚 8 0.1~4 704.2 2263.06 2,6-二氯酚 8 0.1~65.2 33.34 2,4-二氯酚 8 0.1~327 163.84 四氯酚 8 0.2~778.4 227.13 联苯1) 多氯联苯 49 0.2~3.1 0.00058 波兰华沙 文献[10] 氯代烯烃类化合物 一氯乙烯 7 ND~2 0.39 美国佛罗里达州 文献[8] 1,1-二氯乙烯 13 2~488 232.08 美国内布拉斯加州 文献[13] 反式1,2-二氯乙烯 13 ND~4 0.62 顺式1,2-二氯乙烯 26 ND~280 62.95 美国内布拉斯加州、中国江苏(实测) 文献[13]、实测数据 三氯乙烯 31 0.1~150 21.51 德国杜塞尔多夫 文献[9] 氯代烷烃类化合物 一氯甲烷 8 0.1~2.5 1.975 西班牙萨比尼亚尼戈 文献[17] 二氯甲烷 7 ND~0.89 0.25 美国佛罗里达州 文献[8] 三氯甲烷 40 ND~19900 498.34 中国江苏、中国江苏(实测) 文献[27]、实测数据 四氯化碳 12 0.1~4.2 1.16 中国江苏 文献[27] 二氯乙烷 27 ND~912 39.07 西班牙萨比尼亚尼戈、中国四川、
中国福建文献[17,26,28] 1,2-二氯丙烷 17 ND~33.5 3.37 美国印第安纳州、中国江苏(实测) 文献[12]、实测数据 氯醚 1,1-二氯乙醚 13 10~69 38.69 挪威奥斯陆 文献[11] 1,2-二氯乙醚 13 ND~280 0.15 美国内布拉斯加州 文献[13] 1,1,1-三氯乙醚 13 15~378 169.77 有机氯农药 丙环唑 13 ND~0.25 0.04 挪威奥斯陆 文献[11] 氯菊酯 13 ND~0.61 0.05 异丙二酮 13 ND~0.13 0.01 滴滴涕 13 ND~0.1 0.01 氯有机盐1) 氯代多氟烷基醚磺酸盐F-53B 15 0.2~5.01 1.56 中国浙江 文献[14] 氟氯烃 二氯二氟甲烷 4 ND~7 2.75 美国印第安纳州 文献[12] 注:ND表示未检出。1)单位为ng/L。 表 4 经口摄入和皮肤接触途径日暴露量
Table 4. Daily exposure levels through oral intake and skin contact pathways
mg/(kg·d) 类别 污染物 经口摄入 皮肤接触 平均值 最小值 最大值 平均值 最小值 最大值 氯代环烷烃 α-六氯环己烷 7.93 3.33×10−4 58.00 2.45×10−3 1.03×10−7 1.79×10−2 β-六氯环己烷 4.31 3.33×10−4 24.50 1.33×10−3 1.03×10−7 7.58×10−3 δ-六氯环己烷 1.04×102 3.33×10−4 5.96×102 3.21×10−2 1.03×10−7 0.18 γ-六氯环己烷 17.80 3.33×10−4 2.35×102 5.50×10−3 1.03×10−7 7.27×10−2 ε-六氯环己烷 18.90 0.24 34.40 5.83×10−3 7.53×10−5 1.06×10−2 氯苯类化合物 氯苯 1.79×102 3.33×10−4 1.09×103 39.57 7.35×10−5 2.41×102 1,3-二氯苯 3.38 3.33×10−3 6.27 1.14 1.12×10−3 2.11 1,4-二氯苯 27.40 3.33×10−4 1.30×102 12.70 1.54×10−4 60.10 1,2-二氯苯 10.60 3.33×10−3 68.90 4.61 1.45×10−3 30.00 1,3,5-三氯苯 0.19 3.33×10−3 0.46 0.16 2.78×10−3 0.39 1,2,4-三氯苯 5.38 2.53×10−2 43.90 3.07 1.44×10−2 25.00 1,2,3-三氯苯 0.62 6.67×10−3 3.37 0.52 5.56×10−3 2.81 1,2,3,5-四氯苯 0.71 2.67×10−2 1.33 1.25 4.67×10−2 2.32 1,2,4,5-四氯苯 0.95 1.00×10−2 1.94 1.65 1.75×10−2 3.40 五氯苯 9.50×10−2 6.67×10−3 0.26 0.28 1.98×10−2 0.77 氯酚类化合物 2-氯酚和4-氯酚 5.34 3.33×10−3 9.03 1.34×10−2 8.36×10−6 2.26×10−2 3-氯酚 75.40 3.33×10−3 1.57×102 0.19 8.36×10−6 0.39 2,6-二氯酚 1.11 3.33×10−3 2.17 0.21 6.33×10−4 0.41 2,4-二氯酚 5.46 3.33×10−3 10.9 1.09 6.63×10−4 2.17 四氯酚 7.57 6.67×10−3 25.90 3.40×10−3 2.99×10−6 1.17×10−2 联苯 多氯联苯 1.93×10−5 6.67×10−6 1.03×10−4 2.54×10−7 8.77×10−8 1.36×10−6 氯代烯烃 一氯乙烯 1.30×10−2 3.33×10−4 6.67×10−2 6.22×10−4 1.60×10−5 3.19×10−3 1,1-二氯乙烯 7.74 6.67×10−2 16.30 0.22 1.87×10−4 0.46 反式1,2-二氯乙烯 2.07×10−2 3.33×10−4 0.13 1.63×10−3 2.62×10−5 1.05×10−2 顺式1,2-二氯乙烯 2.10 3.33×10−4 9.33 0.17 2.62×10−5 0.74 三氯乙烯 0.72 3.33×10−3 5.00 6.65×10−2 3.09×10−4 0.46 氯代烷烃 一氯甲烷 6.58×10−2 3.33×10−3 8.33×10−2 1.80×10−3 9.12×10−5 2.28×10−3 二氯甲烷 8.33×10−3 3.33×10−4 2.97×10−2 2.45×10−4 9.80×10−6 8.72×10−4 三氯甲烷 16.61 3.33×10−4 6.63×10−2 0.94 1.88×10−5 37.37 四氯化碳 3.87×10−2 3.33×10−3 0.14 3.87×10−3 3.33×10−4 1.40×10−2 二氯乙烷 1.30 3.33×10−4 30.40 4.53×10−2 1.16×10−5 1.06 1,2-二氯丙烷 0.11 3.33×10−2 1.12 7.40×10−3 2.20×10−3 7.37×10−2 氯醚 1,1-二氯乙醚 1.29 0.33 2.30 1.91×10−2 4.93×10−3 3.40×10−2 1,2-二氯乙醚 5.00×10−3 3.33×10−4 9.33 1.04×10−5 6.94×10−7 1.94×10−2 1,1,1-三氯乙醚 5.66 0.50 12.60 7.45×10−3 6.59×10−4 1.66×10−2 有机氯农药 丙环唑 1.33×10−3 3.33×10−4 8.33×10−3 2.13×10−7 5.32×10−8 1.33×10−6 氯菊酯 1.67×10−3 3.33×10−4 2.03×10−2 1.41×10−7 2.82×10−8 1.72×10−6 异丙二酮 3.33×10−4 3.33×10−4 4.33×10−3 6.21×10−8 6.21×10−8 8.07×10−7 滴滴涕 3.33×10−4 3.33×10−4 3.33×10−3 4.54×10−8 4.54×10−8 4.54×10−7 氯有机盐 氯多氟烷基醚磺酸盐F-53B 5.20×10−2 6.67×10−3 0.17 4.36×10−7 5.59×10−8 1.40×10−6 氟氯烃 二氯二氟甲烷 9.17×10−2 3.33×10−4 0.23 6.76×10−3 2.46×10−5 1.72×10−2 -
[1] ABOYEJI O S, EIGBOKHAN S F. Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria[J]. Journal of Environmental Management,2016,183(1):333-341. [2] HAN D M, TONG X X, CURRELL M J, et al. Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China[J]. Journal of Geochemical Exploration,2014,136:24-39. doi: 10.1016/j.gexplo.2013.09.008 [3] SIZIRICI B, TANSEL B. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study[J]. Waste Management,2015,38(4):263-270. [4] REN M Z, WANG J, WANG Z Y, et al. Activated carbon adsorption coupled with ozonation regeneration for efficient removal of chlorobenzene[J]. Journal of Environmental Chemical Engineering,2022,10(2):107319. doi: 10.1016/j.jece.2022.107319 [5] YANG J, MENG L, GUO L. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application[J]. Environmental Science and Pollution Research,2018,25(6):5051-5062. doi: 10.1007/s11356-017-9903-7 [6] 张坤锋, 昌盛, 赵少延, 等. 克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092ZHANG K F, CHANG S, ZHAO S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology,2021,11(6):1083-1091. doi: 10.12153/j.issn.1674-991X.20210092 [7] HAMER T, MACHAY D, JONES K C. Model of the long-term exchange of PCBs between soil and atmosphere in the southern UK[J]. Environment science and technology,1995,29(5):1200-1209. doi: 10.1021/es00005a010 [8] SIZIRICI B, TANSEL B. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study[J]. Waste Management,2015,38(1):263-270. [9] KARGES U, BECKER J, PÜTTMANN W. 1, 4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume[J]. Science of the Total Environment,2018,619-620:712-720. doi: 10.1016/j.scitotenv.2017.11.043 [10] GABRYSZEWSKA M, GWOREK B. Municipal waste landfill as a source of polychlorinated biphenyls releases to the environment[J]. PeerJ,2021,9:e10546. doi: 10.7717/peerj.10546 [11] HAARSTAD K. Long-term leakage of DDT and other pesticides from a tree nursery landfill[J]. Groundwater Monitoring & Remediation,2008,28(4):107-111. [12] BUSZKA P M, YESKIS D J, KOLPIN D W, et al. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002[J]. Bulletin of Environmental Contamination and Toxicology,2009,82(6):653-659. doi: 10.1007/s00128-009-9702-z [13] CHRISTENSON M, KAMBHU A, REECE J, et al. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements[J]. Chemosphere,2016,150:239-247. doi: 10.1016/j.chemosphere.2016.01.125 [14] XU C, LIU Z Y, SONG X, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: implications for the usage of PFASs alternatives[J]. Science of The Total Environment,2021,751:141767. doi: 10.1016/j.scitotenv.2020.141767 [15] SANTOS A, FERNÁNDEZ J, GUADAÑO J. Chlorinated organic compounds in liquid wastes (DNAPL) from lindane production dumped in landfills in Sabiñanigo (Spain)[J]. Environmental Pollution,2018,242:1616-1624. doi: 10.1016/j.envpol.2018.07.117 [16] LIU Y Q, BASHIR S, STOLLBERG R, et al. Compound specific and enantioselective stable isotope analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in a complex aquifer system[J]. Environmental Science & Technology,2017,51(16):8909-8916. [17] FERNÁNDEZ J, ARJOL M A, CACHO C. POP-contaminated sites from HCH production in Sabiñánigo, Spain[J]. Environmental Science and Pollution Research volume. 2013, 20(4): 1937-1950. [18] DONG W H, ZHANG Y, LIN X Y, et al. Prediction of 1, 2, 4-trichlorobenzene natural attenuation in groundwater at a landfill in Kaifeng, China[J]. Environmental Earth Sciences,2014,72(3):941-948. doi: 10.1007/s12665-014-3386-3 [19] 张妍, 李发东, 欧阳竹, 等. 黄河下游引黄灌区地下水重金属分布及健康风险评估[J]. 环境科学,2013,34(1):121-128. doi: 10.13227/j.hjkx.2013.01.028ZHANG Y, LI F D, OUYANG Z, et al. Distribution and health risk assessment of heavy metals of groundwaters in the irrigation district of the lower reaches of Yellow River[J]. Environmental Science,2013,34(1):121-128. doi: 10.13227/j.hjkx.2013.01.028 [20] 杨源, 李如忠, 王友贞, 等. 淮北平原干沟控制排水区地下水氮污染及健康风险评估[J]. 安徽建筑大学学报,2014,22(4):82-87. doi: 10.11921/j.issn.2095-8382.20140418YANG Y, LI R Z, WANG Y Z, et al. Groundwater nitrogen pollution and assessment of its health risks in adrainage zone controlled through main drainage ditch in Huaibei Plain[J]. Journal of Anhui Jianzhu University,2014,22(4):82-87. doi: 10.11921/j.issn.2095-8382.20140418 [21] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学,2021,42(9):4246-4256. doi: 10.13227/j.hjkx.202101147SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou Peninsula[J]. Environmental Science,2021,42(9):4246-4256. doi: 10.13227/j.hjkx.202101147 [22] 程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095 [23] 张浩, 王洋, 王辉, 等. 某废铅蓄电池炼铅遗留场地土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2023,13(2):769-777. doi: 10.12153/j.issn.1674-991X.20220313ZHANG H, WANG Y, WANG H, et al. Heavy metal pollution characteristics and health risk assessment of soil from an abandoned site for lead smelting of waste lead batteries[J]. Journal of Environmental Engineering Technology,2023,13(2):769-777. doi: 10.12153/j.issn.1674-991X.20220313 [24] WANG Y, LI L, QIU Z P, et al. Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk[J]. Chemosphere,2021,272:129582. doi: 10.1016/j.chemosphere.2021.129582 [25] LORENZO D, GARCÍA-CERVILLA R ROMERO A, et al. Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase[J]. Chemosphere,2020,239:124798. doi: 10.1016/j.chemosphere.2019.124798 [26] WANG F, SONG K, HE X L, et al. Identification of groundwater pollution characteristics and health risk assessment of a landfill in a low permeability area[J]. International Journal of Environmental Research and Public Health,2021,18(14):7690. doi: 10.3390/ijerph18147690 [27] 杨成方, 刘宇航, 姚帆, 等. 徐州某老旧生活垃圾填埋场有机污染物研究[J]. 徐州工程学院学报(自然科学版),2021,36(2):58-65. doi: 10.15873/j.cnki.jxit.000409YANG C F, LIU Y H, YAO F, et al. On organic pollutants in an old garbage landfill in Xuzhou[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition),2021,36(2):58-65. doi: 10.15873/j.cnki.jxit.000409 [28] 张维生, 谭龙健, 宋来伟. 非正规垃圾填埋场污染调查与健康风险评估[J]. 中国资源综合利用,2021,39(12):163-166. doi: 10.3969/j.issn.1008-9500.2021.12.046ZHANG W S, TAN L J, SONG L W. Pollution investigation and health risk assessment of informal landfill sites[J]. China Resources Comprehensive Utilization,2021,39(12):163-166. doi: 10.3969/j.issn.1008-9500.2021.12.046 [29] PAN Q, LIU Q Y, ZHENG J, et al. Volatile and semi-volatile organic compounds in landfill gas: composition characteristics and health risks[J]. Environment International,2023,174:107886. doi: 10.1016/j.envint.2023.107886 [30] 万译文, 康天放, 周忠亮, 等. 北京官厅水库水体中挥发性有机物健康风险评价[J]. 环境科学研究,2009,2(22):150-154. doi: 10.13198/j.res.2009.02.28.wanyw.009WAN Y W, KANG T F, ZHOU Z L, et al. Health risk assessment of volatile organic compounds in water of Beijing Guanting Reservoir[J]. Research of Environmental Sciences,2009,2(22):150-154. doi: 10.13198/j.res.2009.02.28.wanyw.009 [31] 王玉芬, 张肇铭, 胡筱敏, 等. 微生物法去除水中氯苯类化合物的研究进展[J]微生物学通报, 2008(6): 949-954.WANG Y F, ZHANG Z M, HU X M, et al. The research progress of treating chlorobenzenes in wastewater by microorganism[J]. Microbiology China, 2008(6): 949-954. [32] ARJOON A, OLANIRAN A, PILLAY B. Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies[J]. International Journal of Environmental Science & Technology,2013,10(2):395-412. [33] ACHERMANN S, MANSFELDT C B, MÜLLER M, et al. Relating metatranscriptomic profiles to the micropollutant biotransformation potential of complex microbial communities[J]. Environmental Science & Technology,2020,54(1):235-244. [34] ADRIAN L, SZEWZYK U, WECKE J, et al. Bacterial dehalorespiration with chlorinated benzenes[J]. Nature,2000,408:580-583. doi: 10.1038/35046063 [35] 甘平, 朱婷婷, 樊耀波, 等. 氯苯类化合物的生物降解[J]. 环境污染治理技术与设备,2000,1(4):1-12.GAN P, ZHU T T, FAN Y D, et al. Biodegradation of chlorobenzenes (CBS)[J]. Techniques and Equipment for Environmental Pollution Control,2000,1(4):1-12. [36] ALGHUTHAYMI M A, AWAD A M, HASSAN H A. Isolation and characterization a novel catabolic gene cluster involved in chlorobenzene degradation in haloalkaliphilic Alcanivorax sp. HA03[J]. Biology,2022,11(5):724. doi: 10.3390/biology11050724 [37] BUNGE M, ADRIAN L, KRAUS A, et al. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium[J]. Nature:International Weekly Journal of Science,2003,421(6921):357-360. [38] CHRISTOF H, GERT W, GABRIELE D. Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiology Reviews,1998,22(5):383-398. doi: 10.1111/j.1574-6976.1998.tb00377.x [39] 甘平, 樊耀波, 王敏健. 氯苯类化合物的生物降解[J]. 环境科学,2001(3):93-96. doi: 10.3321/j.issn:0250-3301.2001.03.020GAN P, FAN Y D, WANG M J, et al. Experiment of biodegradation of chlorobenzenes[J]. Environmental Science,2001(3):93-96. doi: 10.3321/j.issn:0250-3301.2001.03.020 [40] 梅林玲, 于静洁, 张燕, 等. 难降解有机污染物的共代谢研究进展[J]. 天津城建大学学报,2018,24(6):423-429. doi: 10.19479/j.2095-719x.1806423MEI L L, YU J J, ZHANG Y, et al. Progress in the research of co-metabolism of refractory organic pollutants[J]. Journal of Tianjin Chengjian University,2018,24(6):423-429. ⊕ doi: 10.19479/j.2095-719x.1806423