Study on water quality criteria, ecological risk and adverse outcome pathway of lindane in freshwater environment
-
摘要:
为多角度评估我国淡水水体中林丹生态风险,按照HJ 831—2022《淡水生物水质基准推导技术指南》方法推导,获得林丹短期和长期淡水水质基准值分别为6.15和0.12 μg/L,再依据林丹基准值对我国主要淡水水体中林丹生态风险进行评价。结果显示,我国长江流域的太湖以及岷江、黄河、海河和大辽河河口等水体林丹生态风险处于高风险水平。目前生态风险评价的毒性效应终点仍为一般毒性效应终点(MATC、EC10、EC20、NOEC、LOEC、EC50和LC50等),而有害结局路径(AOP)从基因、细胞、组织及器官水平对污染物毒性效应的因果关系进行定性和定量,可为未来精细化生态风险评价提供科学依据。因此,基于林丹淡水生物毒性研究的文献计量学分析结果,按照经济合作与发展组织(OECD)指导原则,从生物毒性机制的角度构建了肝损伤、生殖损伤和神经损伤3条有害结局路径。
Abstract:In order to evaluate the ecological risk of lindane in freshwater bodies of China, the short-term and long-term freshwater quality criteria values were derived according to the method of Technical Guideline for Deriving Water Quality Criteria for Freshwater Organisms (HJ 831-2022). The derived short-term and long-term freshwater quality criteria values were 6.15 and 0.12 μg/L, respectively. According to the water quality criteria, the ecological risk of lindane in major freshwater bodies of China was assessed and the results showed that the ecological risk of lindane was at high risk level in Taihu Lake and the Minjiang River of Yangtze River basin, the Yellow River, the Haihe River and the Daliao River estuary. At present, the toxic effect endpoints of ecological risk assessment are still the general toxic effects (MATC, EC10, EC20, NOEC, LOEC, EC50, LC50, etc.), while the adverse outcome pathway (AOP) can qualitatively and quantitatively analyze the causal relation between the pollutants and their toxic effects from the levels of genes, cells, tissues and organs, which can provide a scientific basis for future refined ecological risk assessment. Thus, based on the results of the bibliometric analysis on the toxicity of lindane to freshwater organisms, three adverse outcome pathways of liver injury, reproductive injury and nerve injury were constructed according to the guidelines of the Organization for Economic Co-operation and Development (OECD).
-
Key words:
- lindane /
- water quality criteria /
- ecosystem risk /
- adverse outcome pathway /
- freshwater environment
-
表 1 毒性数据和文献检索
Table 1. Toxicity data and literature retrieval scheme
数据库名称 检索时间 检索式 急性毒性 慢性毒性 ECOTOX 数据库覆盖年限截至
2022年12月31日化合物名称:lindane
暴露介质:freshwater
毒性效应测试终点:EC50或LC50化合物名称:lindane
暴露介质:freshwater
毒性效应测试终点:NOEC或LOEC或MATC或EC10或EC20或EC50或LC50CNKI、万方数据知识
服务平台、维普中文科技期刊数据库数据库覆盖年限截至
2022年12月31日题名:林丹
主题:毒性
期刊来源类别:中文核心期刊题名:林丹
主题:毒性或NOEC或LOEC或MATC或EC10或EC20或EC50或LC50
期刊来源类别:中文核心期刊WoS 数据库覆盖年限截至
2022年12月31日题名:lindane
主题:toxicity或EC50或LC50题名:lindane
主题:toxicity或NOEC或LOEC或MATC或EC10或EC20或EC50或LC50表 2 数据筛选方法
Table 2. Data filtering method
筛选类型 筛选原则 受试物 明确受试物准确名称及CAS号,纯度一般大于95% 受试物种 反映中国淡水生物区系特征,野生物种应鉴定准确,剔除外来入侵物种,剔除单细胞动物和微生物(微藻除外) 试验设计 试验设计应依据国家或国际标准毒性测试方法,急性毒性试验浓度间隔系数一般不超过2.2,慢性毒性试验浓度间隔系数一般不超过3.2 暴露条件 试验暴露条件应符合标准毒性测试方法,受试物实测浓度毒性数据>理论浓度毒性数据,流水式暴露毒性数据>半静态暴露毒性数据>静态暴露毒性数据;急性毒性数据的动物暴露时间为轮虫24 h左右、溞类和摇蚊48 h左右、其他物种96 h左右,植物适宜的暴露时间为96 h左右;慢性毒性数据轮虫大于等于48 h、其他动物大于等于21 d或覆盖1个敏感生命阶段,植物适宜的暴露时间为大于等于21 d或至少跨越1个世代 离群值判断 当同一物种的同一毒性终点试验数据之间相差10倍以上时,结合专业判断剔除离群值,当无法判断离群值时,弃用全部相关数据 数据优先性判断 效应指标:急性毒性数据通常为LC50或EC50,不区分优先性;慢性毒性数据的优先性为MATC>EC20>EC10=
NOEC>LOEC>EC50>LC50。生命阶段:相对敏感生命阶段毒性数据>相对不敏感生命阶段毒性数据;全生命周期数据>部分生命周期数据>单一生命阶段数据表 3 最少毒性数据需求
Table 3. Minimal toxicity data requirements for water quality criteria derivation
类别 数据需求 营养级 至少涵盖包括生产者、初级消费者和次级消费者在内的3个不同营养级 物种和生物类群 至少包括10个物种且涵盖以下生物类群:1种硬骨鱼纲鲤科鱼,1种硬骨鱼纲非鲤科鱼,1种浮游动物,1种非鱼类的底栖动物(如贝类、底栖甲壳类等),1种两栖类或与上述动物分属于不同门的其他水生动物,1种浮游植物或水生维管束植物 污染物毒性特点 推导杀虫剂的基准应包括水生昆虫的毒性数据 表 4 同效应急性值及累积频率
Table 4. Acute value for the same effect and cumulative frequency
序号 拉丁名 物种名 数据类型 AVE/(μg/L) lg AVE R f FR/% 1 Chaoborus sp. 幽蚊 存活类 3.30 0.52 1 1 2.38 2 Gammarus fasciatus 淡水钩虾 存活类 10.32 1.01 2 1 4.76 3 Gammarus pulex 蚤状钩虾 存活类 16.09 1.21 3 1 7.14 4 Salmo trutta 褐鳟 存活类 23.63 1.37 4 1 9.52 5 Oncorhynchus mykiss 虹鳟 存活类 27.21 1.43 5 1 11.90 6 Micropterus salmoides 大口黑鲈 存活类 32.00 1.51 6 1 14.29 7 Perca flavescens 黄金鲈 存活类 39.55 1.60 7 1 16.67 8 Oncorhynchus tshawytscha 大鳞大马哈鱼 存活类 40.00 1.60 8 1 19.05 9 Salvelinus fontinalis 溪红点鲑 存活类 44.30 1.65 9 1 21.43 10 Ictalurus punctatus 斑点叉尾鮰 存活类 46.43 1.67 10 1 23.81 11 Cloeon sp. 二翅蜉 存活类 50.00 1.70 11 1 26.19 12 Lepomis macrochirus 蓝鳃太阳鱼 存活类 55.53 1.74 12 1 28.57 13 Ameiurus melas 黑鮰 存活类 64.00 1.81 13 1 30.95 14 Gobio gobio 鮈 存活类 73.50 1.87 14 1 33.33 15 Pimephales promelas 黑头软口鲦 存活类 75.04 1.88 15 1 35.71 16 Lepomis cyanellus 绿太阳鱼 存活类 76.22 1.88 16 1 38.10 17 Lepomis microlophus 小冠太阳鱼 存活类 83.00 1.92 17 1 40.48 18 Gammarus lacustris 湖泊钩虾 存活类 88.00 1.94 18 1 42.86 19 Channa punctata 翠鳢 存活类 106.55 2.03 19 1 45.24 20 Danio rerio 斑马鱼 存活类 114.59 2.06 20 1 47.62 21 Heteropneustes fossilis 囊鳃鲇 存活类 125.00 2.10 21 1 50.00 22 Carassius auratus 鲫 存活类 127.87 2.11 22 1 52.38 23 Cyprinus carpio 鲤 存活类 134.16 2.13 23 1 54.76 24 Paracheirodon axelrodi 霓虹脂鲤 存活类 140.00 2.15 24 1 57.14 25 Chironomus tentans 伸展双叶摇蚊 存活类 207.00 2.32 25 1 59.52 26 Poecilia reticulata 孔雀鱼 存活类 222.89 2.35 26 1 61.90 27 Anabas testudineus 龟壳攀鲈 存活类 240.30 2.38 27 1 64.29 28 Lepidocephalichthys thermalis 温泉鳞头鳅 存活类 280.00 2.45 28 1 66.67 29 Microcystis aeruginosa 铜绿微囊藻 生长类 442.00 2.65 29 1 69.05 30 Daphnia pulex 蚤状溞 生长类 460.00 2.66 30 1 71.43 31 Daphnia magna 大型溞 生长类 516.00 2.71 31 1 73.81 32 Chlorella vulgaris 普通小球藻 生长类 524.00 2.72 32 1 76.19 33 Anguilla anguilla 鳗鲡 存活类 538.05 2.73 33 1 78.57 34 Simocephalus serrulatus 锯顶低额溞 生长类 676.46 2.83 34 1 80.95 35 Desmodesmus subspicatus 近具棘链带藻 生长类 2 500.00 3.40 35 1 83.33 36 Scenedesmus abundans 多棘栅藻 生长类 2 500.00 3.40 36 1 85.71 37 Pseudacris triseriata 三锯拟蝗蛙 存活类 2 650.00 3.42 37 1 88.10 38 Lampetra tridentata 七鳃鳗 存活类 2 680.00 3.43 38 1 90.48 39 Lymnaea stagnalis 静水椎实螺 存活类 3 300.00 3.52 39 1 92.86 40 Cyclotella meneghiniana 梅尼小环藻 生长类 11 849.00 4.07 40 1 95.24 41 Brachionus calyciflorus 萼花臂尾轮虫 存活类 22500000.00 7.35 41 1 97.62 表 5 同效应慢性值及累积频率
Table 5. Chronic value for the same effect and cumulative frequency
序号 拉丁名 物种名 数据类型 CVE/(μg/L) lg CVE R f FR/% 1 Algae 绿藻 生长类 1.57 0.20 1 1 9.09 2 Chironomus tentans 伸展双叶摇蚊 生长类 2.20 0.34 2 1 18.18 3 Gammarus fasciatus 淡水钩虾 生长类 4.30 0.63 3 1 27.27 4 Danio rerio 斑马鱼 生长类 5.85 0.77 4 1 36.36 5 Salvelinus fontinalis 溪红点鲑 生长类 8.80 0.94 5 1 45.45 6 Pimephales promelas 黑头软口鲦 生长类 9.10 0.96 6 1 54.55 7 Lepomis macrochirus 蓝鳃太阳鱼 生长类 9.10 0.96 7 1 63.64 8 Brachionus angularis 角突臂尾轮虫 生长类 12.00 1.08 8 1 72.73 9 Daphnia magna 大型溞 生长类 72.19 1.86 9 1 81.82 10 Rana temporaria 林蛙 生长类 58 000.00 4.76 10 1 90.91 表 6 我国七大流域部分水体林丹赋存情况
Table 6. Occurrence of lindane in seven basins of China
流域 年份 地点 林丹浓度/(ng/L) 数据来源 流域 年份 地点 林丹浓度/(ng/L) 数据来源 长江流域 2002 岷江(核心) 530~2 400 文献[11] 松辽河流域 1998 西泉眼水库 >1.9 文献[27] 2008 松花江 0.17~80 文献[23] 2003 太湖 ND~36 000 文献[12] 2008 辽河 0.17~120 文献[23] 2005 钱塘江 ND~170 文献[13] 2009 大辽河河口 8.5~970 文献[28] 2009 三峡水库 0.055~0.35 文献[14] 2013 条子河 0.80~1.08 文献[29] 2013 洪湖 0.23~2.7 文献[15] 淮海河
流域2004 海河 43~2 100 文献[30] 2011 淮河湖 0.47~1.9 文献[31] 2013 嵊州市浅层地下水 ND~34.32 文献[16] 2011 微山湖 34.40~195.90 文献[32] 2008 淮河 0.17~98 文献[24] 2014 长江 0.17~70 文献[11] 东南沿海
诸河流域2002 九龙江(核心) 4~25 文献[11] 2015 巢湖 14.01~44.01 文献[17] 2005 胶州港 ND~7.1 文献[22] 2016 汉江 ND~2.11 文献[18] 2011 千岛湖 ND~44.40 文献[33] 2021 安徽淮南市 583.45~797.62 文献[19] 2011 桂林地下河 1.25~7.36 文献[34] 2012 晋江 3~5.8 文献[35] 黄河流域 2003 官厅水库 ND~120 文献[20] 珠江流域 1998 厦门港 0.3~3.5 文献[36] 2005 莱州港 ND~0.95 文献[21] 1999 大亚湾 8.5~970 文献[37] 2007 天津大沽河 5.00~38.10 文献[22] 2008 珠江 0.17~48 文献[24] 2008 黄河 0.17~860 文献[23] 2009 珠江三角洲 2.4~5.1 文献[38] 2011 白洋淀 3.13~10.60 文献[24] 2015 贵州百花湖猫跳河 3 800 文献[39] 2011 南四湖 19.60~26.30 文献[25] 2015 贵州贵化取水口 2 700 文献[39] 2016 北京地表水 2.11~2.82 文献[26] 2015 南宁朝阳溪 <1 文献[40] 注:ND为未检出。 表 7 林丹水质基准值比较
Table 7. Comparison of water quality criteria values of lindane
μg/L 表 8 淡水水体林丹生态风险评价比较
Table 8. Comparison of ecological risk assessment of lindane in freshwater water at home and abroad
水体 基准值 暴露浓度(MEC) 风险评价结果 哈萨克斯坦锡尔河[57] 据文献报道的浮游动物、浮游植物、软体动物、
昆虫和鱼类5种水生生物的林丹毒性数据确定的PNEC0.014~0.240 μg/L 生态风险极高(≤100) 恒河地表水[58] 根据US EPA ECOTOX毒性数据库中的藻类、
水生无脊椎动物和鱼类3个物种的毒性数据确定的PNEC0.004~4.346 μg/L 中等风险 伊朗塔拉尔河、巴博尔
鲁德河、哈拉兹河[59]生态毒理学水平评估标准(EAC) 0~12 ng/L 生态风险低(>1) 沙颍河[60] 文献中获得的PNEC为1 ng/L 1.8~9.3 ng/L 生态风险极高(≤9.33) 扬州城区古运河[55] 0.05 μg/L 132.03 ng/L 生态风险高(2.64) 巢湖[55] 0.05 μg/L — 中等风险(1.10×10−1) 乌江[55] 0.05 μg/L — 中等风险(1.04×10−1) 白洋淀[55] 0.05 μg/L — 中等风险(4.80×10−1) 会仙湿地[55] 0.05 μg/L — 中等风险(6.20×10−1) -
[1] 贺心然, 邓贺天, 王华, 等. 灌河口海域沉积物中有机氯农药的空间分布、来源解析与风险评估[J]. 海洋环境科学,2015,34(6):819-826. doi: 10.13634/j.cnki.mes.2015.06.004HE X R, DENG H T, WANG H, et al. A study on OCPs distribution, sources and risk in the sediment from Guanhe Estuary[J]. Marine Environmental Science,2015,34(6):819-826. doi: 10.13634/j.cnki.mes.2015.06.004 [2] 雒建伟. 采煤塌陷区水体叶绿素a与OCPs的环境效应研究[D]. 淮南: 安徽理工大学, 2017. [3] 陈奕涵. “河流-水库”系统水环境典型污染物赋存特征的研究: 以东江源区为例[D]. 上海: 上海交通大学, 2018. [4] BIJOY N S, NIMILA P J. Lindane toxicity: histopathological, behavioural and biochemical changes in Etroplus maculatus (Bloch, 1795)[J]. Marine Environmental Research,2012(76):63-70. [5] 明玺, 吴玲玲, 陈玲, 等. 林丹短期暴露下的斑马鱼( Brachydaniorerio)组织学变化[J]. 生态毒理学报,2006,1(3):243-248. doi: 10.3969/j.issn.1673-5897.2006.03.008MING X, WU L L, CHEN L, et al. Histopathological alterations of zebra fish ( Brachydaniorerio) in short-term lindane exposure[J]. Asian Journal of Ecotoxicology,2006,1(3):243-248. doi: 10.3969/j.issn.1673-5897.2006.03.008 [6] 生态环境部, 外交部, 国家发展和改革委员会, 等. 关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告: 2019年第10号[A/OL]. (2019-03-11)[2022-09-18]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201903/t20190312_695462.html. [7] GRUNG M, LIN Y, ZHANG H, et al. Pesticide levels and environmental risk in aquatic environments in China: a review[J]. Environment International,2015(81):87-97. [8] 中国环境监测总站. 关于开展新污染物监测能力调查的通知: 总站分析字(2023)4号[A/OL]. (2023-01-09)[2023-01-20]. http://www.cnemc.cn/gzdt/wjtz/202301/W020230111033113045278.pdf. [9] 生态环境部. 淡水生物水质基准推导技术指南HJ 831—2022[S/OL]. (2022-03-10)[2022-07-21]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/xgbzh/202203/t20220314_971456.shtml. [10] 刘萌硕, 陈浩林, 郝子垚, 等. 四环素水生生物基准及对中国部分水体的生态风险评估[J]. 环境工程技术学报,2022,12(5):1703-1710. doi: 10.12153/j.issn.1674-991X.20210558LIU M S, CHEN H L, HAO Z Y, et al. Aquatic life criteria for tetracycline and assessment for the ecological risk of some water bodies in China[J]. Journal of Environmental Engineering Technology,2022,12(5):1703-1710. doi: 10.12153/j.issn.1674-991X.20210558 [11] ZHANG Z L, HONG H S, ZHOU J, et al. Contamination by organochlorine pesticides in the estuaries of southeast China[J]. Chemical Research in Chinese Universities,2002(18):153-160. [12] FENG K, YU B Y, GE D M, et al. Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system: Ⅰ. field survey of DDT and HCH residues in ecosystem of the region[J]. Chemosphere,2003,50(6):683-687. doi: 10.1016/S0045-6535(02)00204-7 [13] ZHOU R B, ZHU L Z, YANG K, et al. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China[J]. Journal of Hazardous Materials,2006,137(1):68-75. doi: 10.1016/j.jhazmat.2006.02.005 [14] WANG J X, BI Y H, PFISTER G, et al. Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD)[J]. Chemosphere,2009,75(8):1119-1127. doi: 10.1016/j.chemosphere.2009.01.016 [15] YUAN L X, QI S H, WU X G, et al. Spatial and temporal variations of organochlorine pesticides (OCPs) in water and sediments from Honghu Lake, China[J]. Journal of Geochemical Exploration,2013,132:181-187. doi: 10.1016/j.gexplo.2013.07.002 [16] WU C F, LUO Y M, GUI T, et al. Characteristics and potential health hazards of organochlorine pesticides in shallow groundwater of two cities in the Yangtze River Delta[J]. Clean Soil Air Water,2014,42(7):923-931. doi: 10.1002/clen.201200602 [17] 姜珊, 孙丙华, 徐彪, 等. 巢湖主要湖口水体和表层沉积物中有机氯农药的残留特征及风险评价[J]. 环境化学,2016,35(6):1228-1236. doi: 10.7524/j.issn.0254-6108.2016.06.2015111904JIANG S, SUN B H, XU B, et al. Characteristics and risk assessment of organochlorine pesticides in water and surface sediment from main estuaries of Chaohu Lake[J]. Environmental Chemistry,2016,35(6):1228-1236. doi: 10.7524/j.issn.0254-6108.2016.06.2015111904 [18] LIU J, QI S H, YAO J, et al. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China[J]. Chemosphere, 2016, 163: 35-43. [19] 王新富, 周晓芳, 高良敏, 等. 采煤沉陷区水体有机氯农药的污染特征及风险评价[J]. 科学技术与工程,2021,21(32):14006-14013. doi: 10.3969/j.issn.1671-1815.2021.32.054WANG X F, ZHOU X F, GAO L M, et al. Pollution characteristics and risk assessment of organochlorine pesticides in water bodies in coal mining subsidence area[J]. Science Technology and Engineering,2021,21(32):14006-14013. doi: 10.3969/j.issn.1671-1815.2021.32.054 [20] XUE N D, XU X B, JIN Z L. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir[J]. Chemosphere,2005,61(11):1594-1606. doi: 10.1016/j.chemosphere.2005.04.091 [21] XU X Q, YANG H H, LI Q L, et al. Residues of organochlorine pesticides in near shore waters of Laizhou Bay and Jiaozhou Bay, Shandong Peninsula, China[J]. Chemosphere,2007,68(1):126-139. doi: 10.1016/j.chemosphere.2006.12.021 [22] 齐维晓, 刘会娟, 曲久辉, 等. 天津主要纳污及入海河流中有机氯农药的污染现状及特征[J]. 环境科学学报,2010,30(8):1543-1550. doi: 10.13671/j.hjkxxb.2010.08.025QI W X, LIIU H J, QU J H, et al. Characterization of organochlorine pesticide contamination in Tianjin rivers[J]. Acta Scientiae Circumstantiae,2010,30(8):1543-1550. doi: 10.13671/j.hjkxxb.2010.08.025 [23] GAO J J, LIU L H, LIU X R, et al. Occurrence and distribution of organochlorine pesticides - lindane, p, p′-DDT, and heptachlor epoxide - in surface water of China[J]. Environment International,2008,34(8):1097-1103. doi: 10.1016/j.envint.2008.03.011 [24] DAI G H, LIU X H, LIANG G, et al. Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China[J]. Journal of Environmental Sciences (China),2011,23(10):1640-1649. doi: 10.1016/S1001-0742(10)60633-X [25] ZHANG G Z, PAN Z K, BAI A Y, et al. Distribution and bioaccumulation of organochlorine pesticides (OCPs) in food web of Nansi Lake, China[J]. Environmental Monitoring and Assessment,2014,186(4):2039-2051. doi: 10.1007/s10661-013-3516-5 [26] 邵阳, 杨国胜, 刘韦华, 等. 北京地区地表水中OCPs和PCBs的污染分析[J]. 中国环境科学,2016,36(9):2606-2613. doi: 10.3969/j.issn.1000-6923.2016.09.009SHAO Y, YANG G S, LIU W H, et al. The study of organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing[J]. China Environmental Science,2016,36(9):2606-2613. doi: 10.3969/j.issn.1000-6923.2016.09.009 [27] 杨超, 佟延功, 崔国权, 等. 西泉眼水库及周围地区林丹环境污染调查[J]. 中国公共卫生,2005,21(2):236. doi: 10.3321/j.issn:1001-0580.2005.02.066YANG C, TONG Y G, CUI G Q, et al. Investigation on environmental pollution of lindane in Xiquanyan Reservoir and its surrounding areas[J]. Chinese Journal of Public Health,2005,21(2):236. doi: 10.3321/j.issn:1001-0580.2005.02.066 [28] LI T, HE M H, MEN B, et al. Distribution and sources of organochlorine pesticides in water and sediments from Daliao River estuary of Liaodong Bay, Bohai Sea (China)[J]. Estuarine, Coastal and Shelf Science,2009,84(1):119-127. doi: 10.1016/j.ecss.2009.06.013 [29] 苏禹龙, 徐晓萌, 郭志勇, 等. 条子河中多环芳烃和有机氯农药的时空分布及来源解析[J]. 吉林大学学报(理学版),2014,52(3):611-622. doi: 10.13413/j.cnki.jdxblxb.2014.03.40SU Y L, XU X M, GUO Z Y, et al. Temporospatial distribution and source identification of polycyclic aromatic hydrocarbons and organochlorine pesticides in Tiaozi River[J]. Journal of Jilin University (Science Edition),2014,52(3):611-622. doi: 10.13413/j.cnki.jdxblxb.2014.03.40 [30] WANG B, YU G, HUANG J, et al. Probabilistic ecological risk assessment of OCPs, PCBs, and DLCs in the Haihe River, China[J]. The Scientific World Journal,2010,10(1):1307-1317. [31] FENG J, ZHAI M, LIU Q, et al. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China[J]. Ecotoxicology and Environmental Safety,2011,74(8):2252-2259. doi: 10.1016/j.ecoenv.2011.08.001 [32] 戴文婷, 安英莉, 葛冬梅, 等. 微山湖内源有机氯农药残留的生态风险评估[J]. 水生态学杂志,2016,37(5):41-48. doi: 10.15928/j.1674-3075.2016.05.006DAI W T, AN Y L, GE D M, et al. Ecological risk assessment of organochlorine pesticide residues in Weishan Lake[J]. Journal of Hydroecology,2016,37(5):41-48. doi: 10.15928/j.1674-3075.2016.05.006 [33] 唐访良, 张明, 徐建芬, 等. 千岛湖库区及其主要入库河流水中有机氯农药残留污染特征及健康风险评价[J]. 环境科学,2014,35(5):1735-1741. doi: 10.13227/j.hjkx.2014.05.014TANG F L, ZHANG M, XU J F, et al. Pollution characteristics and health risk assessment of organochlorine pesticides (OCPs) in the water of Lake Qiandao and its major input rivers[J]. Environmental Science,2014,35(5):1735-1741. doi: 10.13227/j.hjkx.2014.05.014 [34] 卢海平, 邹胜章, 于晓英, 等. 桂林海洋-寨底典型地下河系统地下水污染分析[J]. 安徽农业科学,2012,40(4):2181-2185. doi: 10.3969/j.issn.0517-6611.2012.04.099LU H P, ZOU S Z, YU X Y, et al. Analysis on groundwater pollution of Haiyang-Zhaidi typical subterranean river, Guilin[J]. Journal of Anhui Agricultural Sciences,2012,40(4):2181-2185. doi: 10.3969/j.issn.0517-6611.2012.04.099 [35] YANG D, QI S H, ZHANG J Q, et al. Organochlorine pesticides in soil, water and sediment along the Jinjiang River mainstream to Quanzhou Bay, southeast China[J]. Ecotoxicology and Environmental Safety,2013,89:59-65. doi: 10.1016/j.ecoenv.2012.11.014 [36] ZHOU J L, HONG H, ZHANG Z, et al. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China[J]. Water Research,2000,34(7):2132-2150. doi: 10.1016/S0043-1354(99)00360-7 [37] ZHOU J L, MASKAOUI K, QIU Y W, et al. Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China[J]. Environmental Pollution,2001,113(3):373-384. doi: 10.1016/S0269-7491(00)00180-9 [38] GUAN Y F, WANG J Z, NI H G, et al. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: assessment of mass loading, input source and environmental fate[J]. Environmental Pollution. 2009, 157(2): 618-624. [39] 杨卫萍, 魏琛, 陆天友. 贵州省农村农药使用情况调查及水源地污染现状研究[J]. 环境监测管理与技术,2015,27(5):34-37. doi: 10.3969/j.issn.1006-2009.2015.05.009YANG W P, WEI S, LU T Y. Survey on using pesticide and research of water source pesticide pollution status in Guizhou Countryside[J]. The Administration and Technique of Environmental Monitoring,2015,27(5):34-37. doi: 10.3969/j.issn.1006-2009.2015.05.009 [40] 卢海平, 孔祥胜, 邹胜章, 等. 广西南宁朝阳溪对浅层地下水污染特征研究[J]. 中国岩溶,2015,34(4):395-401.LU H P, KONG X S, ZOU S Z, et al. Characteristics of pollution of the Chaoyangxi River to groundwater in Nanning of Guangxi[J]. Carsologica Sinica,2015,34(4):395-401. [41] DESCAMPIAUX B, LEROUX J M, PEUCELLE C, et al. Assay of free-radical toxicity and antioxidant effect on the Hep 3B cell line: a test survey using lindane[J]. Cell Biology & Toxicology,1996,12(1):19-28. [42] LEE H, KO E, SHIN S, et al. Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos[J]. Environmental Pollution, 2021, 277: 115904. [43] JUAN B O, CANALES M L, SARASQUETE C. Histopathological changes induced by lindane ( γ-HCH) in various organs of fishes[J]. Scientia Marina,2003,67(1):53-61. doi: 10.3989/scimar.2003.67n153 [44] CHIKAE M, IKEDA R, HATANO Y, et al. Effects of bis (2-ethylhexyl) phthalate, γ-hexachlorocyclohexane, and 17 β-estradiol on the fry stage of medaka (oryzias latipes)[J]. Environmental Toxicology & Pharmacology,2004,18(1):9-12. [45] YUKSEL H, ISPIR, ULUCAN A, et al. Effects of hexachlorocyclohexane (HCH-γ-Isomer, lindane) on the reproductive system of zebrafish (danio rerio)[J]. Turkish Journal of Fisheries and Aquatic Sciences,2016,16:917-921. [46] MILAGROSA O, GARRIDO C, SALES D, et al. Lindane toxicity on early life stages of gilthead seabream ( Sparus aurata) with a note on its histopathological manifestations[J]. Environmental Toxicology and Pharmacology,2008,25(1):94-102. doi: 10.1016/j.etap.2007.09.005 [47] MOHAMMAD F V, NAMIN J I, MOHSENPOUR R, et al. Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp ( Ctenopharyngodon idella)[J]. Veterinary Research Communications,2021,45(4):373-380. doi: 10.1007/s11259-021-09818-y [48] 张远, 郑丙辉. 水环境质量基准、标准与流域水污染物总量控制策略[J]. 环境科学研究,2006,19(3):1-6. doi: 10.13198/j.res.2006.03.7.mengw.001ZHANG Y, ZHENG B H. The quality criteria, standards of water environment and the water pollutant control strategy on watershed[J]. Research of Environmental Sciences,2006,19(3):1-6. doi: 10.13198/j.res.2006.03.7.mengw.001 [49] Health and Ecological Criteria Division, Office of Science and Technology, US EPA. Water quality criteria documents for the protection of aquatic life in ambient water[R/OL]. [2022-09-18]. https://www.epa.gov/sites/default/files/2019-03/documents/1995-updates-wqc-protection-al.pdf. [50] US EPA. Pesticide programs' aquatic life Benchmarks for freshwater species[R/OL]. [2022-09-18]. https://www.epa.gov/pesticide science and assessing pesticide risks/aquatic life benchmarks and ecological risk. [51] Agriculture and Resource Management, Zealand. Australian and New Zealand guidelines for fresh and marine water quality: volume 1. the guidelines [R/OL]. [2022-09-18]. https://environment.govt.nz/publications/australian-and-new-zealand-guidelines-for-fresh-and-marine-water-quality/. [52] Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0[R/OL]. [2022-09-18]. https://www.ccme.ca/en/resources. [53] The European Parliament and the Council of the european. On environmental quality standards in the field of water policy[R/OL]. [2022-09-18]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0105. [54] 姜东生. 典型污染物对淡水生物的急性毒性及我国林丹水质基准研究[D]. 南京: 南京大学, 2014. [55] 汤其阳, 章彤, 李梅. 基于水质基准的中国地表水体中林丹生态风险评估案例研究[J]. 生态毒理学报, 2023, 18(1): 361-370.TANG Q Y, ZHANG T, LI M. Case study on ecological risk assessment of lindane in surface water of China based on water quality criteria[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 361-370. [56] Food and Agriculture Organization of the United Nations. Pesticides use in: FAOSTAT Rome[EB/OL]. [2022-09-22]. http://www.fao.ora/faostat/en/#data/RP. [57] DANIEL D S, CHAKRABORTY P, URALBEKOV B, et al. Legacy and current pesticide residues in Syr Darya, Kazakhstan: contamination status, seasonal variation and preliminary ecological risk assessment[J]. Water Research,2020,184:116141. doi: 10.1016/j.watres.2020.116141 [58] RUCHIKA S, BAROTH A, HUSSAIN S A. First account of spatio-temporal analysis, historical trends, source apportionment and ecological risk assessment of banned organochlorine pesticides along the Ganga River[J]. Environmental Pollution,2020,263:114229. doi: 10.1016/j.envpol.2020.114229 [59] REZA D B, ESMAILI S A, CHAKRABORTY P. Distribution and eco-toxicological risk assessment of legacy persistent organic pollutants in surface water of Talar, Babol rood and Haraz Rivers[J]. Water,2020,12(11):3104. doi: 10.3390/w12113104 [60] BAI Y, RUAN X, van der HOEK J P. Residues of organochlorine pesticides (OCPs) in aquatic environment and risk assessment along Shaying River, China[J]. Environmental Geochemistry and Health, 2018, 40(6): 2525-2538. [61] JOHN V J, FOKKE B W, VANDE C G, et al. European cooperation to tackle the legacies of hexachlorocyclohexane (HCH) and lindane[J]. Emerging Contaminants,2022,8(1):97-112. [62] ANKLEY G T, BENNETT R S, ERICKSON R J, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry,2010,29(3):730-741. doi: 10.1002/etc.34 [63] OECD. Proposal for a template and guidance on developing and assessing the completeness of adverse outcome pathways[J]. Serieson Testing and Assessment,2013,18:41-45. [64] ANNA P, CROFTON K, SACHANA M, et al. Putative adverse outcome pathways relevant to neurotoxicity[J]. Critical Reviews in Toxicology,2015,45(1):83-91. doi: 10.3109/10408444.2014.981331 [65] 戚光帅. 基于毒性通路的有害结局路径构建与定量分析[D]. 青岛: 青岛大学, 2022. ⊕