留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑动弧等离子体处理VOCs研究综述

郑瓛 蒋龙进 张顺 倪国华

郑瓛,蒋龙进,张顺,等.滑动弧等离子体处理VOCs研究综述[J].环境工程技术学报,2024,14(2):425-436 doi: 10.12153/j.issn.1674-991X.20230370
引用本文: 郑瓛,蒋龙进,张顺,等.滑动弧等离子体处理VOCs研究综述[J].环境工程技术学报,2024,14(2):425-436 doi: 10.12153/j.issn.1674-991X.20230370
ZHENG H,JIANG L J,ZHANG S,et al.Review of research on VOCs treatment by gliding arc plasma[J].Journal of Environmental Engineering Technology,2024,14(2):425-436 doi: 10.12153/j.issn.1674-991X.20230370
Citation: ZHENG H,JIANG L J,ZHANG S,et al.Review of research on VOCs treatment by gliding arc plasma[J].Journal of Environmental Engineering Technology,2024,14(2):425-436 doi: 10.12153/j.issn.1674-991X.20230370

滑动弧等离子体处理VOCs研究综述

doi: 10.12153/j.issn.1674-991X.20230370
基金项目: 国家自然科学基金项目(12275317,11875295,12105325);安徽超越环保科技股份有限公司技术中心固废处置与资源综合利用开放基金项目(2022-KYJJ-1)
详细信息
    作者简介:

    郑瓛(1983—),男,博士, 主要从事低温等离子体在环境工程中的应用研究,zhengh07@mail.ustc.edu.cn

    通讯作者:

    倪国华(1972—),男,研究员,博士,主要从事低温等离子体应用研究,ghni@ipp.ac.cn

  • 中图分类号: X51

Review of research on VOCs treatment by gliding arc plasma

  • 摘要:

    滑动弧等离子体兼具热等离子体和冷等离子体的优势,在挥发性有机物(VOCs)的去除中展现了很好的应用前景。在阐述滑动弧等离子体产生原理及基本特性的基础上,介绍了现有各种类型的滑动弧发生器及其特点。通过对国内外相关文献的归纳和整理,总结了影响滑动弧等离子体处理VOCs效率的关键影响因素以及不同类型滑动弧反应器去除VOCs的性能差异。最后,对滑动弧等离子体净化VOCs机理进行了探讨,并展望了该技术今后的研究方向。

     

  • 图  1  刀片式滑动弧放电结构[21]

    Figure  1.  Structure of conventional blade type sliding arc reactor

    图  2  切向进气旋转滑动弧的产生和电弧伸展过程[24]

    Figure  2.  Generation and extension process of rotating gliding arc driven by tangential flow

    图  3  磁场驱动旋转滑动弧原理[25]

    1—阳极; 2—阴极;3—起弧金属线。

    Figure  3.  Schematic diagram of rotating gliding arc driven by magnetic field

    图  4  龙卷风滑动弧放电示意[26]

    Figure  4.  Schematic diagram of tornado gliding arc discharge

    图  5  六电极滑动弧系统[29]

    Figure  5.  Photo of six electrode gliding arc system

    图  6  不同类型滑动弧反应器下初始浓度对VOCs去除率和能量效率的影响[31-34]

    Figure  6.  Effect of initial concentration on VOCs removal rate and energy efficiency at different gliding arc reactors

    图  7  不同类型滑动弧反应器下输入能量对污染物去除率和能量效率的影响[27,34-36]

    Figure  7.  Effect of input energy on VOCs removal rate and energy efficiency at different gliding arc reactors

    图  8  不同类型滑动弧反应器下气体流速对污染物去除率和能量效率的影响[27,32,34,37]

    Figure  8.  Effect of flow rate on VOCs removal rate and energy efficiency at different gliding arc reactors

    图  9  不同类型滑动弧反应器下水汽浓度对污染物去除率和能量效率的影响[34,36,38,39]

    Figure  9.  Effect of steam concentration on VOCs removal rate and energy efficiency at different gliding arc reactors

    图  10  滑动弧等离子体去除挥发性有机物的过程

    Figure  10.  Process of VOCs abatement by gliding arc plasma

    表  1  不同类型滑动弧等离子体降解VOCs性能与参数的比较

    Table  1.   Degradation performance and parameter comparison of various gliding arc plasma for VOCs destruction

    滑动弧类型 VOCs种类 载气 浓度/(g/m3 流速/(L/min) 去除率/% 能量效率/〔g/(kW·h)〕 数据来源
    刀片式滑动弧 甲苯 空气 1.47 30 60 3.1 文献[37]
    甲苯 氮气、水蒸气 9.5~23.4 3.5 >35 32.1~46.3 文献[35]
    甲苯 氮气、氧气、二氧化碳、水蒸气 14.8 3.5 78.3 69.5 文献[41]
    甲苯 空气 12.0 13 78 36.6 文献[31]
    甲苯 空气、二氧化碳 7.0 17 53 22.2 文献[42]
    苯、甲苯、二甲苯 空气 4.0~20.0 5 >40 8.4~19.0 文献[43]
    空气 30.0 2~4.5 73 87.8 文献[44]
    二甲苯 空气 0.7 2000 81 5.0 文献[45]
    蒽、芘 空气、氮气、
    氧气、氩气
    0.67 6.8 92.3 3.6 文献[46]
    甲苯、萘 氮气 2~22 4 60~86 2.6~21.1 文献[39]
    切向进气旋转滑动弧 甲苯 空气 0.2~2.0 90 77 2.1~15.2 文献[32]
    甲苯、萘、菲 氮气、二氧化碳 12.0 12 >84 10.2 文献[36]
    磁驱动旋转滑动弧 甲苯 氮气 14.0 10 >80 16.6 文献[33]
    甲苯、萘 氮气、二氧化碳 26.0 6 >70 21.3 文献[38]
    龙旋风滑动弧 硫化氢 硫化氢 2~14 文献[27]
    六氯苯 飞灰 4.5~16.5×10−3 13 66~72 文献[47]
    多电极滑动弧 甲苯 空气 7.3 33.3 92 16.6 文献[48]
    庚烷 空气 9.4 30 100 16.6 文献[48]
    丁酮 空气 6.4 53.3 66 10.0 文献[48]
    四氯乙烯 空气 3.6 31.6 100 1.1 文献[48]
    氮气 8.0 16.7 82 42.1 文献[34]
    氮气 0.13 12 88 0.13 文献[49]
    氮气 0.21 10 96 1.14 文献[50]
    下载: 导出CSV

    表  2  滑动弧等离子体去除VOCs的放大试验

    Table  2.   Scaled-up experiments of gliding arc plasma for VOCs abatement

    规模 装置 处理对象 处理量/
    (m3/h)
    去除
    率/%
    能耗/
    (kW·h/m3)
    实验室规模 刀片式滑动弧 甲苯 2 >98 0.42
    中试规模 刀片式滑动弧 二甲苯 120 >90 0.1
    多电极滑动弧 丙烷、丁烷 80 >54 0.044
    多电极滑动弧
    (六段式串联)
    三硝基甲苯 50 >95 0.06
    工业规模 多电极滑动弧
    (活性炭吸附再生+四组并联三组串联)
    苯、甲苯、二甲苯、甲醛 25 000 >80 0.001
    下载: 导出CSV
  • [1] 郝小龙, 石朝阳, 张一波. 大气压等离子体射流在环境领域的应用进展[J]. 环境工程技术学报,2023,13(4):1415-1424. doi: 10.12153/j.issn.1674-991X.20220815

    HAO X L, SHI C Y, ZHANG Y B. Progress in the application of atmospheric pressure plasma jets in environmental field[J]. Journal of Environmental Engineering Technology,2023,13(4):1415-1424. doi: 10.12153/j.issn.1674-991X.20220815
    [2] 竹涛, 李坚, 梁文俊, 等. 等离子体联合技术处理挥发性有机化合物废气的研究进展[J]. 化工环保,2008,28(2):118-121. doi: 10.3969/j.issn.1006-1878.2008.02.007

    ZHU T, LI J, LIANG W J, et al. Research progresses in treatment of waste gas containing volatile organic compounds by combined plasma technology[J]. Environmental Protection of Chemical Industry,2008,28(2):118-121. doi: 10.3969/j.issn.1006-1878.2008.02.007
    [3] van DURME J, DEWULF J, SYSMANS W, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemosphere,2007,68(10):1821-1829. doi: 10.1016/j.chemosphere.2007.03.053
    [4] SCHIORLIN M, MAROTTA E, REA M, et al. Comparison of toluene removal in air at atmospheric conditions by different Corona discharges[J]. Environmental Science & Technology,2009,43(24):9386-9392.
    [5] BYEON J H, PARK J H, JO Y S, et al. Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor[J]. Journal of Hazardous Materials,2010,175(1/2/3):417-422.
    [6] MUSTAFA M F, FU X D, LIU Y J, et al. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor[J]. Journal of Hazardous Materials,2018,347:317-324. doi: 10.1016/j.jhazmat.2018.01.021
    [7] SHIH S, LIN T, SHIH M. Decomposition of benzene in the RF plasma environment: part I. formation of gaseous products and carbon depositions[J]. Journal of Hazardous Materials,2004,116(3):239-248. doi: 10.1016/j.jhazmat.2004.09.006
    [8] JOSHI A V. Decomposition of SF6-R134a effluents by RF plasma[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 661: S245-S248.
    [9] 李瑞娜. 常压下微波等离子体去除三氯乙烯的研究[D]. 大连: 大连海事大学, 2011.
    [10] KO Y, YANG G, CHANG D P Y, et al. Microwave plasma conversion of volatile organic compounds[J]. Journal of the Air & Waste Management Association,2003,53(5):580-585.
    [11] RUBIO S J, QUINTERO M C, RODERO A. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure[J]. Journal of Hazardous Materials,2011,186(1):820-826. doi: 10.1016/j.jhazmat.2010.11.069
    [12] YAN J H, BO Z, LI X D, et al. Study of mechanism for hexane decomposition with gliding arc gas discharge[J]. Plasma Chemistry and Plasma Processing,2007,27(2):115-126. doi: 10.1007/s11090-006-9037-z
    [13] KRAWCZYK K, ULEJCZYK B. Decomposition of chloromethanes in gliding discharges[J]. Plasma Chemistry and Plasma Processing,2003,23(2):265-281. doi: 10.1023/A:1022916018245
    [14] 夏诗杨, 米俊锋, 杜胜男, 等. 低温等离子体处理挥发性有机物的研究进展[J]. 应用化工,2021,50(4):1130-1135. doi: 10.3969/j.issn.1671-3206.2021.04.055

    XIA S Y, MI J F, DU S N, et al. Research progress of non-thermal plasma treatment of volatile organic compounds[J]. Applied Chemical Industry,2021,50(4):1130-1135. doi: 10.3969/j.issn.1671-3206.2021.04.055
    [15] 薄拯. 滑动弧放电等离子体处理挥发性有机化合物基础研究[D]. 杭州: 浙江大学, 2008.
    [16] 阮建军, 潘维龙, 施耀. 非平衡等离子体脱臭技术研究进展[J]. 化工进展,2006,25(1):35-38. doi: 10.3321/j.issn:1000-6613.2006.01.007

    RUAN J J, PAN W L, SHI Y. Research advances of nonthermal plasma for odor removal[J]. Chemical Industry and Engineering Progress,2006,25(1):35-38. doi: 10.3321/j.issn:1000-6613.2006.01.007
    [17] 王勇. 滑动弧等离子体降解氯苯类有机污染物的实验研究[D]. 杭州: 浙江大学, 2013.
    [18] LESUEUR H, CZERNICHOWSKI A, CHAPELLE J. Device for generating low-temperature plasmas by formation of sliding electric discharges: FR19880014932 [P]. 1988-11-17.
    [19] FRIDMAN A, NESTER S, KENNEDY L A, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science,1999,25(2):211-231. doi: 10.1016/S0360-1285(98)00021-5
    [20] 严建华, 杜长明, CHERON B G, 等. 滑动弧等离子体技术用于环境治理领域的研究进展[J]. 热力发电,2005,34(5):1-6. doi: 10.3969/j.issn.1002-3364.2005.05.001

    YAN J H, DU C M, CHERON B G, et al. Advancement of study on application of gliding arc plasma in the domain of environmental protection[J]. Thermal Power Generation,2005,34(5):1-6. doi: 10.3969/j.issn.1002-3364.2005.05.001
    [21] GONG X J, LIN Y C, LI X D, et al. Decomposition of volatile organic compounds using gliding arc discharge plasma[J]. Journal of the Air & Waste Management Association,2020,70(2):138-157.
    [22] 余量. 滑动弧放电等离子体降解芳香烃类有机污染物的基础研究[D]. 杭州: 浙江大学, 2011.
    [23] 林启富. 交/直流多弧等离子体特性及其应用研究[D]. 合肥: 中国科学技术大学, 2020.
    [24] LEE D H, KIM K T, CHA M S, et al. Effect of excess oxygen in plasma reforming of diesel fuel[J]. International Journal of Hydrogen Energy,2010,35(10):4668-4675. doi: 10.1016/j.ijhydene.2010.02.091
    [25] OMBRELLO T, QIN X, JU Y G, et al. Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge[J]. AIAA Journal,2006,44(1):142-150. doi: 10.2514/1.17018
    [26] FRIDMAN A, KALRA C S, KOSSITSYN M, et al. Electrical discharges in the reverse vortex flow-tornado discharges[R]. Taormina: Proceedings of 16th International Symposium on Plasma Chemistry, 2003.
    [27] NUNNALLY T, GUTSOL K, RABINOVICH A, et al. Dissociation of H2S in non-equilibrium gliding arc "tornado" discharge[J]. International Journal of Hydrogen Energy,2009,34(18):7618-7625. doi: 10.1016/j.ijhydene.2009.07.045
    [28] GALLAGHER M J, GEIGER R, POLEVICH A, et al. On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas[J]. Fuel,2010,89(6):1187-1192. doi: 10.1016/j.fuel.2009.11.039
    [29] BABA T, TAKEUCHI Y, STRYCZEWSKA H, et al. Study of 6 electrodes gliding arc discharge configuration[J]. Przeglad Elektrotechniczny,2012,88(6):86-88.
    [30] SREETHAWONG T, THAKONPATTHANAKUN P, CHAVADEJ S. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system[J]. International Journal of Hydrogen Energy,2007,32(8):1067-1079. doi: 10.1016/j.ijhydene.2006.07.013
    [31] DU C M, YAN J H, CHERON B. Decomposition of toluene in a gliding arc discharge plasma reactor[J]. Plasma Sources Science and Technology,2007,16(4):791-797. doi: 10.1088/0963-0252/16/4/014
    [32] LU S Y, SUN X M, LI X D, et al. Decomposition of toluene in a rotating glidarc discharge reactor[J]. IEEE Transactions on Plasma Science,2012,40(9):2151-2156. doi: 10.1109/TPS.2012.2206119
    [33] ZHU F S, LI X D, ZHANG H, et al. Destruction of toluene by rotating gliding arc discharge[J]. Fuel,2016,176:78-85. doi: 10.1016/j.fuel.2016.02.065
    [34] CHUN Y N, KIM S C, YOSHIKAWA K. Decomposition of benzene as a surrogate tar in a gliding arc plasma[J]. Environmental Progress & Sustainable Energy,2013,32(3):837-845.
    [35] LIU S Y, MEI D H, WANG L, et al. Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor[J]. Chemical Engineering Journal,2017,307:793-802. doi: 10.1016/j.cej.2016.08.005
    [36] KONG X Z, ZHANG H, LI X D, et al. Destruction of toluene, naphthalene and phenanthrene as model tar compounds in a modified rotating gliding arc discharge reactor[J]. Catalysts,2018,9(1):19. doi: 10.3390/catal9010019
    [37] BO Z, YAN J H, LI X D, et al. Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition[J]. Journal of Hazardous Materials,2008,155(3):494-501. doi: 10.1016/j.jhazmat.2007.11.105
    [38] XU R Y, ZHU F S, ZHANG H, et al. Simultaneous removal of toluene, naphthalene, and phenol as tar surrogates in a rotating gliding arc discharge reactor[J]. Energy & Fuels,2020,34(2):2045-2054.
    [39] ZHANG H, ZHU F S, LI X D, et al. Steam reforming of toluene and naphthalene as tar surrogate in a gliding arc discharge reactor[J]. Journal of Hazardous Materials,2019,369:244-253. doi: 10.1016/j.jhazmat.2019.01.085
    [40] LEE D H, KIM K T, CHA M S, et al. Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J]. Proceedings of the Combustion Institute,2007,31(2):3343-3351. doi: 10.1016/j.proci.2006.07.230
    [41] MEI D H, ZHANG P, LIU S Y, et al. Highly efficient reforming of toluene to syngas in a gliding arc plasma reactor[J]. Journal of the Energy Institute,2021,98:131-143. doi: 10.1016/j.joei.2021.06.005
    [42] FERENC Z, WANDRASZ J W. Use of glidarc reactor for decomposition of toluene vapours in hot exhausts[J]. High Temperature Material Processes (an International Quarterly of High-Technology Plasma Processes),2004,8(1):31-38. doi: 10.1615/HighTempMatProc.v8.i1.30
    [43] INDARTO A, YANG D R, AZHARI C H, et al. Advanced VOCs decomposition method by gliding arc plasma[J]. Chemical Engineering Journal,2007,131(1/2/3):337-341.
    [44] RAD R H, KHANI M R, MEHDIKIA H, et al. Decomposition of high concentration benzene (produced in paper and painting industries) and its byproducts, methane and carbon dioxide, using plate gliding arc[J]. Journal of Environmental Health Science and Engineering,2019,17(2):549-560. doi: 10.1007/s40201-019-00369-8
    [45] CZERNICHOWSKI A. Gliding arc: applications to engineering and environment control[J]. Pure and Applied Chemistry,1994,66(6):1301-1310. doi: 10.1351/pac199466061301
    [46] YU L, TU X, LI X D, et al. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor[J]. Journal of Hazardous Materials,2010,180(1/2/3):449-455.
    [47] 程奎. 龙旋风滑动弧放电等离子体降解垃圾焚烧飞灰中二噁英的研究[D]. 杭州: 浙江大学, 2012.
    [48] CZERNICHOWSKI A, RANAIVOSOLOARIMANANA A. Zapping VOCs with a discontinuous electric arc[J]. Chemtech,1996,26(4):45-49.
    [49] CHUN Y N, KIM S C, YOSHIKAWA K. Destruction of biomass tar using a gliding arc plasma reformer[J]. International Journal of Environmental Protection,2012,2(12):1-8.
    [50] CHUN Y N, KIM S C, YOSHIKAWA K. Destruction of anthracene using a gliding arc plasma reformer[J]. Korean Journal of Chemical Engineering,2011,28(8):1713-1720. doi: 10.1007/s11814-011-0162-x
    [51] 杜长明. 低温等离子体净化有机废气技术[M]. 北京: 化学工业出版社, 2017: 138.
    [52] KOHNO H, BEREZIN A A, CHANG J S, et al. Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor[J]. IEEE Transactions on Industry Applications,1998,34(5):953-966. doi: 10.1109/28.720435
    [53] ZHANG H, WANG W Z, LI X D, et al. Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study[J]. Chemical Engineering Journal,2018,345:67-78. doi: 10.1016/j.cej.2018.03.123
    [54] XIA D H, LI Z Y, XIE Y L, et al. Kinetic simulations of volatile organic compounds decomposition by non-thermal plasma treatment[J]. Water, Air, & Soil Pollution, 2016, 227(12): 463.
    [55] BO Z, YAN J H, LI X D, et al. Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc ga6 discharge[J]. Plasma Chemistry and Plasma Processing,2007,27(5):546-558. doi: 10.1007/s11090-007-9081-3
    [56] 颜欣. 磁旋滑动弧等离子体裂解生活垃圾气化焦油的实验研究[D]. 杭州: 浙江大学, 2018.
    [57] ZHANG L D, CAI J H, ZHANG T C, et al. Kinetic modeling study of toluene pyrolysis at low pressure[J]. Combustion and Flame,2010,157(9):1686-1697. □ doi: 10.1016/j.combustflame.2010.04.002
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  64
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 录用日期:  2024-01-12
  • 修回日期:  2023-11-16

目录

    /

    返回文章
    返回