Analysis of the limits of air pollutants at enterprise boundary based on ambient multimedia environmental goals estimation
-
摘要:
从40余项国家大气固定污染源污染物排放标准以及地方恶臭污染物排放标准中筛选出已制定企业边界限值的36种大气污染物,提出适用于限值分析的方法,基于周围环境目标值(AMEG)设置了参考区间,对比分析了我国与美国化学有害因素职业接触限值时间加权平均容许浓度(TWA)的差异。结果表明,36种大气污染物可分为3类:1)出现在国家大气污染物综合排放标准等制定和发布年限较长标准中且限值较为宽松的8种污染物;2)限值未受嗅阈值影响的13种污染物,其中12种污染物的限值与AMEG估算结果的8.4倍较为接近;3)限值受嗅阈值影响的15种污染物,其中部分污染物的限值接近AMEG估算结果,部分限值接近嗅阈值。参与对比分析的255种化学有害因素中,我国和美国的TWA相等的有44种,占比不超过20%,差异在±1倍之内的约占85%,在±5倍以上的约占7%。研究显示,现行大气污染物排放标准中的企业边界限值有效保护了人体健康和生态环境,应对制定和发布年限较长且限值较为宽松的标准,以及限值高于嗅阈值的标准开展研究,分析限值的合理性。在制定企业边界大气污染物限值时,应广泛收集更多来源的职业接触限值数据并分析其适用性。
Abstract:Thirty-six air pollutants with established enterprise boundary limits were screened out from more than 40 national emission standards for stationary air pollutants sources and local emission standards for odor pollutants. A method suitable for limit analysis was proposed, and a reference interval was set based on the ambient multimedia environmental goals (AMEG). The difference in the occupational exposure limits time-weighted average allowable concentration (TWA) of chemical harmful factors between China and the United States was compared and analyzed. The results showed that the 36 air pollutants could be divided into three categories. Firstly, there were 8 pollutants that appeared in the national integrated emission standards for air pollutants and other standards that had been formulated and published for a long time with loose limits. Secondly, there were 13 pollutants whose limits were not affected by olfactory thresholds, among which the limits of 12 pollutants were close to 8.4 times of AMEG estimation. Thirdly, there were 15 pollutants whose limits were affected by olfactory thresholds, among which the limits of some pollutants were close to AMEG estimation, and some were close to olfactory thresholds. Among the 255 chemical harmful factors involved in the comparative analysis, there were 44 chemical harmful factors with TWA equivalent in China and the United States, accounting for no more than 20 percent, nearly 85 percent with a difference within ±1 time, and 7 percent with a difference of more than ±5 times. The research showed that the enterprise boundary limits in the current air pollutant emission standards had effectively protected human health and ecological environment. However, the standards that had been formulated and published for a long time with loose limits, as well as limits of the standards higher than olfactory thresholds, should be studied to analyze the reasonableness of the limits. Occupational exposure limits data from more sources should be widely collected and their applicability should be analyzed when formulating the limits of air pollutants at enterprise boundaries.
-
表 1 本研究涉及的标准及污染物
Table 1. Emission standards and air pollutants involved in this study
标准 涉及行业 具有企业边界限值的大气污染物 国家大气固定污染源污染物
排放标准系列黑色金属矿采选业、黑色金属冶炼和压延加工业、有色金属矿采选业、有色金属冶炼和压延加工业、化学原料和化学制品制造业、非金属矿物制品业等 氯化氢、甲苯、二甲苯、氯气、苯、氰化氢、氯乙烯、乙醛、二甲基甲酰胺、氯苯类、酚类、硝基苯类、二氯乙烷、苯胺类、甲醛、丙烯腈、光气、丙烯醛、甲醇等 DB 31/1025—2016《恶臭(异味)污染物排放标准》 通用型污染物排放标准 氨、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯、三甲胺、乙苯、丙醛、正丁醛、正戊醛、乙酸乙酯、乙酸丁酯、甲基异丁基酮、2-丁酮、丙烯酸、丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、一甲胺、二甲胺等 DB 12/059—2018《恶臭污染物排放标准》 表 2 36种大气污染物企业边界限值汇总
Table 2. Summary of enterprise boundary limits for 36 air pollutants
mg/m3 污染物 职业接触限值 嗅阈值 企业边界限值 苯胺类 3 0.4 甲醛 0.51) 0.623) 0.2 丙烯腈 1 19.413) 0.6 光气 0.51) 0.08 丙烯醛 0.31) 0.008 43) 0.4 甲醇 25 43.973) 12 二硫化碳 5 0.54 0.5 二甲二硫 2.102) 0.043 0.05 氯乙烯 10 0.15 二甲苯 50 0.8 丙烯酸 6 0.11 氯化氢 7.51) 0.15 二甲基甲酰胺 20 0.4 硝基苯类 2 0.04 二氯乙烷 7 0.15 甲苯 50 0.38 0.8 苯 6 8.773) 0.1 丙烯酸乙酯 22.352) 0.001 13) 0.4 苯乙烯 50 0.15 1 丙烯酸甲酯 20 0.0133) 0.4 氯气 11) 0.143) 0.02 三甲胺 13.192) 0.022 0.05 甲硫醇 1 0.000 13 0.002 乙酸丁酯 200 0.038 0.4 硫化氢 101) 0.001 7 0.02 酚类 10 0.0223) 0.02 丙醛 51.862) 0.039 0.065 乙醛 451) 0.033 0.04 甲硫醚 27.742) 0.005 2 0.02 正戊醛 192.252) 0.005 7 0.04 乙酸乙酯 200 3.08 3 乙苯 100 0.753) 1 氨 20 0.21 0.2 一甲胺 5 0.0453) 0.03 甲基异丁基酮 89.432) 0.713) 1.2 2-丁酮 300 1.323) 1.4 1)为GBZ 2.1—2019中的MAC;2)为美国ACGIH公布的TLV-TWA;3)为日本环境卫生中心测得的嗅阈值。 表 3 PC-TWA和TLV-TWA差异性累计占比
Table 3. Cumulative proportion of differences between PC-TWA and TLV-TWA
ΔR<0 ΔR≥0 ΔR ΔR区间/% 污染物数量/种 ΔR区间/% 污染物数量/种 ΔR区间/% 污染物数量/种 占比/% −10~0 43 0~10 21 −10~10 108 42.4 −20~0 62 0~20 29 −20~20 135 52.9 −50~0 87 0~50 33 −50~50 164 64.3 −100~0 128 0~100 44 −100~100 216 84.7 −200~0 128 0~200 55 −200~200 227 89.0 −500~0 128 0~500 65 −500~500 237 92.9 −1 000~0 128 0~1 000 75 −1 000~1 000 247 96.9 总计 128 83 255 100 -
[1] 郭健, 马召坤, 李蕾, 等.钢铁企业无组织排放特征污染物的监测分析[J]. 中国环境管理,2016,8(1):97-102.GUO J, MA Z K, LI L, et al. Monitoring and analysis on characteristic pollutants of fugitive emission in iron and steel enterprises[J]. Chinese Journal of Environmental Management,2016,8(1):97-102. [2] 贺飒飒, 田亚团, 刘海龙, 等.石油化工企业无组织排放的减排对策[J]. 中国环保产业,2016(3):24-27.HE S S, TIAN Y T, LIU H L, et al. Countermeasures of emission reduction of fugitive emission in petrochemical industry[J]. China Environmental Protection Industry,2016(3):24-27. [3] 李文捷, 张敏, 王丹.中国GBZ2.1与美国ACGIH工作场所化学有害因素职业接触限值比较研究[J]. 中华劳动卫生职业病杂志,2014,32(1):1-26.LI W J, ZHANG M, WANG D. Comparative study on occupational exposure limits of chemical substances in workplace betweent GBZ 2.1 in China and ACGIH in USA[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases,2014,32(1):1-26. [4] PICCARDO M T, GERETTO M, PULLIERO A, et al. Odor emissions: a public health concern for health risk perception[J]. Environmental Research,2022,204:112121. doi: 10.1016/j.envres.2021.112121 [5] 翟增秀, 李伟芳, 邹克华, 等.愉悦度在恶臭污染感官评价中的应用[J]. 环境工程技术学报,2018,8(5):546-550.ZHAI Z X, LI W F, ZOU K H, et al. The application of hedonic tone in odour pollution sensory evaluation[J]. Journal of Environmental Engineering Technology,2018,8(5):546-550. [6] 呼佳宁, 林子吟, 费波.餐厨垃圾生化处理机工艺恶臭污染特征研究[J]. 环境工程技术学报,2023,13(1):340-347.HU J N, LIN Z Y, FEI B. Study of odor pollution characteristics of bio-chemical processor treatment of kitchen waste[J]. Journal of Environmental Engineering Technology,2023,13(1):340-347. [7] MWMM R, VAN D R, VAN H A. Assessment of odour annoyance in chemical emergency management[M]. Bepaling van Geurhinder Voor Crisisbeheersing, CrisisTox Consult Municipal Health Service Rotterdam (GGD), 2009. [8] 盛青, 武雪芳, 李晓倩, 等. 中美欧燃煤电厂大气污染物排放标准的比较[J]. 环境工程技术学报, 2011, 1(6): 512-516.SHENG Q, WU X F, LI X Q, et al. Comparison of the air pollutant emission standards of coal-fired power plants between China, the United States and European union[J]. Journal of Environmental Engineering Technology, 2011, 1(6): 512-516. [9] US Environmental Protection Agency. Reference guide to odor thresholds for hazardous air pollutants listed in the clean air act amendments of 1990[R]. Washington DC: Office of Health and Environmental Assessment, 1992. [10] UK Environment Agency. The categorisation of volatile organic compounds[R]. London: Department of the Environment, 1995. [11] YOSHIO Y, NAGATA E. Measurement of odor threshold by triangular odor bag method[R]. Tokyo: Japan Ministry of the Environment, 2003 [12] 王亘, 翟增秀, 耿静, 等.40种典型恶臭物质嗅阈值测定[J]. 安全与环境学报,2015,15(6):348-351.WANG G, ZHAI Z X, GENG J, et al. Testing and determination of the olfactory thresholds of the 40 kinds of typical malodorous substances[J]. Journal of Safety and Environment,2015,15(6):348-351. [13] 修艺, 王芳芳, 徐礼安, 等.多介质环境目标值及其对大气环境评价标准选择的启示[J]. 化学世界,2015,56(7):437-440.XIU Y, WANG F F, XU L A, et al. Application of multimedia environmental goals (MEGs) in regulating atmospheric environmental standards[J]. Chemical World,2015,56(7):437-440. [14] 字春霞.多介质环境目标值应用于VOCs环境评价方法探析[J]. 环境影响评价,2017,39(6):26-30. doi: 10.14068/j.ceia.2017.06.007ZI C X. Study on the method for using MEG in VOCs' environmental assessment[J]. Environmental Impact Assessment,2017,39(6):26-30. doi: 10.14068/j.ceia.2017.06.007 [15] 包景岭, 邹克华, 王连生. 恶臭环境管理与污染控制[M]. 北京: 中国环境科学出版社, 2009. [16] 顾鑫生, 修光利.基于SPECIATE数据库的典型行业挥发性有机恶臭物质筛选[J]. 环境工程学报,2019,13(3):716-724.GU X S, XIU G L. Screening of volatile organic odorants in typical industries based on SPECIATE database[J]. Chinese Journal of Environmental Engineering,2019,13(3):716-724. [17] 环境保护部. 环境影响评价技术导则 制药建设项目: HJ 611—2011[S]. 北京: 中国环境科学出版社, 2011. [18] 吕平毓, 米武娟.多介质环境目标值在环境评价中的应用[J]. 人民长江,2012,43(1):59-62. doi: 10.3969/j.issn.1001-4179.2012.01.018LÜ P Y, MI W J. Application of Multimedia Environmental Goal Values in environmental assessment[J]. Yangtze River,2012,43(1):59-62. doi: 10.3969/j.issn.1001-4179.2012.01.018 [19] 张敏, 李涛, 吴维皑, 等.我国物理因素职业接触限值研究规范与建议[J]. 中国卫生监督杂志,2009,16(3):239-244. [20] VERMA D K. Adjustment of occupational exposure limits for unusual work schedules[J]. AIHAJ:American Industrial Hygiene Association,2000,61(3):367-374. □ doi: 10.1080/15298660008984545