Analysis of changes in water chemistry characteristics and influencing factors of three major lakes in Inner Mongolia in the last decade
-
摘要:
内蒙古自治区三大湖泊达里湖、乌梁素海、呼伦湖受地理位置和气候环境影响显著,尤其是作为尾闾湖的达里湖已由淡水湖演化为中咸水湖。于2022年对达里湖、乌梁素海、呼伦湖进行调查采样,与收集的历史资料进行比对分析,采用Piper三线图、Gibbs图、空间差异分析、端元图、离子比值和相关性分析等方法,研究三大湖泊水化学特征及成因机制,利用三大湖泊主要离子浓度历年对比图分析近10年湖泊主要离子浓度变化,并从环境角度分析达里湖盐化原因。结果表明:1)达里湖、乌梁素海、呼伦湖的水化学类型分别为${\mathrm{HCO}}_3^- $-Na+-Cl−型、${\mathrm{HCO}}_3^- $-Cl−-Na+型、${\mathrm{HCO}}_3^- $-Na+-Cl−型。2)各湖泊变异系数较大的水化学组分空间分布表现为达里湖离子〔${\mathrm{HCO}}_3^- $与总溶解性固体(TDS)〕浓度呈现西部高、东部低的分布特征,乌梁素海离子(${\mathrm{HCO}}_3^- $与${\mathrm{SO}}_4^{2-} $)浓度总体上呈现由四周向中部递减的变化趋势,呼伦湖离子(${\mathrm{HCO}}_3^- $与${\mathrm{SO}}_4^{2-} $)浓度的空间分布受入湖河流离子浓度的影响。3)三大湖泊的水化学特征主要受蒸发作用和岩石风化作用的影响,其中达里湖受蒸发岩矿物与硅酸岩矿物共同作用的影响,乌梁素海和呼伦湖主要受硅酸岩矿物作用的影响,达里湖地下水存在阳离子吸附作用。4)近10年达里湖离子浓度整体呈逐年上升的变化趋势。达里湖湖面蒸发量远大于湖面降水量,加之河流补给量逐年减少,导致湖面萎缩以及湖水盐化程度逐渐增大。从根本上来讲,环境因素造成的入湖水量减少、蒸发量增大,最终促使湖泊盐化加快。
Abstract:The three major lakes in Inner Mongolia Autonomous Region, Dali Lake, Ulan Suhai Lake and Hulun Lake, are significantly affected by geographical location and climatic environment. In particular, Dali Lake, as a tail lake, has evolved from a freshwater lake to a medium-salt lake. In 2022, Dali Lake, Ulan Suhai Lake and Hulun Lake were investigated, sampled and compared with the collected historical data. Piper three-line diagram, Gibbs diagram, spatial difference analysis, endmember diagram, ion ratio, and correlation analysis were used to study the hydrochemical characteristics and formation mechanism of the three lakes. The primary ion concentrations of the three lakes over the years were used to analyze the changes of the primary ion concentrations of the lakes in the past 10 years, and the reasons for the salinization of Dali Lake were analyzed from the perspective of environment. The results showed that: (1) The hydrochemical types of Dali Lake, Ulan Suhai Lake and Hulun Lake were ${\mathrm{HCO}}_3^- $-Na+-Cl− type, ${\mathrm{HCO}}_3^- $-Cl−-Na+ type and ${\mathrm{HCO}}_3^- $-Na+-Cl− type, respectively. (2) The spatial distribution characteristics of ions with large coefficient of variation in each lake were studied. The spatial distribution characteristics of ions (${\mathrm{HCO}}_3^- $ and total dissolved solid (TDS) ) in Dali Lake were high in the west and low in the east. The ions (${\mathrm{HCO}}_3^- $ and ${\mathrm{SO}}_4^{2-} $) in Ulan Suhai Lake generally showed a decreasing trend from the periphery to the middle. The spatial distribution of ions (${\mathrm{HCO}}_3^- $ and ${\mathrm{SO}}_4^{2-} $) of Hulun Lake was affected by the ion concentration in its inflow rivers. (3) The hydrochemical characteristics of the three lakes were mainly affected by evaporation and rock weathering. Among them, Dali Lake was affected by the combination of evaporite minerals and silicate minerals, Ulan Suhai Lake and Hulun Lake were mainly affected by silicate minerals, and the groundwater of Dali Lake had cation adsorption. (4) In the past 10 years, the ion concentrations of Dali Lake had been increasing year by year. The evaporation of the lake surface of Dali Lake was much larger than the precipitation of the lake surface, and the river recharge was decreasing year by year, which led to the shrinkage of the lake surface and the gradual increase of the salinization of the lake water. Fundamentally speaking, environmental factors reduced the amount of water entering the lake and increased the evaporation, ultimately accelerating the salinization of the lake.
-
Key words:
- hydrochemistry /
- Dali Lake /
- Ulan Suhai Lake /
- Hulun Lake /
- ions concentration /
- salinization /
- Inner Mongolia
-
表 1 2022年三大湖泊水化学组分平均值
Table 1. The average hydrochemical composition of the three lakes in 2022
mg/L 湖泊 统计值 TDS Cl− ${\mathrm{HCO}}_3^- $ ${\mathrm{SO}}_4^{2-} $ Na+ K+ Mg2+ Ca2+ 达里湖 最大值 12 602.88 1 814.12 6 211.29 70.12 2 973.37 298.44 134.19 5.86 最小值 5 591.70 1 622.63 1 261.73 64.72 2 570.83 247.89 26.87 4.72 平均值 7 453.47 1 753.80 4 955.24 67.87 2 840.53 269.47 38.79 5.39 标准差 1 733.87 58.45 3 385.10 1.75 106.58 13.99 8.59 0.36 变异系数/% 23.26 3.33 68.31 2.58 3.75 5.19 22.16 6.75 乌梁素海 最大值 2 204.32 867.13 1 873.75 15.55 553.57 16.79 121.37 108.55 最小值 1 269.13 372.71 286.24 3.65 276.04 8.35 67.98 43.17 平均值 1 654.60 520.17 1 130.52 7.28 393.01 10.92 89.13 68.84 标准差 297.45 138.35 367.86 3.07 77.08 1.91 15.08 12.15 变异系数/% 17.98 26.60 32.54 42.15 19.61 17.46 16.92 17.66 呼伦湖 最大值 1 066.00 195.51 1 113.06 1.05 307.28 28.48 54.58 36.35 最小值 624.00 100.71 327.73 0.51 161.12 13.35 32.78 24.87 平均值 909.50 145.03 847.67 0.71 246.62 18.26 44.27 30.78 标准差 132.61 23.62 212.31 0.14 36.39 3.63 5.72 3.13 变异系数/% 14.58 16.28 25.05 20.40 14.76 19.88 12.92 10.18 -
[1] 金相灿. 中国湖泊环境:第一册[M]. 北京: 海洋出版社, 1995. [2] 闫露霞. 青藏高原湖泊与湿地水化学特征及其物质来源[D]. 兰州: 西北师范大学, 2019. [3] 王晓曦, 王文科, 王周锋, 等. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质,2014,41(1):25-33.WANG X X, WANG W K, WANG Z F, et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, Northeastern China[J]. Hydrogeology & Engineering Geology,2014,41(1):25-33. [4] 侯庆秋. 乌梁素海流域水文地球化学成因及水盐运移[D]. 呼和浩特: 内蒙古大学, 2021. [5] 韩知明, 贾克力, 赵胜男, 等. 呼伦湖冰封期与非冰封期营养盐与离子分布特征研究[J]. 生态环境学报,2017,26(7):1201-1209.HAN Z M, JIA K L, ZHAO S N, et al. Distribution characteristics of the nutrients and ion of Hulun Lake in frozen and unfrozen period[J]. Ecology and Environmental Sciences,2017,26(7):1201-1209. [6] 勾利超. 冰封与非冰封状态下达里诺尔湖水文化学特征的时空差异研究[D]. 呼和浩特: 内蒙古农业大学, 2020. [7] 甄志磊, 李畅游, 张生, 等. 冰封期达里诺尔湖主要离子特征[J]. 环境化学,2015,34(10):1901-1910. doi: 10.7524/j.issn.0254-6108.2015.10.2015050202ZHEN Z L, LI C Y, ZHANG S, et al. Major ions in Dali Lake during the icebound season[J]. Environmental Chemistry,2015,34(10):1901-1910. doi: 10.7524/j.issn.0254-6108.2015.10.2015050202 [8] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古主要湖泊水资源及其变化分析[J]. 干旱区研究,2015,32(1):7-14.WANG J Z, WU J L, ZENG H A, et al. Changes of water resources of the main lakes in Inner Mongolia[J]. Arid Zone Research,2015,32(1):7-14. [9] 蒋鑫艳. 乌梁素海近年来水环境治理效果及其变化特征分析[D]. 呼和浩特: 内蒙古农业大学, 2019. [10] 白凯, 君珊, 郑朔方, 等. 呼伦湖水体溶解性有机物荧光特征及来源分析[J]. 环境工程技术学报,2023,13(2):597-606. doi: 10.12153/j.issn.1674-991X.20220327BAI K, JUN S, ZHENG S F, et al. Fluorescence characteristics and sources of dissolved organic matter in Hulun Lake[J]. Journal of Environmental Engineering Technology,2023,13(2):597-606. doi: 10.12153/j.issn.1674-991X.20220327 [11] 韩知明. 呼伦湖流域水体氢氧同位素与水化学特征研究[D]. 呼和浩特: 内蒙古农业大学, 2018. [12] 吴其慧, 李畅游, 孙标, 等. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展,2019,5(12):1933-1943. doi: 10.18306/dlkxjz.2019.12.009WU Q H, LI C Y, SUN B, et al. Change of ice phenology in the Hulun Lake from 1986 to 2017[J]. Progress in Geography,2019,5(12):1933-1943. doi: 10.18306/dlkxjz.2019.12.009 [13] 耿悦. 乌梁素海水体和沉积物中有机碳同位素特征及来源研究[D]. 呼和浩特: 内蒙古大学, 2021. [14] 甄志磊, 徐立帅, 张俊, 等. 达里湖湖面演化过程及其影响因素[J]. 生态学杂志,2021,40(10):3314-3324.ZHEN Z L, XU L S, ZHANG J, et al. Evolution process of Dali Lake and its influencing factors[J]. Chinese Journal of Ecology,2021,40(10):3314-3324. [15] 于海峰, 史小红, 孙标, 等. 2011—2020年呼伦湖水质及富营养化变化分析[J]. 干旱区研究,2021,38(6):1534-1545.YU H F, SHI X H, SUN B, et al. Analysis of water quality and eutrophication changes in Hulun Lake from 2011 to 2020[J]. Arid Zone Research,2021,38(6):1534-1545. [16] 吴用, 史小红, 赵胜男, 等. 内蒙古高原3大典型湖泊水化学特征及其控制因素分析[J]. 生态环境学报,2015,24(7):1202-1208.WU Y, SHI X H, ZHAO S N, et al. Major ion chemistry and influencing factors of three typical lakes in Inner Mongolia Plateau[J]. Ecology and Environmental Sciences,2015,24(7):1202-1208. [17] 赵胜男, 史小红, 崔英, 等. 内蒙古达里诺尔湖湖泊水体与入湖河水水化学特征及控制因素[J]. 环境化学,2016,35(9):1865-1875. doi: 10.7524/j.issn.0254-6108.2016.09.2016012001ZHAO S N, SHI X H, CUI Y, et al. Hydrochemical properties and controlling factors of the Dali Lake and its inflow river water in Inner Mongolia[J]. Environmental Chemistry,2016,35(9):1865-1875. doi: 10.7524/j.issn.0254-6108.2016.09.2016012001 [18] 李晓波, 李杭, 杨宝萍, 等. 泰安市旧县水源地水化学特征及成因分析[J]. 环境工程技术学报,2022,12(6):2002-2010. doi: 10.12153/j.issn.1674-991X.20210593LI X B, LI H, YANG B P, et al. Hydrochemical characteristics and formation mechanism of water source area in Jiuxian County, Tai'an City[J]. Journal of Environmental Engineering Technology,2022,12(6):2002-2010. doi: 10.12153/j.issn.1674-991X.20210593 [19] 张启荧. 生态补水背景下乌梁素海水体交换能力与水质改善模拟与评价[D]. 呼和浩特: 内蒙古农业大学, 2022. [20] HAN Y, ZHAI Y, GUO M, et al. Hydrochemical and isotopic characterization of the impact of water diversion on water in drainage channels, groundwater, and Lake Ulansuhai in China[J]. Water,2021,13(21):3033. doi: 10.3390/w13213033 [21] WANG W, LI W, XUE M, et al. Spatial-temporal characteristics and influencing factors of lake water and groundwater chemistry in Hulun Lake, Northeast China[J]. Water,2023,15(5):937. doi: 10.3390/w15050937 [22] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学,2017,38(11):4537-4545.ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science,2017,38(11):4537-4545. [23] 金鸽, 安慧君, 虎日乐. 1991年~2018年呼伦湖区域气候特征及其对水域面积的影响[J]. 石河子大学学报(自然科学版),2022,40(1):68-74.JIN G, AN H J, HU R L. Regional climate characteristics of Hulun Lake and its impact on water area from 1991 to 2018[J]. Journal of Shihezi University (Natural Science),2022,40(1):68-74. [24] 袁晓敏, 刘强, 马晓婧, 等. 白洋淀流域地表水化学特征及控制因素[J]. 环境工程,2020,38(10):1-6.YUAN X M, LIU Q, MA X J, et al. Hydrochemical characteristics and possible controls of the surface water in Lake Baiyangdian Basin[J]. Environmental Engineering,2020,38(10):1-6. [25] LOWRY D P, MORRILL C. Is the Last Glacial Maximum a reverse analog for future hydroclimate changes in the Americas[J]. Climate Dynamics,2019,52(7):4407-4427. [26] 黄领梅, 沈冰. 水盐运动研究述评[J]. 西北水资源与水工程,2000,11(1):6-12.HUANG L M, SHEN B. Review on advance in water and salt dynamics studies[J]. Water Resources & Water Engineering,2000,11(1):6-12. [27] 张宏鑫, 吴亚, 罗炜宇, 等. 雷州半岛岭北地区地下水水文地球化学特征[J]. 环境科学,2020,41(11):4924-4935.ZHANG H X, WU Y, LUO W Y, et al. Hydrogeochemical investigations of groundwater in the Lingbei Area, Leizhou Peninsula[J]. Environmental Science,2020,41(11):4924-4935. [28] XU Z F, LIU C Q. Water geochemistry of the Xijiang Basin rivers, South China: chemical weathering and CO2 consumption[C]//中国科学院地质与地球物理研究所第十届(2010年度)学术年会论文集(下). 北京: 中国科学院地质与地球物理研究所, 2011: 359-370. [29] 彭红霞, 侯清芹, 曾敏, 等. 雷州半岛地下水化学特征及控制因素分析[J]. 环境科学,2021,42(11):5375-5383.PENG H X, HOU Q Q, ZENG M, et al. Hydrochemical characteristics and controlling factors of groundwater in the Leizhou Peninsula[J]. Environmental Science,2021,42(11):5375-5383. [30] 陈京鹏, 吴晓华, 蒋书杰, 等. 山东省平度北部富锶地下水水化学特征及形成机制[J]. 环境科学学报,2023,43(5):69-78.CHEN J P, WU X H, JIANG S J, et al. Hydrochemical characteristics and formation mechanism of strontium-rich groundwater in northern Pingdu, Shandong Province[J]. Acta Scientiae Circumstantiae,2023,43(5):69-78. ◇