留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旱季污水处理厂污水中溶解性有机质特征及其与氮素关系

刘交 潘国强 杨帆 李晓曼 谢彦杰 韦敏祥 任美洁

刘交,潘国强,杨帆,等.旱季污水处理厂污水中溶解性有机质特征及其与氮素关系[J].环境工程技术学报,2024,14(3):941-952 doi: 10.12153/j.issn.1674-991X.20230513
引用本文: 刘交,潘国强,杨帆,等.旱季污水处理厂污水中溶解性有机质特征及其与氮素关系[J].环境工程技术学报,2024,14(3):941-952 doi: 10.12153/j.issn.1674-991X.20230513
LIU J,PAN G Q,YANG F,et al.Characteristics of dissolved organic matters and their relationship with nitrogen in wastewater from sewage treatment plants in dry season[J].Journal of Environmental Engineering Technology,2024,14(3):941-952 doi: 10.12153/j.issn.1674-991X.20230513
Citation: LIU J,PAN G Q,YANG F,et al.Characteristics of dissolved organic matters and their relationship with nitrogen in wastewater from sewage treatment plants in dry season[J].Journal of Environmental Engineering Technology,2024,14(3):941-952 doi: 10.12153/j.issn.1674-991X.20230513

旱季污水处理厂污水中溶解性有机质特征及其与氮素关系

doi: 10.12153/j.issn.1674-991X.20230513
基金项目: 云南省科技计划基础研究专项(202301AT070114)
详细信息
    作者简介:

    刘交(1995—),男,硕士研究生,主要研究方向为水体中污染物的迁移转化,jiaoliu1127@163.com

    通讯作者:

    潘国强(1991—),男,工程师,主要研究方向为污水处理技术及资源化,261847029@qq.com

    任美洁(1985—),女,副教授,主要从事新污染物去除研究及应用,rmjblue@126.com

  • 中图分类号: X703

Characteristics of dissolved organic matters and their relationship with nitrogen in wastewater from sewage treatment plants in dry season

  • 摘要:

    针对市政污水处理厂污水中溶解性有机质(DOM)变化及其与氮素可能存在的相互影响关系,采用三维荧光光谱结合平行因子分析以及相关性分析,以西南某市旱季市政污水处理厂为研究对象,探究DOM荧光组分随工艺单元的变化规律及其与氮素转化的相关性。结果表明:1)市政污水处理厂水体DOM主要由4个荧光组分组成,即类蛋白质组分C1(类酪氨酸)、C2(类色氨酸)和类腐殖质组分C3、C4。污水处理厂进水以类蛋白质组分为主,该组分占总荧光强度比例的平均值为66.5%,其中C1含量较高,其荧光强度占类蛋白质组分比例的平均值为54.6%。最终出水则以类腐殖质组分为主,该组分占总荧光强度比例的平均值为71.7%,而出水的类蛋白质组分中C2含量较高,其荧光强度占类蛋白质组分比例的平均值为99.8%。2)随处理工艺流程的进行,DOM的荧光强度基本呈现逐渐降低的趋势,尤其是C1在工艺流程中荧光强度逐渐趋于0;而类腐殖质组分相对稳定,不随处理流程的进行而变化。3)污水处理厂生物处理单元之后DOM的荧光指数(FI)均大于1.9,表明DOM以转化为自生源为主。4)污水处理厂工艺流程中${\mathrm{NH}}_4^+{\text{-}}{\mathrm{N}} $和溶解性总氮(DTN)与C1组分和腐殖化指数(HIX)之间有良好的相关性,采用多元回归方式可有效预测工艺流程中${\mathrm{NH}}_4^+{\text{-}}{\mathrm{N}} $和DTN的浓度。建议污水处理厂可根据DOM光谱性质与氮素(${\mathrm{NH}}_4^+{\text{-}}{\mathrm{N}} $和DTN)之间的大量数据建立普适模型,对尾水的排放和受纳水体中氮的变化趋势进行预测。

     

  • 图  1  污水处理厂处理流程和采样点示意

    Figure  1.  Schematic diagram of the treatment processes and sampling points of the sewage treatment plants

    图  2  各污水处理厂荧光组分

    注:(a)~(j)图分别表示A~J污水处理厂。

    Figure  2.  Four fluorescent components in the sewage treatment plants

    图  3  各污水处理厂不同处理单元水样荧光组分(C1、C2、C3、C4)强度随处理流程的变化

    注:图(a)~(j)分别表示污水处理厂A~J。

    Figure  3.  Variation of fluorescence component (C1, C2, C3, C4) intensity of water samples with treatment process in different treatment units of the sewage treatment plants

    图  4  各污水处理厂不同处理单元水样荧光特性和紫外-可见光谱参数变化趋势

    Figure  4.  Trends in fluorescence characteristics and UV-Vis spectral parameters of water samples with treatment process in different treatment units of the sewage treatment plants

    图  5  污水处理厂各指标之间的相关性矩阵

    注:*表示P<0.05;**表示P<0.01;***表示P<0.001。

    Figure  5.  Correlation matrix among indicators of sewage treatment plants

    图  6  各污水处理厂荧光光谱和紫外光谱指数主成分分析

    Figure  6.  Principal component analysis of fluorescence spectrum and ultraviolet spectral index in wastewater treatment plants

    图  7  各污水处理厂中荧光组分的荧光强度之间的线性拟合关系(P<0.05)

    Figure  7.  Linear fitting relationship between fluorescence intensity of fluorescent components in the sewage treatment plants

    图  8  多元线性回归模型的预测值与污水处理厂实测值之间的线性拟合关系

    Figure  8.  Linear fitting relationship between the predicted value of the multiple linear regression model and the measured value of the sewage treatment plants

    表  1  污水处理厂处理量及各厂进出水DOC、TN和${\mathrm{NH}}_4^+{\text{-}}{\mathrm{N}} $浓度

    Table  1.   The capacity of the sewage treatment plants and the concentration of DOC, TN and ${\mathrm{NH}}_4^+{\text{-}}{\mathrm{N}} $ in the inlet and outlet of water from each plant

    污水处理厂 处理量/
    (104 m3/d)
    DOC浓度/(mg/L) TN浓度/(mg/L) ${\mathrm{NH}}_4^+{\text{-}}{\mathrm{N}} $浓度/(mg/L)
    进水 出水 进水 出水 进水 出水
    A 10 40.63 14.14 29.73 15.00 19.82 0.40
    B 13 34.57 14.28 39.78 11.88 34.73 2.54
    C 20 18.44 5.77 42.23 8.79 14.51 0.66
    D 10 18.44 6.68 42.23 8.79 14.51 0.66
    E 1.5 67.56 14.87 17.84 14.20 10.15 0.14
    F 7.5 14.56 4.29 23.49 14.04 12.09 0.40
    G 6 44.25 12.48 36.47 10.35 28.59 0.75
    H 9 45.04 6.91 28.06 14.46 20.70 0.32
    I I1 11 32.17 10.67 33.26 9.83 19.68 0.82
    I2 5 51.98 16.26 49.65 10.45 25.57 0.31
    J J1 15 32.93 14.15 36.78 13.53 34.72 1.34
    J2 6 16.80 4.80 26.36 15.00 16.80 0.72
    下载: 导出CSV
  • [1] BAI L L, ZHAO Z, WANG C L, et al. Multi-spectroscopic investigation on the complexation of tetracycline with dissolved organic matter derived from algae and macrophyte[J]. Chemosphere,2017,187:421-429. doi: 10.1016/j.chemosphere.2017.08.112
    [2] CHEN Z Y, ZHANG Y J, GAO Y Z, et al. Influence of dissolved organic matter on tetracycline bioavailability to an antibiotic-resistant bacterium[J]. Environmental Science & Technology,2015,49(18):10903-10910.
    [3] COBLE P G. Marine optical biogeochemistry: the chemistry of ocean color[J]. Chemical Reviews,2007,107(2):402-418. doi: 10.1021/cr050350+
    [4] MAQBOOL T, QIN Y L, LY Q V, et al. Exploring the relative changes in dissolved organic matter for assessing the water quality of full-scale drinking water treatment plants using a fluorescence ratio approach[J]. Water Research,2020,183:116125. doi: 10.1016/j.watres.2020.116125
    [5] DU R, PENG Y Z, CAO S B, et al. Advanced nitrogen removal from wastewater by combining anammox with partial denitrification[J]. Bioresource Technology,2015,179:497-504. doi: 10.1016/j.biortech.2014.12.043
    [6] JI J T, PENG Y Z, MAI W K, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology,2018,270:570-579. doi: 10.1016/j.biortech.2018.08.124
    [7] PHANWILAI S, NOOPHAN P, LI C W, et al. Effect of COD: N ratio on biological nitrogen removal using full-scale step-feed in municipal wastewater treatment plants[J]. Sustainable Environment Research,2020,30(1):24. doi: 10.1186/s42834-020-00064-6
    [8] HANSEN A M, KRAUS T E C, PELLERIN B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography,2016,61(3):1015-1032. doi: 10.1002/lno.10270
    [9] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3/4):239-254.
    [10] MAQBOOL T, SUN M M, CHEN L, et al. Exploring the fate of dissolved organic matter at the molecular level in the reactive electrochemical ceramic membrane system using fluorescence spectroscopy and FT-ICR MS[J]. Water Research,2022,210:117979. doi: 10.1016/j.watres.2021.117979
    [11] 孙伟, 胡泓, 赵茜, 等. 达里诺尔湖水体DOM荧光特征及其来源解析[J]. 环境科学研究,2020,33(9):2084-2093.

    SUN W, HU H, ZHAO Q, et al. Fluorescence characteristics and source analysis of dissolved organic matter in Dalinor Lake[J]. Research of Environmental Sciences,2020,33(9):2084-2093.
    [12] 江俊武, 李帅东, 沈胤胤, 等. 夏季太湖CDOM光学特性空间差异及其来源解析[J]. 环境科学研究,2017,30(7):1020-1030.

    JIANG J W, LI S D, SHEN Y Y, et al. Spatial differences of optical properties of CDOM and their source apportionment in Taihu Lake in summer[J]. Research of Environmental Sciences,2017,30(7):1020-1030.
    [13] BAKER A, CURRY M. Fluorescence of leachates from three contrasting landfills[J]. Water Research,2004,38(10):2605-2613. doi: 10.1016/j.watres.2004.02.027
    [14] 宋晓娜, 于涛, 张远, 等. 利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报,2010,30(11):2321-2331.

    SONG X N, YU T, ZHANG Y, et al. Distribution characterization and source analysis of dissolved organic matters in Taihu Lake using three dimensional fluorescence excitation-emission matrix[J]. Acta Scientiae Circumstantiae,2010,30(11):2321-2331.
    [15] FICHOT C G, BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins[J]. Limnology and Oceanography,2012,57(5):1453-1466. doi: 10.4319/lo.2012.57.5.1453
    [16] 张晓亮, 王洪波, 杨芳, 等. 山东省平度市农村黑臭水体DOM三维荧光光谱的平行因子分析[J]. 环境工程技术学报,2022,12(3):651-659. doi: 10.12153/j.issn.1674-991X.20210488

    ZHANG X L, WANG H B, YANG F, et al. Parallel factor analysis with three-dimensional excitation-emission matrix spectroscopy on dissolved organic matter of rural black and odorous water bodies in Pingdu City of Shandong Province[J]. Journal of Environmental Engineering Technology,2022,12(3):651-659. doi: 10.12153/j.issn.1674-991X.20210488
    [17] 张博, 高建文, 范绍锦, 等. 南湖水系溶解性有机质来源及时空分布特征[J]. 环境工程技术学报,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066

    ZHANG B, GAO J W, FAN S J, et al. Origin and spatial-temporal distribution characteristics of dissolved organic matter in Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066
    [18] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology,2002,36(4):742-746.
    [19] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346. doi: 10.1016/0304-4203(95)00062-3
    [20] CORY R M, McKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology,2005,39(21):8142-8149.
    [21] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [22] YANG L Y, HONG H S, CHEN C T A, et al. Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan[J]. Marine Chemistry,2013,157:12-23. doi: 10.1016/j.marchem.2013.07.002
    [23] ZHANG T, MA H, HONG Z C, et al. Photo-reactivity and photo-transformation of algal dissolved organic matter unraveled by optical spectroscopy and high-resolution mass spectrometry analysis[J]. Environmental Science & Technology,2022,56(18):13439-13448.
    [24] 杨长明, 杨阳, 王育来. 城镇污水处理厂尾水中氮磷形态及光谱特征分析[J]. 中国给水排水,2021,37(3):1-8.

    YANG C M, YANG Y, WANG Y L. Forms of nitrogen and phosphorus and spectral characteristics in effluent from municipal wastewater treatment plants[J]. China Water & Wastewater,2021,37(3):1-8.
    [25] MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor: an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods,2014,6(3):658-661. doi: 10.1039/C3AY41935E
    [26] YLLA I, ROMANÍ A M, SABATER S. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature[J]. Microbial Ecology,2012,64(3):593-604. doi: 10.1007/s00248-012-0062-6
    [27] REN W X, WU X D, GE X G, et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China[J]. Journal of Oceanology and Limnology,2021,39(4):1256-1276. doi: 10.1007/s00343-020-0102-x
    [28] 陈永娟, 胡玮璇, 庞树江, 等. 北运河水体中荧光溶解性有机物空间分布特征及来源分析[J]. 环境科学,2016,37(8):3017-3025.

    CHEN Y J, HU W X, PANG S J, et al. Spatial distribution characteristics and source analysis of dissolved organic matter in Beiyun River[J]. Environmental Science,2016,37(8):3017-3025.
    [29] WANG X L, TONG Y B, CHANG Q G, et al. Source identification and characteristics of dissolved organic matter and disinfection by-product formation potential using EEM-PARAFAC in the Manas River, China[J]. RSC Advances,2021,11(46):28476-28487. doi: 10.1039/D1RA03498G
    [30] YU H R, QU F S, WU Z J, et al. Front-face fluorescence excitation-emission matrix (FF-EEM) for direct analysis of flocculated suspension without sample preparation in coagulation-ultrafiltration for wastewater reclamation[J]. Water Research,2020,187:116452. doi: 10.1016/j.watres.2020.116452
    [31] MAIZEL A C, REMUCAL C K. Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter[J]. Environmental Science & Technology,2017,51(4):2113-2123.
    [32] 杨毅, 杨霞霞. 城市污水处理过程中DOM的三维荧光光谱及紫外谱图特性[J]. 环境工程学报,2015,9(12):5672-5676. doi: 10.12030/j.cjee.20151204

    YANG Y, YANG X X. Characteristic of three dimensional fluorescence spectra and UV spectra of DOM during process of urban sewage treatment[J]. Chinese Journal of Environmental Engineering,2015,9(12):5672-5676. doi: 10.12030/j.cjee.20151204
    [33] WANG L, LI Y J, XIONG Y, et al. Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant[J]. PLoS One,2017,12(11):e0187355. doi: 10.1371/journal.pone.0187355
    [34] YAMASHITA Y, JAFFÉ R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis[J]. Environmental Science & Technology,2008,42(19):7374-7379.
    [35] BAI L L, CAO C C, WANG C H, et al. Toward quantitative understanding of the bioavailability of dissolved organic matter in freshwater lake during cyanobacteria blooming[J]. Environmental Science & Technology,2017,51(11):6018-6026.
    [36] WEN L, YANG F, LI X, et al. Composition of dissolved organic matter (DOM) in wastewater treatment plants influent affects the efficiency of carbon and nitrogen removal[J]. Science of the Total Environment,2023,857:159541. ◇ doi: 10.1016/j.scitotenv.2022.159541
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  43
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 录用日期:  2023-12-01
  • 修回日期:  2023-11-30

目录

    /

    返回文章
    返回