留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述

花洁 王健媛 陈运帷 王健 陈征 刘洋洋

花洁,王健媛,陈运帷,等.煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J].环境工程技术学报,2024,14(1):139-147 doi: 10.12153/j.issn.1674-991X.20230524
引用本文: 花洁,王健媛,陈运帷,等.煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J].环境工程技术学报,2024,14(1):139-147 doi: 10.12153/j.issn.1674-991X.20230524
HUA J,WANG J Y,CHEN Y W,et al.A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils[J].Journal of Environmental Engineering Technology,2024,14(1):139-147 doi: 10.12153/j.issn.1674-991X.20230524
Citation: HUA J,WANG J Y,CHEN Y W,et al.A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils[J].Journal of Environmental Engineering Technology,2024,14(1):139-147 doi: 10.12153/j.issn.1674-991X.20230524

煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述

doi: 10.12153/j.issn.1674-991X.20230524
基金项目: 国家重点研发计划项目(2020YFC1807403)
详细信息
    作者简介:

    花洁(1974—),女,工程师,主要从事土壤污染管理体系研究,huajie741028@163.com

    通讯作者:

    王健媛(1983—),女,工程师,研究方向为环境工程,qinnan08@sina.com

  • 中图分类号: X53

A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils

  • 摘要:

    土壤重金属和有机物污染是当前许多煤矿矿区及周边地区面临的严重问题,威胁居民健康,要采取有效措施予以解决。在对煤矿矿区周边土壤重金属和多环芳烃(PAHs)来源及危害分析的基础上,发现重金属元素在自然条件下难以降解,导致其在生物体中累积,并且PAHs具有致癌性、致畸性和诱变性。通过比较物理化学修复、植物修复和生物修复等方法在治理重金属及PAHs污染土壤的优缺点,发现植物修复和生物修复对气候和环境的依赖程度高,物理修复成本和能耗较高,因此提出矿区周边土壤污染的修复技术需要进一步创新,实现多领域、多学科协作发展的观点。通过持续的技术创新和多种修复方法的联合应用,达到有效治理煤矿矿区及周边重金属和PAHs污染的目的,实现土壤的重新利用,进而实现环境保护与经济可持续发展的良性互动。

     

  • 图  1  重金属和PAHs污染土壤的生物修复

    Figure  1.  Bioremediation of soil contaminated with heavy metals and PAHs

    图  2  PAHs氧化的微生物途径的初始步骤[53]

    Figure  2.  Initial steps in the microbial pathways for oxidation of PAHs

    图  3  植物修复重金属污染土壤的主要途径

    Figure  3.  Main pathways of hytoremediation of heavy metals in contaminated soil

    表  1  矿区周边土壤重金属和PAHs污染的修复技术

    Table  1.   Remediation technologies for heavy metals and PAHs contamination of soils around mining sites

    修复方法 修复重金属/PAHs种类 数据来源
    生物修复 枯草芽孢杆菌(Bacillus subtilis) Cr 文献[29]
    高空芽孢杆菌(Bacillus altitudinis)、暹罗芽孢杆菌(Bacillus siamensis)
    戴尔福特菌属(Delftia sp.)、氧化微杆菌CM3/CM7(Microbacterium oxydans CM3/CM7)
    Pb 文献[30-32]
    假单胞菌、微球菌、红球菌、节肢杆菌、芽孢杆菌、棒状杆菌 PAHs 文献[33-35]
    植物修复 麻风树(Jatropha curcas L.) Fe、As 文献[36]
    苍耳(Xantium strumarium Pb、Cd、Ni 文献[37]
    羊尾草(Setaria pumila)、狼尾草(Pennisetum sinese)、伴矿景天(Sedum plumbizincicola)、
    海州香薷(Elsholtzia splendens
    Cu、Cd 文献[38]
    苜蓿、黑麦草、火凤凰 PAHs 文献[39-41]
    物理化学修复 表层土壤覆盖 重金属 文献[42]
    羟基磷灰石基黏合剂 Pb、Zn 文献[43]
    热脱附技术 苯并荧蒽 文献[44-45]
    Fenton氧化 PAHs 文献[46]
    臭氧氧化技术 文献[47]
    联合技术 植物-微生物联合修复技术 Cd 文献[48]
    微生物-电动联合修复技术 Cd、Cu、Pb、Zn、Co、As 文献[49]
    植物-电动联合修复技术 Zn、Cu、Pb、Cd 文献[50]
    植物-微生物联合修复技术 苯并苝 文献[51]
    下载: 导出CSV
  • [1] 周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136-146.

    ZHOU N, YAO Y N, SONG W J, et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136-146.
    [2] XIAO X, ZHANG J X, WANG H, et al. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: a global meta-analysis[J]. Science of the Total Environment,2020,713:135292. doi: 10.1016/j.scitotenv.2019.135292
    [3] 倪碧珩, 施维林, 陈洁, 等. 某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报,2022,12(3):878-885.

    NI B H, SHI W L, CHEN J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site[J]. Journal of Environmental Engineering Technology,2022,12(3):878-885.
    [4] 吕占禄, 张金良, 邹天森, 等. 燃煤电厂周边土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(6):720-731.

    LÜ Z L, ZHANG J L, ZOU T S, et al. Characteristics and evaluation of heavy metal pollution in soil around coal-fired power plants[J]. Journal of Environmental Engineering Technology,2019,9(6):720-731.
    [5] 张博伦, 刘玲玲, 黄占斌, 等. 基于UNMIX模型的地质高背景地区土壤重金属源解析[J]. 环境科学研究,2023,36(2):393-402.

    ZHANG B L, LIU L L, HUANG Z B, et al. Source apportionment of soil heavy metal(loid)s in high geochemical background area Based on the UNMIX model[J]. Research of Environmental Sciences,2023,36(2):393-402.
    [6] 沈琼, 王开颜, 张巍, 等. 北京市通州区河流悬浮物中多环芳烃的分布特征[J]. 环境科学研究,2007,20(3):58-62.

    SHEN Q, WANG K Y, ZHANG W, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in the suspend particle of rivers from Tongzhou District of Beijing[J]. Research of Environmental Sciences,2007,20(3):58-62.
    [7] 李剑锋, 冯李霄, 陈希清, 等. 大义山东南部土壤重金属分布特征及其风险评价[J]. 环境工程技术学报,2023,13(1):287-294.

    LI J F, FENG L X, CHEN X Q, et al. Heavy metal distribution characteristics of soils in southeastern Dayi Mountain and its risk evaluation[J]. Journal of Environmental Engineering Technology,2023,13(1):287-294.
    [8] 韩瑞杰, 任逸晨, 黄涛, 等. 包头市三类湿地中重金属污染程度及生物富集研究[J]. 环境工程,2019,37(1):29-34.

    HAN R J, REN Y C, HUANG T, et al. Study on pollution degree and bio-concentration of heavy metals in three types of wetlands in Baotou, China[J]. Environmental Engineering,2019,37(1):29-34.
    [9] AZEEM M, ALI A, AROCKIAM JEYASUNDAR P G S, et al. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil[J]. Environmental Pollution,2021,277:116800. doi: 10.1016/j.envpol.2021.116800
    [10] RINKLEBE J, SHAHEEN S M, EL-NAGGAR A, et al. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil[J]. Environment International,2020,140:105754. doi: 10.1016/j.envint.2020.105754
    [11] ZHANG Y H, HOU D Y, O'CONNOR D, et al. Lead contamination in Chinese surface soils: source identification, spatial-temporal distribution and associated health risks[J]. Critical Reviews in Environmental Science and Technology,2019,49(15):1386-1423. doi: 10.1080/10643389.2019.1571354
    [12] 宋云, 尉黎, 王海见. 我国重金属污染土壤修复技术的发展现状及选择策略[J]. 环境保护,2014,42(9):32-36.

    SONG Y, YU L, WANG H J. Present situation and screening strategies of remediation technology for heavy metal contaminated soil in China[J]. Environmental Protection,2014,42(9):32-36.
    [13] ZHANG K, ZHENG X H, LI H F, et al. Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical plant in northwest China[J]. Soil and Sediment Contamination:an International Journal,2020,29(5):481-502. doi: 10.1080/15320383.2020.1746737
    [14] 张嘉栋, 雷雨辰, 赵一萌, 等. 巩义煤矿区周边土壤重金属积累特征研究[J]. 有色金属材料与工程,2019(1):49-54.

    ZHANG J D, LEI Y C, ZHAO Y M, et al. Characteristics of heavy metal accumulation in the soil surrounding Gongyi coal mine[J]. Nonferrous Metal Materials and Engineering,2019(1):49-54.
    [15] 刘旭, 郑刘根, 陈欣悦, 等. 淮南潘集矿区农田土壤重金属污染特征及在小麦中累积特征研究[J]. 环境污染与防治,2019,41(8):959-964.

    LIU X, ZHENG L G, CHEN X Y, et al. Study on the heavy metals pollution characteristics of agricultural soil and their accumulation characteristics in wheat in Panji mining area, Huainan[J]. Environmental Pollution and Control,2019,41(8):959-964.
    [16] 李洪伟, 颜事龙, 崔龙鹏. 淮南新集矿区土壤重金属污染评价[J]. 矿业安全与环保,2008,35(1):36-37.

    LI H W, YAN S L, CUI L P. Evaluation of soil pollution by heavy metals in Huainan Xinji mining area[J]. Mining Safety & Environmental Protection,2008,35(1):36-37.
    [17] 熊鸿斌, 胡海文, 王振祥, 等. 淮南煤矿区土壤重金属污染分布特征及污染溯源研究[J]. 合肥工业大学学报(自然科学版),2015,38(5):686-693.

    XIONG H B, HU H W, WANG Z X, et al. Research on distribution characteristics and pollution source of heavy metal pollution in soil in Huainan coal mining area[J]. Journal of Hefei University of Technology (Natural Science),2015,38(5):686-693.
    [18] 郭旻欣. 基于GIS的淮南矿区土壤Cu、Ni、As、Zn和Cr元素空间分布特征及来源分析[D]. 合肥: 合肥工业大学, 2016.
    [19] 邢雅珍, 陈孝杨, 许正刚, 等. 基于文献研究的淮南煤矿区土壤重金属空间分布与污染评价[J]. 安徽农业科学,2018,46(5):77-80.

    XING Y Z, CHEN X Y, XU Z G, et al. The spatial distribution and pollution assessment of soil heavy metals based on literature research from coal mining areas in Huainan[J]. Journal of Anhui Agricultural Sciences,2018,46(5):77-80.
    [20] JIN T S, HAN M, HAN K, et al. Health risk of ambient PM10-bound PAHs at bus stops in spring and autumn in Tianjin, China[J]. Aerosol and Air Quality Research,2018,18(7):1828-1838. doi: 10.4209/aaqr.2017.11.0461
    [21] ZHANG J M, LIU F, HUANG H, et al. Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbons in surface soils from a large-scale coal mine, Huainan, China[J]. Ecotoxicology and Environmental Safety,2020,192:110269. doi: 10.1016/j.ecoenv.2020.110269
    [22] XU D D, ZHANG X N, HONG X P, et al. Distribution pattern of polycyclic aromatic compounds in coal gangue from coal city, East China[J]. Environmental Science and Pollution Research,2023,30(20):58674-58683. doi: 10.1007/s11356-023-25990-x
    [23] CHEN D, FENG Q Y, LIANG H Q, et al. Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in underground coal mining environment of Xuzhou[J]. Human and Ecological Risk Assessment:an International Journal,2019,25(6):1564-1578. doi: 10.1080/10807039.2018.1489715
    [24] 赵文昌, 程金平, 谢海赟, 等. 环境中多环芳烃(PAHs)的来源与监测分析方法[J]. 环境科学与技术,2006,29(3):105-107.

    ZHAO W C, CHENG J P, XIE H Y, et al. PAHs: sources, pathway and their monitoring and analysis[J]. Environmental Science & Technology,2006,29(3):105-107.
    [25] YUAN G L, WU L J, SUN Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution,2015,203:137-144. doi: 10.1016/j.envpol.2015.04.002
    [26] 孙翔, 王锋文, 郭天锋, 等. 重庆废弃煤矿区表层土壤多环芳烃污染特征及风险评价[J]. 地球与环境,2019,47(4):502-509.

    SUN X, WANG F W, GUO T F, et al. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in topsoil of an abandoned coal mine area in Chongqing[J]. Earth and Environment,2019,47(4):502-509.
    [27] QIAN Y H, YUAN K Y, HONG X P, et al. Contamination characteristics of alkyl polycyclic aromatic hydrocarbons in dust and topsoil collected from Huaibei Coalfield, China[J]. Environmental Geochemistry and Health,2023,45(6):2935-2948. doi: 10.1007/s10653-022-01365-y
    [28] 马清义, 焦玉坤, 李新宇. 葛泉矿煤矸石山周边多环芳烃分布特征[J]. 煤炭与化工,2013,36(7):50-52.

    MA Q Y, JIAO Y K, LI X Y. Distribution characteristics of polycyclic aromatic hydrocarbons in Gequan coal surrounding gangue dump[J]. Coal and Chemical Industry,2013,36(7):50-52.
    [29] UPADHYAY N, VISHWAKARMA K, SINGH J, et al. Tolerance and reduction of chromium(Ⅵ) by Bacillus sp. MNU16 isolated from contaminated coal mining soil[J]. Frontiers in Plant Science,2017,8:778. doi: 10.3389/fpls.2017.00778
    [30] SHYLLA L, BARIK S K, JOSHI S R. Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment[J]. Archives of Microbiology,2021,203(5):2379-2392. doi: 10.1007/s00203-021-02218-5
    [31] ROY S, ROY M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil[J]. International Journal of Phytoremediation,2019,21(6):531-540. doi: 10.1080/15226514.2018.1537238
    [32] HEIDARI P, SANAEIZADE S. Optimization and characterization of lead bioremediation by strains of Microbacterium oxydans[J]. Soil and Sediment Contamination:an International Journal,2020,29(8):901-913. doi: 10.1080/15320383.2020.1783508
    [33] LU N. Study on occurrence characteristics and natural degradation of polycyclic aromatic hydrocarbons in mined-out area of northern Shaanxi coal mine[J]. IOP Conference Series:Earth and Environmental Science,2020,510(4):042008. doi: 10.1088/1755-1315/510/4/042008
    [34] ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum,2016,25(1):107-123. doi: 10.1016/j.ejpe.2015.03.011
    [35] ALEGBELEYE O O, OPEOLU B O, JACKSON V A. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation[J]. Environmental Management,2017,60(4):758-783. doi: 10.1007/s00267-017-0896-2
    [36] GARCÍA MARTÍN J F, del CARMEN GONZÁLEZ CARO M, del CARMEN LÓPEZ BARRERA M, et al. Metal accumulation by Jatropha curcas L. adult plants grown on heavy metal-contaminated soil[J]. Plants,2020,9(4):418. doi: 10.3390/plants9040418
    [37] KHALID N, NOMAN A, AQEEL M, et al. Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides[J]. International Journal of Environmental Science and Technology,2019,16(4):2091-2100. doi: 10.1007/s13762-018-1825-5
    [38] CUI H B, LI H T, ZHANG S W, et al. Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone[J]. Chemosphere,2020,242:125252. doi: 10.1016/j.chemosphere.2019.125252
    [39] 沈源源, 滕应, 骆永明, 等. 几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J]. 土壤,2011,43(2):253-257.

    SHEN Y Y, TENG Y, LUO Y M, et al. Remediation efficiency of several legumes and grasses in PAH-contaminated soils[J]. Soils,2011,43(2):253-257.
    [40] CHEN Y C, BANKS M K, SCHWAB A P. Pyrene degradation in the rhizosphere of tall fescue ( Festuca arundinacea) and switchgrass ( Panicum virgatum L. )[J]. Environmental Science & Technology,2003,37(24):5778-5782.
    [41] DAI Y Y, LIU R, ZHOU Y M, et al. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities[J]. Environment International,2020,136:105421. doi: 10.1016/j.envint.2019.105421
    [42] LAMB D T, VENKATRAMAN K, BOLAN N, et al. Phytocapping: an alternative technology for the sustainable management of landfill sites[J]. Critical Reviews in Environmental Science and Technology,2014,44(6):561-637. doi: 10.1080/10643389.2012.728823
    [43] XIA W Y, DU Y J, LI F S, et al. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter[J]. Construction and Building Materials,2019,210:278-288. doi: 10.1016/j.conbuildmat.2019.03.195
    [44] 范宇, 徐飞. 多环芳烃污染土壤修复技术应用对比研究[J]. 建筑科技,2019,3(6):52-55.

    FAN Y, XU F. Restore technologies for PAHs polluted soil[J]. Build Technology,2019,3(6):52-55.
    [45] 徐成华, 骆文轩, 黄涛, 等. 改性剂协同热脱附多环芳烃污染土壤效率提升研究[J]. 环境污染与防治,2023,45(4):492-498.

    XU C H, LUO W X, HUANG T, et al. Study on improving efficiency of synergistic thermal desorption of polycyclic aromatic hydrocarbons contaminated soil by modifiers[J]. Environmental Pollution and Control,2023,45(4):492-498.
    [46] 潘玉兰. Fenton试剂氧化降解水和土壤中多环芳烃[D]. 南京: 南京农业大学, 2014.
    [47] TAMADONI A, QADERI F. Optimization of soil remediation by ozonation for PAHs contaminated soils[J]. Ozone:Science & Engineering,2019,41(5):454-472.
    [48] 卢晋晶, 郜春花, 武雪萍, 等. 植物-微生物联合修复技术在Cd污染土壤中的研究进展[J]. 山西农业科学,2019,47(6):1115-1120.

    LU J J, GAO C H, WU X P, et al. Advances in plant-microbial joint repair technology in Cd contaminated soil restoration[J]. Journal of Shanxi Agricultural Sciences,2019,47(6):1115-1120.
    [49] 董雪. 电动联合修复技术在重金属污染土壤中的研究进展[J]. 新疆地质,2023,41(1):98-102.

    DONG X. Research progress of electrokinetic combined remediation technology in heavy metal contaminated soil[J]. Xinjiang Geology,2023,41(1):98-102.
    [50] 魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版),2019,43(1):154-160.

    WEI S H, XU L, HAN R, et al. Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J]. Journal of Nanjing Forestry University (Natural Science Edition),2019,43(1):154-160.
    [51] SHI W, GUO Y J, NING G H, et al. Remediation of soil polluted with HMW-PAHs by alfalfa or brome in combination with fungi and starch[J]. Journal of Hazardous Materials,2018,360:115-121. doi: 10.1016/j.jhazmat.2018.07.076
    [52] WAHSHA M, NADIMI-GOKI M, FORNASIER F, et al. Microbial enzymes as an early warning management tool for monitoring mining site soils[J]. Catena,2017,148:40-45. doi: 10.1016/j.catena.2016.02.021
    [53] CERNIGLIA C E. Biodegradation of polycyclic aromatic hydrocarbons[J]. Current Opinion in Biotechnology,1993,4(3):331-338. doi: 10.1016/0958-1669(93)90104-5
    [54] ZHANG X X, ZHANG Y K, WANG X M, et al. Enhancement of soil high-molecular-weight polycyclic aromatic hydrocarbon degradation by Fusarium sp. ZH-H2 using different carbon sources[J]. Ecotoxicology and Environmental Safety,2023,249:114379. doi: 10.1016/j.ecoenv.2022.114379
    [55] TENG Y, LUO Y M, PING L F, et al. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil[J]. Biodegradation,2010,21(2):167-178. doi: 10.1007/s10532-009-9291-x
    [56] UKALSKA-JARUGA A, SMRECZAK B. The impact of organic matter on polycyclic aromatic hydrocarbon (PAH) availability and persistence in soils[J]. Molecules,2020,25(11):2470. doi: 10.3390/molecules25112470
    [57] TUFAIL M A, ILTAF J, ZAHEER T, et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: a review[J]. Science of the Total Environment,2022,850:157961. doi: 10.1016/j.scitotenv.2022.157961
    [58] LIU Z C, CHEN B N, WANG L, et al. A review on phytoremediation of mercury contaminated soils[J]. Journal of Hazardous Materials,2020,400:123138. doi: 10.1016/j.jhazmat.2020.123138
    [59] 王俊, 王青清, 蒋珍茂, 等. 腐殖酸对外源砷在土壤中形态转化和有效性的影响[J]. 土壤,2018,50(3):522-529.

    WANG J, WANG Q Q, JIANG Z M, et al. Transformation and bioavailability of exogenous as in soil as influenced by humic acids and its active components[J]. Soils,2018,50(3):522-529.
    [60] DOU X K, DAI H P, SKUZA L, et al. Strong accumulation capacity of hyperaccumulator Solanum nigrum L. for low or insoluble Cd compounds in soil and its implication for phytoremediation[J]. Chemosphere,2020,260:127564. doi: 10.1016/j.chemosphere.2020.127564
    [61] WANG Z H, LIU X Y, QIN H Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China[J]. Journal of Geochemical Exploration,2019,200:159-166. doi: 10.1016/j.gexplo.2019.02.005
    [62] WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere,2017,184:594-600. doi: 10.1016/j.chemosphere.2017.06.025
    [63] LIU N H, LIAO P, ZHANG J C, et al. Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost[J]. Science of the Total Environment,2020,739:139987. doi: 10.1016/j.scitotenv.2020.139987
    [64] GAJIĆ G, DJURDJEVIĆ L, KOSTIĆ O, et al. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes[J]. Frontiers in Environmental Science,2018,6:124. doi: 10.3389/fenvs.2018.00124
    [65] MEAGHER R B. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology,2000,3(2):153-162. doi: 10.1016/S1369-5266(99)00054-0
    [66] MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances,2011,29(2):248-258. doi: 10.1016/j.biotechadv.2010.12.001
    [67] 章智明, 黄占斌, 单瑞娟, 等. 矿区重金属污染土壤修复方法的研究进展[J]. 西部资源,2012(5):79-81.

    ZHANG Z M, HUANG Z B, SHAN R J, et al. The research progress of remediation methods on heavy metal contaminated mining lands[J]. Resources,2012(5):79-81.
    [68] SONG B, ZENG G M, GONG J L, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals[J]. Environment International,2017,105:43-55. doi: 10.1016/j.envint.2017.05.001
    [69] BEESLEY L, INNEH O S, NORTON G J, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution,2014,186:195-202. doi: 10.1016/j.envpol.2013.11.026
    [70] LI C F, ZHOU K H, QIN W Q, et al. A review on heavy metals contamination in soil: effects, sources, and remediation techniques[J]. Soil and Sediment Contamination:An International Journal,2019,28(4):380-394. doi: 10.1080/15320383.2019.1592108
    [71] WANG J X, FENG X B, ANDERSON C W N, et al. Remediation of mercury contaminated sites: a review[J]. Journal of Hazardous Materials,2012,221/222:1-18. doi: 10.1016/j.jhazmat.2012.04.035
    [72] GHOBADI R, ALTAEE A, ZHOU J L, et al. Enhanced copper removal from contaminated kaolinite soil by electrokinetic process using compost reactive filter media[J]. Journal of Hazardous Materials,2021,402:123891. doi: 10.1016/j.jhazmat.2020.123891
    [73] GHOBADI R, ALTAEE A, ZHOU J L, et al. Copper removal from contaminated soil through electrokinetic process with reactive filter media[J]. Chemosphere,2020,252:126607.
    [74] LI Y L, SHAO M Y, HUANG M H, et al. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier[J]. Chemosphere,2022,286:131470. doi: 10.1016/j.chemosphere.2021.131470
    [75] 冉景, 李明, 安忠义, 等. 电动强化生物淋滤在重金属-有机复合污染土壤修复中的研究进展[J]. 安徽农学通报,2018,24(3):54-55.

    RAN J, LI M, AN Z Y, et al. Research progress of electro-enhanced bioleaching in remediation of co-contaminated soil[J]. Anhui Agricultural Science Bulletin,2018,24(3):54-55.
    [76] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用,2021(4):1-9.

    DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial combined remediation technology for typical heavy metals-contaminated soils in Panxi mining region[J]. Multipurpose Utilization of Mineral Resources,2021(4):1-9.
    [77] CHU Z X, WANG X M, WANG Y M, et al. Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings[J]. Environmental Earth Sciences,2020,79(3):1-14.
    [78] GONG Z Q, ALEF K, WILKE B M, et al. Dissolution and removal of PAHs from a contaminated soil using sunflower oil[J]. Chemosphere,2005,58(3):291-298. doi: 10.1016/j.chemosphere.2004.07.035
    [79] PANNU J K, SINGH A, WARD O P. Vegetable oil as a contaminated soil remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil[J]. Process Biochemistry,2004,39(10):1211-1216. doi: 10.1016/S0032-9592(03)00254-1
    [80] 朱军峰, 杨宇啸, 杨乐, 等. 腐植酸对纳米TiO2催化降解土壤中萘和菲的影响[J]. 化工新型材料,2023,51(3):221-226.

    ZHU J F, YANG Y X, YANG L, et al. Effect of humic acid on the catalytic degradation of naphthalene and phenanthrene in soil by nano-TiO2[J]. New Chemical Materials,2023,51(3):221-226.
    [81] WANG S, GUO S H, LI F M, et al. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil[J]. Scientific Reports,2016,6(1):1-13. doi: 10.1038/s41598-016-0001-8
    [82] 魏巍, 李凤梅, 杨雪莲, 等. 电动修复过程中电压对土壤中芘降解及微生物群落的影响[J]. 生态学杂志,2015,34(5):1382-1388.
    [83] 左文建, 胡顺磊, 段伟, 等. 基于AHP筛选的有机污染土联合修复技术案例研究[J]. 土壤,2023,55(2):390-398.

    ZUO W J, HU S L, DUAN W, et al. Case study of combined remediation technology for organic contaminated soils based on AHP screening[J]. Soils,2023,55(2):390-398. □
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  123
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 录用日期:  2023-09-06
  • 修回日期:  2023-08-21

目录

    /

    返回文章
    返回