A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils
-
摘要:
土壤重金属和有机物污染是当前许多煤矿矿区及周边地区面临的严重问题,威胁居民健康,要采取有效措施予以解决。在对煤矿矿区周边土壤重金属和多环芳烃(PAHs)来源及危害分析的基础上,发现重金属元素在自然条件下难以降解,导致其在生物体中累积,并且PAHs具有致癌性、致畸性和诱变性。通过比较物理化学修复、植物修复和生物修复等方法在治理重金属及PAHs污染土壤的优缺点,发现植物修复和生物修复对气候和环境的依赖程度高,物理修复成本和能耗较高,因此提出矿区周边土壤污染的修复技术需要进一步创新,实现多领域、多学科协作发展的观点。通过持续的技术创新和多种修复方法的联合应用,达到有效治理煤矿矿区及周边重金属和PAHs污染的目的,实现土壤的重新利用,进而实现环境保护与经济可持续发展的良性互动。
-
关键词:
- 土壤污染 /
- 煤矿矿区 /
- 重金属 /
- 多环芳烃(PAHs) /
- 土壤治理修复
Abstract:Soil heavy metal and organic matter pollution is a serious problem currently facing many coal mine sites and surrounding areas, threatening the health of residents, and effective measures should be taken to solve it. Based on the analysis of the sources and hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soil around coal mining areas, it is found that heavy metal elements are difficult to be degraded under natural conditions, leading to their accumulation in living organisms, and that PAHs are carcinogenic, teratogenic and mutagenic. By comparing the advantages and disadvantages of physicochemical remediation, phytoremediation and bioremediation in the treatment of heavy metals and PAHs-contaminated soils, it was found that phytoremediation and bioremediation are highly dependent on climate and environment, and that physical remediation is more costly and energy-consuming, so it is put forward that remediation technologies for soil pollution around mining areas need to be further innovated to realize the viewpoints of collaborative development in multiple fields and multiple disciplines. Through continuous technological innovation and the joint application of multiple remediation methods, we can achieve the purpose of effectively treating heavy metal and PAHs pollution in and around coal mine areas, realize the reuse of soil, and then realize the benign interaction between environmental protection and sustainable economic development.
-
Keywords:
- soil contamination /
- coal mine area /
- heavy metals /
- PAHs /
- soil treatment and remediation
-
随着经济的迅速发展,能源消耗急剧增加。中国作为全球最大的煤炭生产和消费国,其煤炭累计储量超过70亿t[1]。随着煤炭资源的不断开采,大量有毒污染物排放到矿区周边的土壤环境中,对人体健康造成威胁[2]。煤矿矿区周边土壤污染物主要包括重金属和多环芳烃(PAHs)。重金属污染具有潜在毒性、持久性和生物积累性[3-4],土壤中积累的重金属会通过食物链进入人体,危害人体健康[5]。PAHs因其对自然环境和人类健康造成危害而受到广泛关注,已被美国国家环境保护局和国际癌症研究机构定义为致癌物质[6]。此外,随着苯环数量的增加,PAHs在环境中的降解度逐渐增加,毒性也迅速增大,致癌性增强。不容忽略的是矿区周边土壤环境污染特征各不相同[7]。因此,明确矿区周边土壤污染特征及其修复手段对矿区环境治理和安全生产意义重大。
土壤污染修复技术主要包括植物修复、生物修复和物理化学修复等,但各技术在实际应用中存在不同的优缺点。目前,治理修复污染土壤的工作主要集中于对农田土壤中重金属污染的处理,而对煤矿区重金属和PAHs污染土壤的研究相对不足,尤其是针对矿区PAHs的污染。因此,笔者以煤矿区土壤重金属和PAHs污染作为主要研究对象,总结了矿区土壤污染特征及来源,并从生物修复、植物修复和物理化学修复以及多技术联用4个方面进行分析,以期为矿区重金属和PAHs污染土壤的治理修复提供新的思路及科学依据。
1. 煤矿矿区土壤污染物类型
1.1 重金属污染来源及危害
煤炭资源开采导致煤矿区地表覆盖物(尾矿堆、矸石堆、废石和被破坏的地表土壤)中含有高浓度的重金属,污染周围土体[8],使矿区周边土壤重金属浓度明显高于背景值[9-10]。重金属污染主要通过粉尘迁移沉降、风蚀淋溶以及煤矿区酸性废水外排等方式产生[11]。已有研究表明,60%的癌症患者与重金属污染密切相关,其中对人类健康威胁最大的重金属元素分别为Pb、Hg、Cd、Cr和As[12],这5种重金属也被列为煤矿矿区土壤中危害较大的重金属污染物[13-14]。通过统计全球122个地点的煤炭工业用地相关土壤中As、Ni、Cu、Cd、Cr、Pb、Zn和Hg的浓度发现,土壤中重金属Cd和Hg的浓度远高于Cr和Pb,其中Hg浓度最高、污染程度最大[2]。此外,许多学者对中国淮南矿区周边土壤中的重金属污染进行了大量研究[15-19],均发现矿区周边土壤中的重金属浓度超过背景值,污染严重。不难发现,不同地区煤矿的开采均会给周边土壤带来不同程度的重金属污染,并且重金属元素易于在土壤中富集,自然条件下难以降解,导致其在生物体中累积,最终威胁动植物健康。因此,鉴于重金属对环境的严重污染和人体健康的危害,选择合适的治理修复技术尤为重要。
1.2 PAHs污染来源及危害
研究发现煤矿区PAHs的污染来源均与当地的煤矸石和煤燃烧有关,PAHs可通过皮肤和呼吸道等进入人体,损害人体免疫系统[20]。例如淮北典型矿区PAHs主要来源于煤和煤矸石,并且发现煤颗粒的致癌风险较高[21-22];徐州6个矿山的PAHs主要来源于原煤和煤燃烧[23]。此外,地下采矿活动和机械设备中排放或泄漏的润滑剂和乳化剂等物质也会导致PAHs进入土壤环境造成污染[24]。因此,鉴于PAHs所具有的致癌性、致畸性和诱变性[25],查清其在煤矿区的分布及来源至关重要。
研究发现马家沟废弃煤矿表层土壤中PAHs平均浓度为(170.3±99.8)ng/g[26],而淮北煤田表层土壤和煤矸石中烷基PAHs(APAHs)的浓度分别高达2835和7782 µg/kg[27],可见废弃煤田土壤污染程度要低于正在运行煤田表层土壤。马清义等对葛泉矿煤矸石周围PAHs的分布特征研究发现,随着远离煤矸石区域,样品中的饱和烃由低碳向高碳转变,PAHs在煤矸石附近的富集程度较高,表明煤矸石周围存在有机污染[28]。Xu 等[22]研究表明淮北矿区煤矸石中低环PAHs更容易分解到环境介质中,而高环PAHs在风化煤矸石中易被保留和富集。然而,煤炭生产过程中造成不同区域有机污染物的成分、浓度等千差万别。因此,通过分析矿区污染物污染程度及来源可为煤炭开采区PAHs的污染防治提供参考。
2. 煤矿矿区污染土壤修复技术
煤矿矿区周边土壤修复技术主要包括生物修复、植物修复和物理化学修复。然而不同修复手段只能去除特定的重金属或PAHs污染,并且不同修复技术各具优缺点。表1为近年不同修复技术和多修复技术联用对土壤重金属和PAHs污染修复治理的汇总,以便根据土壤的污染特征,通过选择单一或多种修复技术联用进行治理。
表 1 矿区周边土壤重金属和PAHs污染的修复技术Table 1. Remediation technologies for heavy metals and PAHs contamination of soils around mining sites修复方法 修复重金属/PAHs种类 数据来源 生物修复 枯草芽孢杆菌(Bacillus subtilis) Cr 文献[29] 高空芽孢杆菌(Bacillus altitudinis)、暹罗芽孢杆菌(Bacillus siamensis)、
戴尔福特菌属(Delftia sp.)、氧化微杆菌CM3/CM7(Microbacterium oxydans CM3/CM7)Pb 文献[30-32] 假单胞菌、微球菌、红球菌、节肢杆菌、芽孢杆菌、棒状杆菌 PAHs 文献[33-35] 植物修复 麻风树(Jatropha curcas L.) Fe、As 文献[36] 苍耳(Xantium strumarium) Pb、Cd、Ni 文献[37] 羊尾草(Setaria pumila)、狼尾草(Pennisetum sinese)、伴矿景天(Sedum plumbizincicola)、
海州香薷(Elsholtzia splendens)Cu、Cd 文献[38] 苜蓿、黑麦草、火凤凰 PAHs 文献[39-41] 物理化学修复 表层土壤覆盖 重金属 文献[42] 羟基磷灰石基黏合剂 Pb、Zn 文献[43] 热脱附技术 苯并荧蒽 文献[44-45] Fenton氧化 PAHs 文献[46] 臭氧氧化技术 菲 文献[47] 联合技术 植物-微生物联合修复技术 Cd 文献[48] 微生物-电动联合修复技术 Cd、Cu、Pb、Zn、Co、As 文献[49] 植物-电动联合修复技术 Zn、Cu、Pb、Cd 文献[50] 植物-微生物联合修复技术 苯并苝 文献[51] 2.1 生物检测与修复技术
2.1.1 土壤重金属污染的生物修复
生物修复技术主要是利用微生物自身的新陈代谢来降低土壤中重金属的浓度或抑制重金属在土壤中的活性,从而降低矿区周边土壤重金属污染(图1)。其中,修复所需的微生物通常是从煤矿污染土壤中筛选,这是由于在长期的污染环境中,微生物对重金属产生了一定的修复能力。Upadhyay等[29]从煤矿污染土壤中分离出枯草芽孢杆菌(Bacillus subtilis)菌株,发现其对Cr的抗性最强,能够将Cr6+还原成毒性较小的Cr3+,从而降低Cr6+的毒性;高空芽孢杆菌(Bacillus altitudinis)和暹罗芽孢杆菌(Bacillus siamensis)对Pb也展示出较高的耐受性[30]。Roy等[31]从露天煤矸石中分离出一种抗重金属的细菌Delftia sp.,该菌株可以促进植物的生长,进而增强植物对矿区周边土壤重金属污染的修复,特别是对Pb展示出很好的吸附效果。Wahsha等[52]开发了一种基于微生物酶活性检测的早期预警工具,该工具能够及时对重金属污染物的富集进行检测,可以有效阻止重金属进一步富集。氧化微杆菌(Microbacterium oxydans) CM3和CM7的混合培养在适宜的pH下也展现出较高的Pb生物修复能力[32]。因此采用生物修复重金属污染土壤时可借助微生物物种之间的互利共生关系。然而,鉴于微生物群落的复杂性及对环境的敏感性,采用生物修复手段时要综合考虑多种因素(例如污染物类型、污染土壤性质、气候和环境因素等)。此外,与单一处理相比,通过植物-微生物联合修复技术处理Cd污染土壤具有相对破坏性小、修复高效且对环境无二次污染等优势[48]。近年来,微生物-电动联合修复技术对Cd、Cu、Pb、Zn、Co、As等重金属污染土壤也表现出良好的修复效果[49]。
2.1.2 土壤PAHs污染的生物修复
生物修复方法在去除PAHs方面展现出较好的安全性、经济性和环境可持续性,从而引起广泛关注。早期的研究详细解释了微生物降解PAHs的生化原理和分解代谢途径[53],发现细菌最初通过双加氧酶攻击芳香环,生成顺式二氢二醇这一二羟基化中间体,之后在氧化的作用下形成环裂解酶的底物,进一步分解代谢产生三羧酸循环中间体(图2)。另外,研究发现多种微生物能够分解PAHs,包括假单胞菌、微球菌、红球菌、节肢杆菌、芽孢杆菌、棒状杆菌等[33-35]。它们可以通过自身的酶催化将PAHs转换成小分子化合物,最终将其分解为CO2、H2O和CH4等,但分解速度受到土壤pH、温度、湿度、氧化还原电位和盐度等因素的影响。然而微生物修复PAHs污染过程中可能与其他菌株发生养分竞争,影响其生物修复性能。为了刺激菌株的生长,进一步促进矿区污染土壤中高分子量PAHs的降解,则需要额外补充养分[54]。研究发现使用淀粉作为碳源不仅增加了土壤中细菌和真菌的丰度,而且显著提高了PAHs去除率[55]。同时发现使用腐殖酸不仅能够促进PAHs降解,而且还可以作为表面活性剂和碳源提高微生物活性[56]。因此,在修复矿区土壤PAHs污染时应考虑多种修复方法联合使用,不仅发挥微生物的优势,同时通过添加额外的能量物质或特定植物[57],促进微生物活性,增强对PAHs的去除能力。
图 2 PAHs氧化的微生物途径的初始步骤[53]Figure 2. Initial steps in the microbial pathways for oxidation of PAHs2.2 植物修复技术
2.2.1 土壤重金属污染的植物修复
植物修复是指利用具有较强耐受性和富集能力的特定植物对土壤污染物进行提取、吸收、转运以及分解或固定化,从而去除土壤污染的方法[58]。该方法具有成本低廉、不造成二次污染、改善景观和长期稳定等特点[59-60]。植物对土壤重金属的去除主要通过3个方面实现(图3):1)植物萃取,即植物从土壤中提取重金属,并将其转移到植物的茎叶中,以去除矿区污染区域的重金属[61];2)植物稳定,利用可耐受植物的冠层和根系稳定或吸收污染土壤中的重金属,因为植物冠层可减少粉尘扩散,而植物根系可防止因淋滤和水蚀引起的重金属迁移[62];3)植物挥发,主要是Hg在植物体内转化为毒性较小的形式,通过气孔释放到大气中[63]。麻风树(Jatropha curcas L.)可用于修复含有高浓度Fe和As的采矿土壤,经过90 d的植物修复,可使污染土中Fe和As的浓度分别下降29%和44%[36];苍耳(Xantium strumarium)叶片对Pb、Cd和Ni的吸收能力较强,且主要集中于叶子和根部[37];羊尾草(Setaria pumila)、狼尾草(Pennisetum sinese)、伴矿景天(Sedum plumbizincicola)和海州香薷(Elsholtzia splendens)4种植物均可减少土壤中Cu、Cd的生物有效性和流动性,但对不同重金属修复效果存在差异[38]。因此,植物修复虽然可以处理重金属污染土壤,但实际应用中需要根据重金属污染种类及污染程度选择不同植物进行处理。此外,研究发现植物-电动联合修复技术通过将低强度电场施加到植物生长附近的污染土壤中,可促进植物对重金属(Zn、Cu、Pb、Cd)的吸收与积累[50]。
2.2.2 土壤PAHs污染的植物修复
植物可以直接从矿区周边污染土壤中吸收PAHs污染物,也可以通过促进根际微生物的生长,间接分解PAHs[64]。利用植物本身的特性,通过降低周围环境中PAHs的流动性和生物利用度,进而限制PAHs在土壤中的迁移,阻止其进入食物链,危害人类健康[65]。研究发现牧草、紫花苜蓿、黑麦草、雀麦草、高羊茅和柳枝稷等植物对矿区周边土壤PAHs污染有较好的修复能力[39-40,51],其中苜蓿和黑麦草对PAHs的去除率高达47%。最近,火凤凰对PAHs的去除受到了关注,无论是低浓度或高浓度的PAHs污染,去除率均高于60%[41]。然而,植物修复所需周期长,植物的生长也受到多种自然条件的限制,并且矿山尾矿土壤通常盐度高,保水能力低,pH极高,有机质缺乏,对植物生长极为不利[62]。目前,利用根际微生物和真菌增强植物根对PAHs的去除也取得了不错的效果。该方法主要是通过刺激根际微生物和真菌,促使它们释放有机酸、糖、氨基酸、酚类和酶脱卤酶等对PAHs进行降解[66]。苜蓿和雀麦草单独处理虽然能降低大部分高分子量PAHs的浓度,但当添加淀粉和镰刀真菌(Fusarium sp.)菌株后,雀麦草+淀粉+Fusarium sp.菌株的组合展现出更高的PAHs去除率,特别是对苯并苝的去除率高达74.85%[51]。因此,植物和微生物的联合使用可使煤矿矿区周边土壤中PAHs得到有效去除,植物类型和菌株的组合关系也影响植物-微生物之间的相互作用,研究植物与微生物修复方法的联用可为提高矿区PAHs修复效率提供重要依据。
2.3 物理化学修复
2.3.1 土壤重金属污染的物理化学修复
物理修复方法操作简单、副作用小,在我国前期的土壤修复领域被广泛应用,主要包括土壤覆盖、客土置换、表土剥离、土壤深耕等方法[67]。表层土壤覆盖可以快速处理紧急土壤污染事故并阻止重金属的暴露[42],但其并不能真正稳定重金属,且成本较高,存在较大的环境污染隐患。鉴于矿区周边土壤污染的复杂性,其治理方案需考虑多个因素。化学修复方法主要是通过添加化学试剂固定或钝化重金属来降低其污染程度[68]。目前常用的固定剂有生物炭、过磷酸钙、石灰等[43,69]。固定化方法可以将污染土壤密封在水泥、沥青或生物炭材料中,使其化学性质更为稳定,防止污染物泄漏[70-71]。此外,多技术修复方法联用对重金属污染的去除效果较好。研究发现,生物炭和电化学修复联用可以有效修复重金属污染土壤。电化学修复可以在电场作用下定向迁移污染物[72],在电动处理过程中,重金属可能会向阴极迁移,因此在阴极和污染土壤之间填充生物炭可以吸附这些重金属,多项研究证实该方法在治理重金属污染土壤应用中是可行的[73-74]。电动-化学淋洗联合修复技术可以在短时间内去除土壤中的重金属,且不受土壤渗透性的限制[75]。采用化学-微生物联合修复攀西矿区典型重金属污染土壤,发现能够降低土壤Cd、Pb的活性,对重金属具有良好的钝化还原效果[76]。此外,采用煤矿矿区废物煤矸石与植物共同修复矿区重金属污染土壤,发现煤矸石处理抑制了Zn、Pb、Cd和Cu从尾矿向香根草的转运,能够有效降低煤矿中大多数被研究金属的流动性[77]。因此,多种修复技术联用将成为煤矿污染土壤治理的重要手段之一。
2.3.2 土壤PAHs污染的物理化学修复
目前污染土壤中处理PAHs的物理方法主要包括热脱附技术和萃取修复,化学方法主要包括Fenton氧化、臭氧氧化、光催化氧化和电化学修复。其中,热脱附技术不仅具有工艺简单、适应性强、修复速度快和二次污染小等优点,而且还具有污染物去除率高等显著优势。通过热脱附手段,土壤苯并(b)荧蒽浓度由14 600 mg/kg降至0.3 mg/kg,PAHs去除率高达96.31%[44-45],证明该方法对PAHs具有优异的修复效果。目前,萃取修复通常选择环糊精和植物油为萃取剂,特别是葵花籽油和花生油对污染土壤中PAHs的去除均展现出良好的效果[78-79],葵花籽油能够去除污染土壤中81%~100%的PAHs,花生油则对蒽的萃取率高达90%。同时土壤中剩余的植物油也能够作为微生物生长的基质,促进生物修复作用。相较于热脱附技术,萃取修复具有易操作、长效性和效果好等优点,但萃取溶液处理不干净会造成二次污染问题。化学修复中的Fenton氧化可通过添加螯合剂/高过氧化物浓度的化学物质来产生高活性的自由基,以便修复PAHs污染土壤[46],但该方法会对设备造成腐蚀。臭氧氧化技术对PAHs污染中菲的去除展现出优异的效果,菲的去除率高达89.3%[47]。光催化氧化具有反应温和及绿色环保等优点,但受限于污染土壤厚度(土壤厚度越厚,污染物降解越慢),仅能在小区域内使用。腐殖酸和TiO2以不同质量比制备的复合催化材料,在可见光和紫外光条件下对萘和菲的降解率分别为72.1%和83.8%[80]。电化学修复虽然不会破坏土壤原有的生态环境,但其并没有展现出优异的修复效果。目前,许多研究人员开始使用微生物-电动联合修复技术来提高土壤中有机污染物的修复效率[81-82]。此外,研究发现采用填埋场覆土利用和异位热脱附的联合修复模式比单一处理效果更优,具有工期短、效率高、经济性好等优点,修复后的场地有机污染物浓度均低于控制标准且对环境影响较小[83]。
目前通过物理化学方法修复煤矿矿区PAHs污染的相关研究较少,多数采用微生物及植物修复方法,今后应加强上述方法对矿区周边土壤污染治理的实践。单一的处理技术相较于多技术联用去除土壤污染物的能力较弱,且存在二次污染等问题,考虑到矿区周边土壤污染的复杂性,多技术联用处理将是未来研究的重点。
3. 结语与展望
煤矿矿区周边土壤类型多样、性质不同、影响因素众多,目前存在的生物修复、植物修复和物理化学修复等技术对于矿山环境的恢复和土壤生态的重建各有利弊。植物修复和生物修复对环境更友好,但耗时长,对气候和环境的依赖程度高;物理修复虽然有效,但成本和能耗较高;化学修复成本相对较低、见效快,但长期效果不理想。稳定性、对环境是否友好、速度和成本等是在矿区土壤修复中应考虑的关键因素。因此,需要多种修复方法联用、多手段相结合进行矿区重金属及PAHs污染土壤修复。
采用植物修复、生物修复和物理化学修复方法联用的综合技术修复矿区污染土壤具有多项优势:1)不同方法相互补充,以达到综合治理效果更好的目的;2)加快治理进程,缩短治理周期;3)减少单一修复方法的使用量,降低治理成本。不同修复方法相互协作促进土壤恢复和生态系统健康发展。
此外,在煤矿矿区土壤重金属及PAHs污染的治理修复中也应加强技术研究和实践应用。在植物修复方面,可以通过筛选适宜植物种类和改进植物栽培技术,提高植物吸收能力和转运效率;在生物修复方面,可以深入研究微生物降解机理和优化微生物降解条件,提高降解效率和降解质量;在物理化学修复方面,可以探索新型吸附材料和改进吸附剂性能,提高污染物去除率和去除质量。综合运用这些修复方法,可实现更加高效、经济和可持续的矿区土壤重金属及PAHs污染治理。
-
图 2 PAHs氧化的微生物途径的初始步骤[53]
Figure 2. Initial steps in the microbial pathways for oxidation of PAHs
表 1 矿区周边土壤重金属和PAHs污染的修复技术
Table 1 Remediation technologies for heavy metals and PAHs contamination of soils around mining sites
修复方法 修复重金属/PAHs种类 数据来源 生物修复 枯草芽孢杆菌(Bacillus subtilis) Cr 文献[29] 高空芽孢杆菌(Bacillus altitudinis)、暹罗芽孢杆菌(Bacillus siamensis)、
戴尔福特菌属(Delftia sp.)、氧化微杆菌CM3/CM7(Microbacterium oxydans CM3/CM7)Pb 文献[30-32] 假单胞菌、微球菌、红球菌、节肢杆菌、芽孢杆菌、棒状杆菌 PAHs 文献[33-35] 植物修复 麻风树(Jatropha curcas L.) Fe、As 文献[36] 苍耳(Xantium strumarium) Pb、Cd、Ni 文献[37] 羊尾草(Setaria pumila)、狼尾草(Pennisetum sinese)、伴矿景天(Sedum plumbizincicola)、
海州香薷(Elsholtzia splendens)Cu、Cd 文献[38] 苜蓿、黑麦草、火凤凰 PAHs 文献[39-41] 物理化学修复 表层土壤覆盖 重金属 文献[42] 羟基磷灰石基黏合剂 Pb、Zn 文献[43] 热脱附技术 苯并荧蒽 文献[44-45] Fenton氧化 PAHs 文献[46] 臭氧氧化技术 菲 文献[47] 联合技术 植物-微生物联合修复技术 Cd 文献[48] 微生物-电动联合修复技术 Cd、Cu、Pb、Zn、Co、As 文献[49] 植物-电动联合修复技术 Zn、Cu、Pb、Cd 文献[50] 植物-微生物联合修复技术 苯并苝 文献[51] -
[1] 周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136-146. ZHOU N, YAO Y N, SONG W J, et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136-146.
[2] XIAO X, ZHANG J X, WANG H, et al. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: a global meta-analysis[J]. Science of the Total Environment,2020,713:135292. DOI: 10.1016/j.scitotenv.2019.135292
[3] 倪碧珩, 施维林, 陈洁, 等. 某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报,2022,12(3):878-885. NI B H, SHI W L, CHEN J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site[J]. Journal of Environmental Engineering Technology,2022,12(3):878-885.
[4] 吕占禄, 张金良, 邹天森, 等. 燃煤电厂周边土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(6):720-731. LÜ Z L, ZHANG J L, ZOU T S, et al. Characteristics and evaluation of heavy metal pollution in soil around coal-fired power plants[J]. Journal of Environmental Engineering Technology,2019,9(6):720-731.
[5] 张博伦, 刘玲玲, 黄占斌, 等. 基于UNMIX模型的地质高背景地区土壤重金属源解析[J]. 环境科学研究,2023,36(2):393-402. ZHANG B L, LIU L L, HUANG Z B, et al. Source apportionment of soil heavy metal(loid)s in high geochemical background area Based on the UNMIX model[J]. Research of Environmental Sciences,2023,36(2):393-402.
[6] 沈琼, 王开颜, 张巍, 等. 北京市通州区河流悬浮物中多环芳烃的分布特征[J]. 环境科学研究,2007,20(3):58-62. SHEN Q, WANG K Y, ZHANG W, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in the suspend particle of rivers from Tongzhou District of Beijing[J]. Research of Environmental Sciences,2007,20(3):58-62.
[7] 李剑锋, 冯李霄, 陈希清, 等. 大义山东南部土壤重金属分布特征及其风险评价[J]. 环境工程技术学报,2023,13(1):287-294. LI J F, FENG L X, CHEN X Q, et al. Heavy metal distribution characteristics of soils in southeastern Dayi Mountain and its risk evaluation[J]. Journal of Environmental Engineering Technology,2023,13(1):287-294.
[8] 韩瑞杰, 任逸晨, 黄涛, 等. 包头市三类湿地中重金属污染程度及生物富集研究[J]. 环境工程,2019,37(1):29-34. HAN R J, REN Y C, HUANG T, et al. Study on pollution degree and bio-concentration of heavy metals in three types of wetlands in Baotou, China[J]. Environmental Engineering,2019,37(1):29-34.
[9] AZEEM M, ALI A, AROCKIAM JEYASUNDAR P G S, et al. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil[J]. Environmental Pollution,2021,277:116800. DOI: 10.1016/j.envpol.2021.116800
[10] RINKLEBE J, SHAHEEN S M, EL-NAGGAR A, et al. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil[J]. Environment International,2020,140:105754. DOI: 10.1016/j.envint.2020.105754
[11] ZHANG Y H, HOU D Y, O'CONNOR D, et al. Lead contamination in Chinese surface soils: source identification, spatial-temporal distribution and associated health risks[J]. Critical Reviews in Environmental Science and Technology,2019,49(15):1386-1423. DOI: 10.1080/10643389.2019.1571354
[12] 宋云, 尉黎, 王海见. 我国重金属污染土壤修复技术的发展现状及选择策略[J]. 环境保护,2014,42(9):32-36. SONG Y, YU L, WANG H J. Present situation and screening strategies of remediation technology for heavy metal contaminated soil in China[J]. Environmental Protection,2014,42(9):32-36.
[13] ZHANG K, ZHENG X H, LI H F, et al. Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical plant in northwest China[J]. Soil and Sediment Contamination:an International Journal,2020,29(5):481-502. DOI: 10.1080/15320383.2020.1746737
[14] 张嘉栋, 雷雨辰, 赵一萌, 等. 巩义煤矿区周边土壤重金属积累特征研究[J]. 有色金属材料与工程,2019(1):49-54. ZHANG J D, LEI Y C, ZHAO Y M, et al. Characteristics of heavy metal accumulation in the soil surrounding Gongyi coal mine[J]. Nonferrous Metal Materials and Engineering,2019(1):49-54.
[15] 刘旭, 郑刘根, 陈欣悦, 等. 淮南潘集矿区农田土壤重金属污染特征及在小麦中累积特征研究[J]. 环境污染与防治,2019,41(8):959-964. LIU X, ZHENG L G, CHEN X Y, et al. Study on the heavy metals pollution characteristics of agricultural soil and their accumulation characteristics in wheat in Panji mining area, Huainan[J]. Environmental Pollution and Control,2019,41(8):959-964.
[16] 李洪伟, 颜事龙, 崔龙鹏. 淮南新集矿区土壤重金属污染评价[J]. 矿业安全与环保,2008,35(1):36-37. LI H W, YAN S L, CUI L P. Evaluation of soil pollution by heavy metals in Huainan Xinji mining area[J]. Mining Safety & Environmental Protection,2008,35(1):36-37.
[17] 熊鸿斌, 胡海文, 王振祥, 等. 淮南煤矿区土壤重金属污染分布特征及污染溯源研究[J]. 合肥工业大学学报(自然科学版),2015,38(5):686-693. XIONG H B, HU H W, WANG Z X, et al. Research on distribution characteristics and pollution source of heavy metal pollution in soil in Huainan coal mining area[J]. Journal of Hefei University of Technology (Natural Science),2015,38(5):686-693.
[18] 郭旻欣. 基于GIS的淮南矿区土壤Cu、Ni、As、Zn和Cr元素空间分布特征及来源分析[D]. 合肥: 合肥工业大学, 2016. [19] 邢雅珍, 陈孝杨, 许正刚, 等. 基于文献研究的淮南煤矿区土壤重金属空间分布与污染评价[J]. 安徽农业科学,2018,46(5):77-80. XING Y Z, CHEN X Y, XU Z G, et al. The spatial distribution and pollution assessment of soil heavy metals based on literature research from coal mining areas in Huainan[J]. Journal of Anhui Agricultural Sciences,2018,46(5):77-80.
[20] JIN T S, HAN M, HAN K, et al. Health risk of ambient PM10-bound PAHs at bus stops in spring and autumn in Tianjin, China[J]. Aerosol and Air Quality Research,2018,18(7):1828-1838. DOI: 10.4209/aaqr.2017.11.0461
[21] ZHANG J M, LIU F, HUANG H, et al. Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbons in surface soils from a large-scale coal mine, Huainan, China[J]. Ecotoxicology and Environmental Safety,2020,192:110269. DOI: 10.1016/j.ecoenv.2020.110269
[22] XU D D, ZHANG X N, HONG X P, et al. Distribution pattern of polycyclic aromatic compounds in coal gangue from coal city, East China[J]. Environmental Science and Pollution Research,2023,30(20):58674-58683. DOI: 10.1007/s11356-023-25990-x
[23] CHEN D, FENG Q Y, LIANG H Q, et al. Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in underground coal mining environment of Xuzhou[J]. Human and Ecological Risk Assessment:an International Journal,2019,25(6):1564-1578. DOI: 10.1080/10807039.2018.1489715
[24] 赵文昌, 程金平, 谢海赟, 等. 环境中多环芳烃(PAHs)的来源与监测分析方法[J]. 环境科学与技术,2006,29(3):105-107. ZHAO W C, CHENG J P, XIE H Y, et al. PAHs: sources, pathway and their monitoring and analysis[J]. Environmental Science & Technology,2006,29(3):105-107.
[25] YUAN G L, WU L J, SUN Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution,2015,203:137-144. DOI: 10.1016/j.envpol.2015.04.002
[26] 孙翔, 王锋文, 郭天锋, 等. 重庆废弃煤矿区表层土壤多环芳烃污染特征及风险评价[J]. 地球与环境,2019,47(4):502-509. SUN X, WANG F W, GUO T F, et al. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in topsoil of an abandoned coal mine area in Chongqing[J]. Earth and Environment,2019,47(4):502-509.
[27] QIAN Y H, YUAN K Y, HONG X P, et al. Contamination characteristics of alkyl polycyclic aromatic hydrocarbons in dust and topsoil collected from Huaibei Coalfield, China[J]. Environmental Geochemistry and Health,2023,45(6):2935-2948. DOI: 10.1007/s10653-022-01365-y
[28] 马清义, 焦玉坤, 李新宇. 葛泉矿煤矸石山周边多环芳烃分布特征[J]. 煤炭与化工,2013,36(7):50-52. MA Q Y, JIAO Y K, LI X Y. Distribution characteristics of polycyclic aromatic hydrocarbons in Gequan coal surrounding gangue dump[J]. Coal and Chemical Industry,2013,36(7):50-52.
[29] UPADHYAY N, VISHWAKARMA K, SINGH J, et al. Tolerance and reduction of chromium(Ⅵ) by Bacillus sp. MNU16 isolated from contaminated coal mining soil[J]. Frontiers in Plant Science,2017,8:778. DOI: 10.3389/fpls.2017.00778
[30] SHYLLA L, BARIK S K, JOSHI S R. Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment[J]. Archives of Microbiology,2021,203(5):2379-2392. DOI: 10.1007/s00203-021-02218-5
[31] ROY S, ROY M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil[J]. International Journal of Phytoremediation,2019,21(6):531-540. DOI: 10.1080/15226514.2018.1537238
[32] HEIDARI P, SANAEIZADE S. Optimization and characterization of lead bioremediation by strains of Microbacterium oxydans[J]. Soil and Sediment Contamination:an International Journal,2020,29(8):901-913. DOI: 10.1080/15320383.2020.1783508
[33] LU N. Study on occurrence characteristics and natural degradation of polycyclic aromatic hydrocarbons in mined-out area of northern Shaanxi coal mine[J]. IOP Conference Series:Earth and Environmental Science,2020,510(4):042008. DOI: 10.1088/1755-1315/510/4/042008
[34] ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum,2016,25(1):107-123. DOI: 10.1016/j.ejpe.2015.03.011
[35] ALEGBELEYE O O, OPEOLU B O, JACKSON V A. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation[J]. Environmental Management,2017,60(4):758-783. DOI: 10.1007/s00267-017-0896-2
[36] GARCÍA MARTÍN J F, del CARMEN GONZÁLEZ CARO M, del CARMEN LÓPEZ BARRERA M, et al. Metal accumulation by Jatropha curcas L. adult plants grown on heavy metal-contaminated soil[J]. Plants,2020,9(4):418. DOI: 10.3390/plants9040418
[37] KHALID N, NOMAN A, AQEEL M, et al. Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides[J]. International Journal of Environmental Science and Technology,2019,16(4):2091-2100. DOI: 10.1007/s13762-018-1825-5
[38] CUI H B, LI H T, ZHANG S W, et al. Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone[J]. Chemosphere,2020,242:125252. DOI: 10.1016/j.chemosphere.2019.125252
[39] 沈源源, 滕应, 骆永明, 等. 几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J]. 土壤,2011,43(2):253-257. SHEN Y Y, TENG Y, LUO Y M, et al. Remediation efficiency of several legumes and grasses in PAH-contaminated soils[J]. Soils,2011,43(2):253-257.
[40] CHEN Y C, BANKS M K, SCHWAB A P. Pyrene degradation in the rhizosphere of tall fescue ( Festuca arundinacea) and switchgrass ( Panicum virgatum L. )[J]. Environmental Science & Technology,2003,37(24):5778-5782.
[41] DAI Y Y, LIU R, ZHOU Y M, et al. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities[J]. Environment International,2020,136:105421. DOI: 10.1016/j.envint.2019.105421
[42] LAMB D T, VENKATRAMAN K, BOLAN N, et al. Phytocapping: an alternative technology for the sustainable management of landfill sites[J]. Critical Reviews in Environmental Science and Technology,2014,44(6):561-637. DOI: 10.1080/10643389.2012.728823
[43] XIA W Y, DU Y J, LI F S, et al. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter[J]. Construction and Building Materials,2019,210:278-288. DOI: 10.1016/j.conbuildmat.2019.03.195
[44] 范宇, 徐飞. 多环芳烃污染土壤修复技术应用对比研究[J]. 建筑科技,2019,3(6):52-55. FAN Y, XU F. Restore technologies for PAHs polluted soil[J]. Build Technology,2019,3(6):52-55.
[45] 徐成华, 骆文轩, 黄涛, 等. 改性剂协同热脱附多环芳烃污染土壤效率提升研究[J]. 环境污染与防治,2023,45(4):492-498. XU C H, LUO W X, HUANG T, et al. Study on improving efficiency of synergistic thermal desorption of polycyclic aromatic hydrocarbons contaminated soil by modifiers[J]. Environmental Pollution and Control,2023,45(4):492-498.
[46] 潘玉兰. Fenton试剂氧化降解水和土壤中多环芳烃[D]. 南京: 南京农业大学, 2014. [47] TAMADONI A, QADERI F. Optimization of soil remediation by ozonation for PAHs contaminated soils[J]. Ozone:Science & Engineering,2019,41(5):454-472.
[48] 卢晋晶, 郜春花, 武雪萍, 等. 植物-微生物联合修复技术在Cd污染土壤中的研究进展[J]. 山西农业科学,2019,47(6):1115-1120. LU J J, GAO C H, WU X P, et al. Advances in plant-microbial joint repair technology in Cd contaminated soil restoration[J]. Journal of Shanxi Agricultural Sciences,2019,47(6):1115-1120.
[49] 董雪. 电动联合修复技术在重金属污染土壤中的研究进展[J]. 新疆地质,2023,41(1):98-102. DONG X. Research progress of electrokinetic combined remediation technology in heavy metal contaminated soil[J]. Xinjiang Geology,2023,41(1):98-102.
[50] 魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版),2019,43(1):154-160. WEI S H, XU L, HAN R, et al. Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J]. Journal of Nanjing Forestry University (Natural Science Edition),2019,43(1):154-160.
[51] SHI W, GUO Y J, NING G H, et al. Remediation of soil polluted with HMW-PAHs by alfalfa or brome in combination with fungi and starch[J]. Journal of Hazardous Materials,2018,360:115-121. DOI: 10.1016/j.jhazmat.2018.07.076
[52] WAHSHA M, NADIMI-GOKI M, FORNASIER F, et al. Microbial enzymes as an early warning management tool for monitoring mining site soils[J]. Catena,2017,148:40-45. DOI: 10.1016/j.catena.2016.02.021
[53] CERNIGLIA C E. Biodegradation of polycyclic aromatic hydrocarbons[J]. Current Opinion in Biotechnology,1993,4(3):331-338. DOI: 10.1016/0958-1669(93)90104-5
[54] ZHANG X X, ZHANG Y K, WANG X M, et al. Enhancement of soil high-molecular-weight polycyclic aromatic hydrocarbon degradation by Fusarium sp. ZH-H2 using different carbon sources[J]. Ecotoxicology and Environmental Safety,2023,249:114379. DOI: 10.1016/j.ecoenv.2022.114379
[55] TENG Y, LUO Y M, PING L F, et al. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil[J]. Biodegradation,2010,21(2):167-178. DOI: 10.1007/s10532-009-9291-x
[56] UKALSKA-JARUGA A, SMRECZAK B. The impact of organic matter on polycyclic aromatic hydrocarbon (PAH) availability and persistence in soils[J]. Molecules,2020,25(11):2470. DOI: 10.3390/molecules25112470
[57] TUFAIL M A, ILTAF J, ZAHEER T, et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: a review[J]. Science of the Total Environment,2022,850:157961. DOI: 10.1016/j.scitotenv.2022.157961
[58] LIU Z C, CHEN B N, WANG L, et al. A review on phytoremediation of mercury contaminated soils[J]. Journal of Hazardous Materials,2020,400:123138. DOI: 10.1016/j.jhazmat.2020.123138
[59] 王俊, 王青清, 蒋珍茂, 等. 腐殖酸对外源砷在土壤中形态转化和有效性的影响[J]. 土壤,2018,50(3):522-529. WANG J, WANG Q Q, JIANG Z M, et al. Transformation and bioavailability of exogenous as in soil as influenced by humic acids and its active components[J]. Soils,2018,50(3):522-529.
[60] DOU X K, DAI H P, SKUZA L, et al. Strong accumulation capacity of hyperaccumulator Solanum nigrum L. for low or insoluble Cd compounds in soil and its implication for phytoremediation[J]. Chemosphere,2020,260:127564. DOI: 10.1016/j.chemosphere.2020.127564
[61] WANG Z H, LIU X Y, QIN H Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China[J]. Journal of Geochemical Exploration,2019,200:159-166. DOI: 10.1016/j.gexplo.2019.02.005
[62] WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere,2017,184:594-600. DOI: 10.1016/j.chemosphere.2017.06.025
[63] LIU N H, LIAO P, ZHANG J C, et al. Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost[J]. Science of the Total Environment,2020,739:139987. DOI: 10.1016/j.scitotenv.2020.139987
[64] GAJIĆ G, DJURDJEVIĆ L, KOSTIĆ O, et al. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes[J]. Frontiers in Environmental Science,2018,6:124. DOI: 10.3389/fenvs.2018.00124
[65] MEAGHER R B. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology,2000,3(2):153-162. DOI: 10.1016/S1369-5266(99)00054-0
[66] MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances,2011,29(2):248-258. DOI: 10.1016/j.biotechadv.2010.12.001
[67] 章智明, 黄占斌, 单瑞娟, 等. 矿区重金属污染土壤修复方法的研究进展[J]. 西部资源,2012(5):79-81. ZHANG Z M, HUANG Z B, SHAN R J, et al. The research progress of remediation methods on heavy metal contaminated mining lands[J]. Resources,2012(5):79-81.
[68] SONG B, ZENG G M, GONG J L, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals[J]. Environment International,2017,105:43-55. DOI: 10.1016/j.envint.2017.05.001
[69] BEESLEY L, INNEH O S, NORTON G J, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution,2014,186:195-202. DOI: 10.1016/j.envpol.2013.11.026
[70] LI C F, ZHOU K H, QIN W Q, et al. A review on heavy metals contamination in soil: effects, sources, and remediation techniques[J]. Soil and Sediment Contamination:An International Journal,2019,28(4):380-394. DOI: 10.1080/15320383.2019.1592108
[71] WANG J X, FENG X B, ANDERSON C W N, et al. Remediation of mercury contaminated sites: a review[J]. Journal of Hazardous Materials,2012,221/222:1-18. DOI: 10.1016/j.jhazmat.2012.04.035
[72] GHOBADI R, ALTAEE A, ZHOU J L, et al. Enhanced copper removal from contaminated kaolinite soil by electrokinetic process using compost reactive filter media[J]. Journal of Hazardous Materials,2021,402:123891. DOI: 10.1016/j.jhazmat.2020.123891
[73] GHOBADI R, ALTAEE A, ZHOU J L, et al. Copper removal from contaminated soil through electrokinetic process with reactive filter media[J]. Chemosphere,2020,252:126607.
[74] LI Y L, SHAO M Y, HUANG M H, et al. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier[J]. Chemosphere,2022,286:131470. DOI: 10.1016/j.chemosphere.2021.131470
[75] 冉景, 李明, 安忠义, 等. 电动强化生物淋滤在重金属-有机复合污染土壤修复中的研究进展[J]. 安徽农学通报,2018,24(3):54-55. RAN J, LI M, AN Z Y, et al. Research progress of electro-enhanced bioleaching in remediation of co-contaminated soil[J]. Anhui Agricultural Science Bulletin,2018,24(3):54-55.
[76] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用,2021(4):1-9. DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial combined remediation technology for typical heavy metals-contaminated soils in Panxi mining region[J]. Multipurpose Utilization of Mineral Resources,2021(4):1-9.
[77] CHU Z X, WANG X M, WANG Y M, et al. Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings[J]. Environmental Earth Sciences,2020,79(3):1-14.
[78] GONG Z Q, ALEF K, WILKE B M, et al. Dissolution and removal of PAHs from a contaminated soil using sunflower oil[J]. Chemosphere,2005,58(3):291-298. DOI: 10.1016/j.chemosphere.2004.07.035
[79] PANNU J K, SINGH A, WARD O P. Vegetable oil as a contaminated soil remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil[J]. Process Biochemistry,2004,39(10):1211-1216. DOI: 10.1016/S0032-9592(03)00254-1
[80] 朱军峰, 杨宇啸, 杨乐, 等. 腐植酸对纳米TiO2催化降解土壤中萘和菲的影响[J]. 化工新型材料,2023,51(3):221-226. ZHU J F, YANG Y X, YANG L, et al. Effect of humic acid on the catalytic degradation of naphthalene and phenanthrene in soil by nano-TiO2[J]. New Chemical Materials,2023,51(3):221-226.
[81] WANG S, GUO S H, LI F M, et al. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil[J]. Scientific Reports,2016,6(1):1-13. DOI: 10.1038/s41598-016-0001-8
[82] 魏巍, 李凤梅, 杨雪莲, 等. 电动修复过程中电压对土壤中芘降解及微生物群落的影响[J]. 生态学杂志,2015,34(5):1382-1388. [83] 左文建, 胡顺磊, 段伟, 等. 基于AHP筛选的有机污染土联合修复技术案例研究[J]. 土壤,2023,55(2):390-398. ZUO W J, HU S L, DUAN W, et al. Case study of combined remediation technology for organic contaminated soils based on AHP screening[J]. Soils,2023,55(2):390-398. □
-
期刊类型引用(7)
1. 陈征,王夏娇. 我国场地土壤污染风险管控与修复技术应用差异性分析. 中国资源综合利用. 2025(01): 113-116 . 百度学术
2. 王佩,张月,赵绍林,李康彦. 华北某典型电镀厂地块土壤污染状况调查与治理策略探究. 当代化工研究. 2025(03): 115-117 . 百度学术
3. 李寒,郑刘根,张燕海,董祥林,朱亦兴,张梦云. 安徽省涡阳矿区地表水中多环芳烃的分布特征、来源解析及生态风险评价. 环境工程技术学报. 2024(04): 1299-1310 . 本站查看
4. 覃鹏,李园. 土壤污染问题和生态环境保护措施研究. 皮革制作与环保科技. 2024(14): 136-138 . 百度学术
5. 张静,周南,张盼月,王慧,张光明. 固定化微生物技术在多环芳烃污染土壤修复中的应用. 环境工程技术学报. 2024(05): 1617-1626 . 本站查看
6. 王浩,王伟,薄慧娟,张旭龙,李泽瑾,王海波,张强,靳东升. 褐煤粉尘对矿区复垦土壤有机碳矿化及细菌群落的影响. 环境工程技术学报. 2024(05): 1436-1443 . 本站查看
7. 张佳圆. 甘肃地区煤矿土壤重金属污染特征研究. 清洗世界. 2024(10): 105-107 . 百度学术
其他类型引用(3)