留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于过硫酸盐活化的高级氧化技术处理水中磺胺类药物研究进展

刘诗月 彭向天 马瑞瑞 曾萍 李娟 朱幸运

刘诗月,彭向天,马瑞瑞,等.基于过硫酸盐活化的高级氧化技术处理水中磺胺类药物研究进展[J].环境工程技术学报,2024,14(2):642-650 doi: 10.12153/j.issn.1674-991X.20230529
引用本文: 刘诗月,彭向天,马瑞瑞,等.基于过硫酸盐活化的高级氧化技术处理水中磺胺类药物研究进展[J].环境工程技术学报,2024,14(2):642-650 doi: 10.12153/j.issn.1674-991X.20230529
LIU S Y,PENG X T,MA R R,et al.Research progress of advanced oxidation technology based on persulfate activation for the treatment of sulfonamides in water[J].Journal of Environmental Engineering Technology,2024,14(2):642-650 doi: 10.12153/j.issn.1674-991X.20230529
Citation: LIU S Y,PENG X T,MA R R,et al.Research progress of advanced oxidation technology based on persulfate activation for the treatment of sulfonamides in water[J].Journal of Environmental Engineering Technology,2024,14(2):642-650 doi: 10.12153/j.issn.1674-991X.20230529

基于过硫酸盐活化的高级氧化技术处理水中磺胺类药物研究进展

doi: 10.12153/j.issn.1674-991X.20230529
基金项目: 中央级公益性科研院所基本科研业务费专项(2022YSKY-63);国家重点研发计划项目(2022YFC3203301);江西省华赣环境集团有限公司开放课题(HGKF-2020-01)
详细信息
    作者简介:

    刘诗月(1990—),女,讲师,博士,主要研究方向为水污染治理、碳排放管理,liushiyue@sut.edu.cn

    通讯作者:

    李娟(1988—),女,助理研究员,博士,主要研究方向为有毒有害物污染控制技术,lij2007@126.com

  • 中图分类号: X703

Research progress of advanced oxidation technology based on persulfate activation for the treatment of sulfonamides in water

  • 摘要:

    磺胺类药物(SAs)是水中最常被检出的抗生素之一,传统的生物处理无法对其有效降解,研发高效降解SAs的技术具有现实意义。近年来,通过活化过硫酸盐(persulfate,PS)产生硫酸根自由基($\mathrm{SO}_4^{-}\cdot $)的高级氧化技术受到了广泛关注。聚焦于PS的各种活化方法,包括热活化、紫外活化、金属离子及金属氧化物活化、碳材料活化、金属-有机骨架材料活化等,分析了不同活化方法可能的活化机理和优缺点,综述了基于过硫酸盐活化的高级氧化技术(PS-AOPs)在SAs降解中的应用,阐述了PS-AOPs降解SAs的机制。结果表明:活化PS的机制是通过活化方法使其分子结构中的O—O键断裂,从而使PS分解形成$\mathrm{SO}_4^{-}\cdot $或其他活性物质,活化方法决定了PS-AOPs降解SAs的效率。SAs的降解途径分为自由基途径与非自由基途径,其中自由基途径主要包括苯胺部分氧化、磺酰胺基团及相邻位点(C—NH—SO2—C)的裂解等,非自由基途径包括电子传递、表面活化、单线态氧(1O2)作用等。最后,提出未来研究重点应在开发稳定高效活化PS的催化剂以及使用多种处理技术协同作用基础上,加强对SAs降解机制以及含SAs实际废水的研究。

     

  • 图  1  金属离子和金属氧化物对PDS和PMS的活化机理[24]

    Figure  1.  Activation mechanism of metal ions and metal oxide for PDS and PMS

    图  2  SAs的苯胺转化途径

    Figure  2.  Aniline degradation pathways of SAs

    图  3  SAs原子编号

    Figure  3.  Atom numbering of SAs

    表  1  PMS和PDS的基本特征

    Table  1.   Basic features of PMS and PDS

    氧化剂 化学式 结构式 分子量 溶解度/(g/L) 氧化还原电位/V O—O键键长/Å O—O键键能/(kJ/mol)
    PMSHSO5114.07>2501.821.453140~213.3
    PDSH2S2O8194.13>5202.011.497140
    下载: 导出CSV

    表  2  热活化PS降解SAs的条件与效果

    Table  2.   Conditions and effects of thermally activated persulfate for the degradation of SAs

    SAs类别 SAs浓度/
    (μmol/L)
    氧化剂及
    浓度/(mmol/L)
    温度/℃ pH 反应
    时间/h
    去除率/%
    SMX[13] 30 PDS,2 50 7 8 50
    SIX[13] 30 PDS,2 50 7 8 100
    STZ[13] 30 PDS,2 50 7 8 100
    SD[14] 30 PDS,2 60 7 6 100
    SMR[14] 30 PDS,2 50 9 2 86
    SMX[15] 39 PDS,4 70 9.5 1 93
    下载: 导出CSV

    表  3  紫外活化PS降解SAs的条件与效果

    Table  3.   Conditions and effects of UV-activated PS for the degradation of SAs

    SAs类别 SAs浓度/
    (μmol/L)
    氧化剂及
    浓度/
    (mmol/L)
    紫外线
    功率/W
    紫外线
    波长/nm
    pH 反应
    时间/min
    去除
    率/%
    SD[21] 3.9 PDS,0.18 28 254 10 99.8
    SMX[22] 20 PDS,1 10 254 3 60 100
    SMZ[18] 53 PDS,0.44 15 254 7 60 100
    SMZ[19] 20 PDS,0.2 15 254 6.5 45 96.5
    SMX[20] 100 PDS,2 46 7 5 接近100
    下载: 导出CSV

    表  4  金属离子及其氧化物活化PS降解SAs的条件与效果

    Table  4.   Conditions and effects of metal ions and metal oxide-activated PS for the degradation of SAs

    SAs类别 SAs浓度/(μmol/L) 氧化剂及浓度/(mmol/L) 催化剂 pH 反应时间/min 去除率/%
    SMX[25] 10 PMS,0.1 Co2+ 3 30 62.3
    SMR[26] 100 PDS,0.4 Ag+ 3 240 85
    SMX[27] 63047 PDS,1 849 656 Fe2+ 3 30 57.3
    SD[28] 8 PMS,0.033 CuFeO2RCs 6.8 24 接近100
    SMX[29] 39 PMS,0.65 CoFe2O4 7 10 91
    SMM[30] 64 PDS,0.9 Fe3O4 6 180 88
    SDM[30] 64 PDS,100 Fe3O4 7 180 99.8
    SMX[31] 6 PDS,0.14 α-Fe2O3 6.8 180 接近100
    下载: 导出CSV

    表  5  碳材料活化PS降解SAs的条件与效果

    Table  5.   Conditions and effects of carbon material-activated PS for the degradation of SAs

    SAs类别 催化剂 催化剂
    浓度/(g/L)
    氧化剂
    及浓度/
    (mmol/L)
    pH 掺杂
    类型
    去除
    率/%
    SMX[36] 活性炭 0.1 PMS,0.5 7.2 91.2
    SMX[37] 活性炭 PMS,5 95
    SMX[38] 生物炭 0.05 PMS,4 接近100
    SMX[39] 生物炭 0.1 PDS,0.5 10 氮、硫 68.8
    SCP[41] 氧化还原
    石墨烯(RGO)
    0.2 PDS,7.39 100
    SMX[42] 碳纳米管
    (CNTs)
    0.1 PMS,1 7 Fe3C 100
    SMX[43] 石墨烯 0.5 PMS,800 3.4 91.7
    SMX[44] 石墨烯 0.05 PMS,1 6 N 99.9
    下载: 导出CSV

    表  6  MOFs材料活化PS降解SAs的条件与效果

    Table  6.   Conditions and effects of MOFs-activated PS for the degradation of SAs

    SAs类别 催化剂 催化剂浓度/(g/L) 氧化剂及浓度/(mmol/L) pH 改性类型 去除率/%
    SMZ[49] MIL-10(Cr) 0.15 PDS,10 6.0 80
    SMX[50] MIL/PDA 0.1 PDS,4 79.2
    SMX[51] Fe-MOFs-2 1 PDS,3.7 3 调节剂 91.95
    SMT[52] DMOFS 0.1 PMS,1 10 高温碳化 提高1.8倍
    SMX[53] MnOx@NC 0.05 PMS,0.55 5.2 氮掺杂、碳化 72.9
    SMX[54] Co-NC-C 0.1 PMS,0.74 7 碳化 接近100
    SMX[55] CuFe2O4/Fe2O3 0.2 PMS,6 3.4 双金属、碳化 99.7
    下载: 导出CSV

    表  7  PS-AOPs在降解SAs过程中的主要活性物种

    Table  7.   Main active species in the degradation of SAs by PS-AOPs

    SAs类别 氧化剂 活化方法 起主要作用的活性氧剂
    SMX[28] PMS CoFe2O4 ·OH、1O2
    SMX[38] PMS 氮掺杂碳材料 $\mathrm{SO}_4^{-}\cdot $、1O2
    SMZ[48] PDS MIL-101(Cr) $\mathrm{SO}_4^{-}\cdot $
    SMX[53] PMS MOFs衍生碳材料 $\mathrm{SO}_4^{-}\cdot $、1O2、$\mathrm{O}_2^{-} \cdot$
    下载: 导出CSV
  • [1] 卿叶, 李红芳, 张苗苗, 等. 养猪废水中磺胺嘧啶对湿地底泥中氮转化微生物及过程影响[J]. 环境科学研究,2021,34(9):2191-2199.

    QING Y, LI H F, ZHANG M M, et al. Effects of sulfadiazine in swine wastewater on microorganisms and nitrogen transformation processes in wetland sediment[J]. Research of Environmental Sciences,2021,34(9):2191-2199.
    [2] 陈宇, 许亚南, 庞燕. 抗生素赋存、来源及风险评估研究进展[J]. 环境工程技术学报,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180

    CHEN Y, XU Y N, PANG Y. Advances in research on the occurrence, source and risk assessment of antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180
    [3] 刘四光, 张乐蒙, 黄智伟, 等. 闽江河口区水体抗生素污染特征及风险评价[J]. 渔业研究,2022,44(5):426-443.

    LIU S G, ZHANG L M, HUANG Z W, et al. Characteristics and risk assessment of antibiotic pollution in Minjiang River Estuary[J]. Journal of Fisheries Research,2022,44(5):426-443.
    [4] 宋炜, 张敬轩, 马晓斐, 等. 农村养殖场及其周边土壤中抗生素残留与风险评估[J]. 河北省科学院学报,2022,39(6):42-49. doi: 10.3969/j.issn.1001-9383.2022.6.hbskxyxb202206008

    SONG W, ZHANG J X, MA X F, et al. Determination and risk assessment of antibiotics in rural farms and surrounding soils[J]. Journal of the Hebei Academy of Sciences,2022,39(6):42-49. doi: 10.3969/j.issn.1001-9383.2022.6.hbskxyxb202206008
    [5] HAMMESFAHR U, HEUER H, MANZKE B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils[J]. Soil Biology and Biochemistry,2008,40(7):1583-1591. doi: 10.1016/j.soilbio.2008.01.010
    [6] 齐亚兵, 张思敬, 孟晓荣, 等. 抗生素废水处理技术现状及研究进展[J]. 应用化工,2021,50(9):2587-2593. doi: 10.3969/j.issn.1671-3206.2021.09.054

    QI Y B, ZHANG S J, MENG X R, et al. The present situation and research progress of antibiotic wastewater treatment technology[J]. Applied Chemical Industry,2021,50(9):2587-2593. doi: 10.3969/j.issn.1671-3206.2021.09.054
    [7] GAO Y Q, GAO N Y, CHU W H, et al. UV-activated persulfate oxidation of sulfamethoxypyridazine: kinetics, degradation pathways and impact on DBP formation during subsequent chlorination[J]. Chemical Engineering Journal,2019,370:706-715. doi: 10.1016/j.cej.2019.03.237
    [8] 许若梦, 吴桐, 锁瑞娟, 等. 基于不同自由基的高级氧化技术对水中诺氟沙星的去除效果[J]. 环境工程技术学报,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177

    XU R M, WU T, SUO R J, et al. Removal performance of norfloxacin from waters by advanced oxidation processes based on different free radicals[J]. Journal of Environmental Engineering Technology,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
    [9] ZHAO Q, GUO W Q, LUO H C, et al. Insights into removal of sulfonamides in anaerobic activated sludge system: mechanisms, degradation pathways and stress responses[J]. Journal of Hazardous Materials,2022,423:127248. doi: 10.1016/j.jhazmat.2021.127248
    [10] 代朝猛, 刘仟, 段艳平, 等. 活化过一硫酸盐技术降解环境有机污染物的研究进展[J]. 环境科学研究,2022,35(1):141-149.

    DAI C M, LIU Q, DUAN Y P, et al. Activation of peroxymonosulfate for environmental organic pollutants degradation: a review[J]. Research of Environmental Sciences,2022,35(1):141-149.
    [11] BLASIOLI S, MARTUCCI A, PAUL G, et al. Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host–guest interactions by a combined structural, spectroscopic, and computational approach[J]. Journal of Colloid and Interface Science,2014,419:148-159. doi: 10.1016/j.jcis.2013.12.039
    [12] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal,2018,334:1502-1517. doi: 10.1016/j.cej.2017.11.059
    [13] ZHOU L, YANG X R, JI Y F, et al. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: the role of five-membered heterocyclic rings[J]. Science of the Total Environment,2019,692:201-208. doi: 10.1016/j.scitotenv.2019.07.259
    [14] FAN Y, JI Y F, KONG D Y, et al. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J]. Journal of Hazardous Materials,2015,300:39-47. doi: 10.1016/j.jhazmat.2015.06.058
    [15] MILH H, CABOOTER D, DEWIL R. Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation: radical identification and elucidation of the degradation mechanism[J]. Chemical Engineering Journal,2021,422:130457. doi: 10.1016/j.cej.2021.130457
    [16] HERRMANN H. On the photolysis of simple anions and neutral molecules as sources of O/OH, ${\mathrm{SO}}_x^- $ and Cl in aqueous solution[J]. Physical Chemistry Chemical Physics,2007,9(30):3935-3964. doi: 10.1039/B618565G
    [17] CUI C Z, JIN L, JIANG L, et al. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate[J]. Science of the Total Environment,2016,572:244-251. doi: 10.1016/j.scitotenv.2016.07.183
    [18] ACOSTA-RANGEL A, SÁNCHEZ-POLO M, POLO A M S, et al. Sulfonamides degradation assisted by UV, UV/H2O2 and UV/K2S2O8: efficiency, mechanism and byproducts cytotoxicity[J]. Journal of Environmental Management,2018,225:224-231.
    [19] GAO Y Q, GAO N Y, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal,2012,195/196:248-253. doi: 10.1016/j.cej.2012.04.084
    [20] ZHANG Y Y, LI L Y, PAN Z H, et al. Degradation of sulfamethoxazole by UV/persulfate in different water samples: influential factors, transformation products and toxicity[J]. Chemical Engineering Journal,2020,379:122354. doi: 10.1016/j.cej.2019.122354
    [21] PRIYANKA YADAV M S, NEGHI N, KUMAR M, et al. Photocatalytic-oxidation and photo-persulfate-oxidation of sulfadiazine in a laboratory-scale reactor: analysis of catalyst support, oxidant dosage, removal-rate and degradation pathway[J]. Journal of Environmental Management,2018,222:164-173.
    [22] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate[J]. Water Research,2017,118:196-207. doi: 10.1016/j.watres.2017.03.054
    [23] BALL D L, EDWARDS J O. The kinetics and mechanism of the decomposition of Caro's acid. Ⅰ[J]. Journal of the American Chemical Society,1956,78(6):1125-1129. doi: 10.1021/ja01587a011
    [24] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology,2003,37(20):4790-4797.
    [25] 刘桂芳, 管威霆, 张玉平, 等. Co2+活化过硫酸盐降解水中的磺胺甲噁唑[J]. 高校化学工程学报,2022,36(2):268-275. doi: 10.3969/j.issn.1003-9015.2022.02.015

    LIU G F, GUAN W T, ZHANG Y P, et al. Degradation of sulfamethoxazole in aqueous solution by cobaltous activated peroxymonosulfate[J]. Journal of Chemical Engineering of Chinese Universities,2022,36(2):268-275. doi: 10.3969/j.issn.1003-9015.2022.02.015
    [26] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology,2004,38(13):3705-3712.
    [27] 杜杰. Fe2+-过硫酸盐体系氧化水中磺胺类物质的研究[D]. 大连: 大连理工大学, 2022.
    [28] OYEKUNLE D T, GENDY E A, IFTHIKAR J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review[J]. Chemical Engineering Journal,2022,437:135277. doi: 10.1016/j.cej.2022.135277
    [29] FENG Y, WU D L, DENG Y, et al. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms[J]. Environmental Science & Technology,2016,50(6):3119-3127.
    [30] 李英豪. 铁钴氧化物活化过硫酸盐降解磺胺甲噁唑的研究[D]. 昆明: 昆明理工大学, 2022.
    [31] FENG Y, LIAO C Z, LI H K, et al. Cu2O-promoted degradation of sulfamethoxazole by α-Fe2O3-catalyzed peroxymonosulfate under circumneutral conditions: synergistic effect, Cu/Fe ratios, and mechanisms[J]. Environmental Technology, 2018, 39(1): 1-11.
    [32] DEVI P, DAS U, DALAI A K. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of the Total Environment,2016,571:643-657. doi: 10.1016/j.scitotenv.2016.07.032
    [33] KARTHIKEYAN S, BOOPATHY R, SEKARAN G. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater[J]. Journal of Colloid and Interface Science,2015,448:163-174. doi: 10.1016/j.jcis.2015.01.066
    [34] DUAN X G, SUN H Q, KANG J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. ACS Catalysis,2015,5(8):4629-4636. doi: 10.1021/acscatal.5b00774
    [35] JANS U, HOIGNÉ J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals[J]. Ozone:Science & Engineering,1998,20(2):175.
    [36] LIANG J, XU X Y, QAMAR ZAMAN W, et al. Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: roles of radicals in solution or solid phase[J]. Chemical Engineering Journal,2019,375:121908. doi: 10.1016/j.cej.2019.121908
    [37] SONG H R, YAN L X, JIANG J, et al. Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes[J]. Chemical Engineering Journal,2018,344:12-20. doi: 10.1016/j.cej.2018.03.050
    [38] QI Y F, GE B X, ZHANG Y Q, et al. Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: role of graphitic N and radicals transformation[J]. Journal of Hazardous Materials,2020,399:123039. doi: 10.1016/j.jhazmat.2020.123039
    [39] GUAN C T, JIANG J, PANG S Y, et al. Nonradical transformation of sulfamethoxazole by carbon nanotube activated peroxydisulfate: kinetics, mechanism and product toxicity[J]. Chemical Engineering Journal,2019,378:122147. doi: 10.1016/j.cej.2019.122147
    [40] WANG S Z, WANG J L. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole: modulation of degradation mechanism by calcination temperature[J]. Journal of Hazardous Materials,2021,418:126309. doi: 10.1016/j.jhazmat.2021.126309
    [41] KANG J, DUAN X G, ZHOU L, et al. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions[J]. Chemical Engineering Journal,2016,288:399-405. doi: 10.1016/j.cej.2015.12.040
    [42] SHANG Y N, CHEN C, ZHANG P, et al. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process[J]. Chemical Engineering Journal,2019,375:122004. doi: 10.1016/j.cej.2019.122004
    [43] WANG S Z, XU L J, WANG J L. Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2019,375:122041. doi: 10.1016/j.cej.2019.122041
    [44] CHEN H, CARROLL K C. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene[J]. Environmental Pollution,2016,215:96-102. doi: 10.1016/j.envpol.2016.04.088
    [45] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [46] WANG B, LV X L, FENG D W, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society,2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663
    [47] WANG Y R, CHU W. Degradation of a xanthene dye by Fe(Ⅱ)-mediated activation of Oxone process[J]. Journal of Hazardous Materials,2011,186(2/3):1455-1461.
    [48] PU M J, NIU J F, BRUSSEAU M L, et al. Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole[J]. Chemical Engineering Journal,2020,394:125044. doi: 10.1016/j.cej.2020.125044
    [49] HUANG X L, HU Q, GAO L, et al. Adsorption characteristics of metal-organic framework MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration[J]. RSC Advances,2018,8(49):27623-27630. doi: 10.1039/C8RA04789H
    [50] HOU J, WAN J Q, YAN Z C, et al. A novel polydopamine-modified metal organic frameworks catalyst with enhanced catalytic performance for efficient degradation of sulfamethoxazole in wastewater[J]. Chemosphere, 2022, 297: 134100.
    [51] SUN J, WAN J Q, WANG Y, et al. Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole: design, degradation pathways, and mechanism[J]. Journal of Hazardous Materials,2022,429:128299. doi: 10.1016/j.jhazmat.2022.128299
    [52] YANG Q, CHEN D, CHU L B, et al. Enhancement of ionizing radiation-induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe-based MOFs[J]. Journal of Hazardous Materials,2020,389:122148. doi: 10.1016/j.jhazmat.2020.122148
    [53] ZHAO Y, ZHAN X H, SUN Y P, et al. MnO x @N-doped carbon nanosheets derived from Mn-MOFs and g-C3N4 for peroxymonosulfate activation: electron-rich Mn center induced by N doping[J]. Chemosphere,2023,310:136937. doi: 10.1016/j.chemosphere.2022.136937
    [54] LIU H, HE Z L, WANG S G, et al. CoZn-ZIF and melamine co-derived double carbon layer matrix supported highly dispersed and exposed Co nanoparticles for efficient degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2023,469:144054. doi: 10.1016/j.cej.2023.144054
    [55] HU T, DENG F X, FENG H P, et al. Fe/Co bimetallic nanoparticles embedded in MOF-derived nitrogen-doped porous carbon rods as efficient heterogeneous electro-Fenton catalysts for degradation of organic pollutants[J]. Applied Materials Today,2021,24:101161. doi: 10.1016/j.apmt.2021.101161
    [56] LIANG P, ZHANG C, DUAN X G, et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate[J]. Environmental Science:Nano,2017,4(2):315-324. doi: 10.1039/C6EN00633G
    [57] WEI Y, SU H R, ZHANG Y W, et al. Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: a vacancy induced mechanism[J]. Chemical Engineering Journal,2019,375:121971. doi: 10.1016/j.cej.2019.121971
    [58] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B:Environmental,2009,85(3/4):171-179.
    [59] YU H, CHEN J W, XIE H B, et al. Ferrate(Ⅵ) initiated oxidative degradation mechanisms clarified by DFT calculations: a case for sulfamethoxazole[J]. Environmental Science Processes & Impacts,2017,19(3):370-378.
    [60] GE P, YU H, CHEN J W, et al. Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: a DFT study[J]. Chemosphere,2018,197:569-575. doi: 10.1016/j.chemosphere.2018.01.041
    [61] SHAD A, LI C G, ZUO J L, et al. Understanding the ozonated degradation of sulfadimethoxine, exploration of reaction site, and classification of degradation products[J]. Chemosphere,2018,212:228-236. doi: 10.1016/j.chemosphere.2018.08.050
    [62] CRIQUET J, LEITNER N K V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis[J]. Chemosphere,2009,77(2):194-200. doi: 10.1016/j.chemosphere.2009.07.040
    [63] YIN R L, GUO W Q, WANG H Z, et al. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms[J]. Chemical Engineering Journal,2018,334:2539-2546. doi: 10.1016/j.cej.2017.11.174
    [64] YIN R L, GUO W Q, REN N Q, et al. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water[J]. Water Research,2020,171:115374. doi: 10.1016/j.watres.2019.115374
    [65] LEE H, KIM H I, WEON S, et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds[J]. Environmental Science & Technology,2016,50(18):10134-10142.
    [66] LEE H, LEE H J, JEONG J, et al. Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism[J]. Chemical Engineering Journal,2015,266:28-33. doi: 10.1016/j.cej.2014.12.065
    [67] LI J C, ZHAO L, FENG M B, et al. Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: a critical review[J]. Water Research,2021,202:117463. ◇ doi: 10.1016/j.watres.2021.117463
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  69
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 录用日期:  2023-12-29
  • 修回日期:  2023-10-22

目录

    /

    返回文章
    返回