Comparison of effect and cost of five-compartment purification tank reactor and three-compartment septic tank in domestic sewage treatment
-
摘要:
针对三格式化粪池(TcST)出水COD及氮、磷浓度高,直排或溢流造成当地局部水体污染或黑臭的问题,构建了等容积五格式净粪池(FcPTR),并以实际生活污水为处理对象,对比研究2种反应器的运行特性和单位污染物去除成本。结果表明:FcPTR连续运行120 d,出水COD平均值为74 mg/L,TN、$ {\rm {NH}}_4^+ {\text{-N}}$、TP平均浓度分别为26、20、1.6 mg/L,在我国进水水质相似的农村地区使用时,可满足11个省(区、市)发布的农村生活污水处理设施水污染排放地方标准二级水质要求。厌氧折流区、好氧区填料与污泥上变形菌门(Proteobacteria)的生长代谢促进了含氮和含磷物质的去除。相比于TcST,FcPTR明显增强了系统对有机物的降解和脱氮除磷效果,提高了系统的抗冲击负荷能力。经成本核算,在设计容积和运行场景相同时运行10年,FcPTR削减1 kg COD、1 kg $ {\rm {NH}}_4^+ {\text{-N}}$的成本均比TcST降低19.8%。
Abstract:Three-compartment septic tank (TcST) with high concentrations of effluent COD, nitrogen and phosphorus would cause local water pollution or black odor when tailwater was directly discharged or overflowed. In view of the above problems, an equal-volume five-compartment purification tank reactor (FcPTR) was constructed and, taking actual domestic sewage as the treatment object, the operating characteristics and unit pollutant removal cost were compared and analyzed. The results revealed that when FcPTR operated continuously for 120 days, average concentrations of effluent COD, TN, $ {\rm {NH}}_4^+ {\text{-N}}$, TP were 74, 26, 20, and 1.6 mg/L, respectively, which could reach Class Ⅱ of local standards for water pollutants discharge from rural domestic facilities that had been issued by 11 provinces (autonomous region, municipality directly under the Central Government) in China when applied in rural areas where the quality of the influent water was similar. The removal of nitrogenous and phosphorus-containing materials was promoted by the growth and metabolism of Proteobacteria on the filler and sludge in the anaerobic baffle zone and aerobic zone. Compared with TcST, FcPTR could significantly enhance the degradation of organic matter and denitrification and phosphorus removal, and improve the shock load resistance. According to cost accounting, when operating for 10 years with the same design volumes and operating scenarios, FcPTR could reduce the cost of 1 kg COD and 1 kg $ {\rm {NH}}_4^+ {\text{-N}}$ removal both by 19.8% compared with TcST.
-
图 5 FcPTR厌氧折流区和好氧区在微生物群落菌门水平上微生物群落分布
注:编号1、2分别为运行至第72天和第120天厌氧折流区的污泥样品;编号3、4分别为运行至第72天和第120天好氧区的污泥样品;编号5、6分别为运行至第72天和第120天厌氧折流区的填料样品;编号7、8分别为运行至第72天和第120天好氧区的填料样品。
Figure 5. Distribution of microbial communities at the level of microbial community phylum in anaerobic baffled zone and aerobic zone of FcPTR
表 1 PU填料和火山岩填料特性
Table 1. Characteristics of PU filler and volcanic rock filler
填料 规格/mm 孔隙率/% 比表面积 吸水性/% 填充率/% PU 30×30×30 96~99 ≥18 000 m2/m3 200 40 火山岩 直径为8 65 12 m2/kg 65 80 表 2 试验进水水质
Table 2. Parameters of test influent water quality
pH COD/
(mg/L)$ {\rm {NH}}_4^+ {\text{-N}}$浓度/
(mg/L)TP浓度/
(mg/L)TN浓度/
(mg/L)6.67~7.32 135~314 44~77 3.0~5.5 51~88 表 3 FcPTR和TcST不同阶段的试验运行参数
Table 3. Test operation parameters at different stages of FcPTR and TcST
阶段 时间 DO浓度/(mg/L) HRT/h 水温/℃ Ⅰ 第1~72天 1.8 36 26 Ⅱ 第73~120天 1.8 24 26 表 4 不同运行阶段FcPTR厌氧折流区和TcST厌氧区总磷去除效果
Table 4. Total phosphorus treatment in the anaerobic baffled zone of FcPTR and anaerobic zone of TcST at different operation stages
运行阶段 进水TP浓度/
(mg/L)反应器 厌氧区 出水TP浓度/
(mg/L)释磷量/
(mg/L)Ⅰ 3.0±0.4 TcST 16.0±1.6 13.0±1.2 FcPTR 16.7±0.9 13.7±0.5 Ⅱ 3.2±0.2 TcST 15.8±1.4 12.6±1.2 FcPTR 15.3±1.3 12.1±1.1 表 5 不同运行阶段FcPTR各单元对TP的去除效果
Table 5. TP removal in each unit of FcPTR at different operation stages
运行阶段 厌氧折流区 好氧区 缺氧过滤区 出水TP浓度/(mg/L) 释磷量/(mg/L) 出水TP浓度/(mg/L) 去除率/% 出水TP浓度/(mg/L) 去除率/% Ⅰ 16.7±0.9 13.8±0.6 2.8±0.5 80 1.5±0.3 46 Ⅱ 15.33±1.3 12.1±1.1 2.6±0.3 79 2.0±0.2 23 表 6 FcPTR和TcST年运行成本分析
Table 6. Annual cost analysis of FcPTR and TcST operation
反应器 费用类型 单价 数量 金额/元 FcPTR 抽排 50.00元/次 2次/a 100.00 用工 132.00元/d 1 d/a 132.00 填料更换 200.00元/次 1次/a 200.00 电费 0.28元/m3 262.8 m3/a 73.58 设备维护 200.00元/次 0.3次/a 60.00 合计 565.58 TcST 抽排 50.00元/次 5次/a 250.00 用工 132.00元/d 2.5 d/a 330.00 管网维护 230.00元/次 0.5次/a 115.00 集中处理 0.70元/m3 262.8 m3/a 183.96 合计 878.96 表 7 FcPTR和TcST单位COD去除成本
Table 7. Removal costs of FcPTR and TcST per unit COD
反应器 进水COD/(mg/L) 出水COD/(mg/L) 10年COD削减量/kg 建设成本/元 年运行成本/元 10年总成本/元 COD去除成本/(元/kg) FcPTR 225 100 328.5 3 050.00 565.58 8 705.80 26.50 TcST 225 100 328.5 2 067.60 878.96 10 857.20 33.05 表 8 FcPTR和TcST单位$ {\rm {NH}}_4^+ {\text{-N}}$去除成本
Table 8. Removal costs of FcPTR and TcST per unit $ {\rm {NH}}_4^+ {\text{-N}}$
反应器 进水$ {\rm {NH}}_4^+ {\text{-N}}$浓度/
(mg/L)出水$ {\rm {NH}}_4^+ {\text{-N}}$浓度/
(mg/L)10年$ {\rm {NH}}_4^+ {\text{-N}}$
削减量/kg建设成本/元 年运行成本/元 10年总成本/元 $ {\rm {NH}}_4^+ {\text{-N}}$去除
成本/(元/kg)FcPTR 60 25 92.0 3 050.00 565.58 8 705.80 94.63 TcST 60 25 92.0 2 067.60 878.96 10 857.20 118.01 -
[1] 宁辉龙. 农村面源污染综合防治研究[J]. 中国资源综合利用,2021,39(10):190-192.NING H L. Research on comprehensive prevention and control of rural non-point source pollution[J]. China Resources Comprehensive Utilization,2021,39(10):190-192. [2] 林龚华. 福建省农户“厕所革命” 的调查与思考[J]. 当代农村财经,2019(6):23-25. [3] 曾琰婷. 基于环境安全与资源化利用的化粪贮存系统优化[D]. 重庆: 重庆大学, 2021. [4] 王玉华, 方颖, 焦隽. 江苏农村“三格式” 化粪池污水处理效果评价[J]. 生态与农村环境学报,2008,24(2):80-83.WANG Y H, FANG Y, JIAO J. Evaluation of night soil treatment efficiency of "three-grille-mode" septic tanks in the rural area of Jiangsu[J]. Journal of Ecology and Rural Environment,2008,24(2):80-83. [5] 鲁秀国, 黄林长, 方向波, 等. 农村环境生活污水处理工程初步设计: 以江西省九江市经济技术开发区永安乡为例[C]//2015年水资源生态保护与水污染控制研讨会论文集. 北京: 中国环境科学学会, 2016: 4498-4504. [6] LI J, YU R X. A study on villages of the planning of water infrastructure planning: 25 villages in Shaanxi Province as an example[J]. Journal of Water Supply:Research and Technology-Aqua,2023,72(1):19-31. doi: 10.2166/aqua.2022.037 [7] SANTIAGO-DÍAZ Á L, GARCÍA-ALBORTANTE J, SALAZAR-PELÁEZ M L. UASB-septic tank as an alternative for decentralized wastewater treatment in Mexico[J]. Environmental Technology,2019,40(14):1780-1792. doi: 10.1080/09593330.2018.1430170 [8] 敬双怡, 于治豪, 朱浩君, 等. AF-SMBBR组合工艺处理制浆废水中试试验研究[J]. 中国造纸,2017,36(7):25-30.JING S Y, YU Z H, ZHU H J, et al. Pilot experiment of pulping effluent treatment by using AF-SMBBR combined process[J]. China Pulp & Paper,2017,36(7):25-30. [9] 吴沛, 姚以亮. 厌氧反应器处理低浓度废水的研究进展[J]. 内蒙古科技与经济,2012(19):93-95. [10] HAN W, YUE Q Y, WU S Q, et al. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment[J]. Bioresource Technology,2013,137:171-178. doi: 10.1016/j.biortech.2013.03.124 [11] YANG X J, TONG Y M, SONG Y, et al. Domestic sewage and secondary effluent treatment using vertical submerged biological filter[J]. IOP Conference Series:Earth and Environmental Science,2017,82:012067. doi: 10.1088/1755-1315/82/1/012067 [12] 杨垒, 李晓彤, 任勇翔, 等. 基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性[J]. 环境科学研究,2022,35(7):1615-1624.YANG L, LI X T, REN Y X, et al. Analysis of DOM transformation in polluted urban rivers by anaerobic biofilter based on EEM-PARAFAC[J]. Research of Environmental Sciences,2022,35(7):1615-1624. [13] JO Y, KIM J, LEE C. Continuous treatment of dairy effluent in a downflow anaerobic filter packed with slag grains: reactor performance and kinetics[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,68:147-152. doi: 10.1016/j.jtice.2016.08.021 [14] LADU J L C, LÜ X W. Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater[J]. Water Science and Engineering,2014,7(2):168-182. [15] LEÓN-BECERRIL E, GARCÍA-CAMACHO J E, del REAL-OLVERA J, et al. Performance of an upflow anaerobic filter in the treatment of cold meat industry wastewater[J]. Process Safety and Environmental Protection,2016,102:385-391. doi: 10.1016/j.psep.2016.04.016 [16] BARBER W P, STUCKEY D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review[J]. Water Research,1999,33(7):1559-1578. doi: 10.1016/S0043-1354(98)00371-6 [17] WANG J L, HUANG Y H, ZHAO X. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology,2004,93(2):205-208. doi: 10.1016/j.biortech.2003.06.004 [18] GOPALA KRISHNA G V, KUMAR P, KUMAR P. Treatment of low strength complex wastewater using an anaerobic baffled reactor (ABR)[J]. Bioresource Technology,2008,99(17):8193-8200. doi: 10.1016/j.biortech.2008.03.016 [19] 马金霞, 张堃, 傅大放, 等. 聚氨酯填料复合式动态膜反应器脱氮性能研究[J]. 环境工程,2014,32(1):42-45.MA J X, ZHANG K, FU D F, et al. Study on nitrogen removal performance of hybrid dynamic membrane bioreactor with polyurethane carrier materials[J]. Environmental Engineering,2014,32(1):42-45. [20] JOTHI K J, BALACHANDRAN S, MOHANRAJ K, et al. Fabrications of hybrid Polyurethane-Pd doped ZrO2 smart carriers for self-healing high corrosion protective coatings[J]. Environmental Research,2022,211:113095. doi: 10.1016/j.envres.2022.113095 [21] 彭剑峰, 宋永会, 高红杰, 等. 不同填料曝气生物滤池对河水的净化效能[J]. 环境工程技术学报,2011,1(4):339-343.PENG J F, SONG Y H, GAO H J, et al. Purification effect of biological aerated filter stuffed with different stuffing for river water[J]. Journal of Environmental Engineering Technology,2011,1(4):339-343. [22] 杨延梅, 罗勇, 谭伟, 等. 五格式净粪池(FcPTR)启动特性研究[J]. 环境工程技术学报,2023,13(1):255-261.YANG Y M, LUO Y, TAN W, et al. Study on the start-up characteristics of five-compartment purification tank reactor(FcPTR)[J]. Journal of Environmental Engineering Technology,2023,13(1):255-261. [23] ZHANG J T, FAN C Z, ZHAO M, et al. A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal[J]. Chemosphere,2023,313:137474. doi: 10.1016/j.chemosphere.2022.137474 [24] 李军, 关琳琳, 王诗白, 等. HABR系统实现固相异养与单质硫自养集成反硝化试验[J]. 环境科学研究,2014,27(3):314-320.LI J, GUAN L L, WANG S B, et al. Solid-phase heterotrophic denitrification and sulfur autotrophic denitrification combined process in HABR system[J]. Research of Environmental Sciences,2014,27(3):314-320. [25] 徐越群, 冯婧, 冯博, 等. 强制内循环厌氧反应器对生活污水处理效果研究[J]. 人民黄河,2022,44(2):112-115.XU Y Q, FENG J, FENG B, et al. Study on treatment effect of domestic sewage by forced internal circulation anaerobic reactor[J]. Yellow River,2022,44(2):112-115. [26] 闫苗苗, 张海涵, 钊珍芳, 等. 生物脱氮技术中好氧反硝化细菌的代谢及应用研究进展[J]. 环境科学研究,2020,33(3):668-676.YAN M M, ZHANG H H, ZHAO Z F, et al. Research progress of metabolism and application of aerobic denitrifying bacteria in biological denitrification technology[J]. Research of Environmental Sciences,2020,33(3):668-676. [27] LU X J, WAN Y L, ZHONG Z X, et al. Integrating sulfur, iron(Ⅱ), and fixed organic carbon for mixotrophic denitrification in a composite filter bed reactor for decentralized wastewater treatment: performance and microbial community[J]. Science of the Total Environment,2021,795:148825. [28] ONG Y H, CHUA A S M, FUKUSHIMA T, et al. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus 'Accumulibacter phosphatis'[J]. Water Research,2014,64:102-112. [29] FAN Z W, ZENG W, MENG Q G, et al. Achieving enhanced biological phosphorus removal utilizing waste activated sludge as sole carbon source and simultaneous sludge reduction in sequencing batch reactor[J]. Science of the Total Environment,2021,799:149291. [30] 李云, 夏训峰, 陈盛, 等. 我国农村生活污水处理地方标准现状、问题及对策建议[J]. 环境工程技术学报,2022,12(1):293-300.LI Y, XIA X F, CHEN S, et al. Local standards for domestic wastewater treatment in rural areas of China: current situation, problems and suggestion[J]. Journal of Environmental Engineering Technology,2022,12(1):293-300. [31] 赵林林, 王海燕, 杨慧芬, 等. PCR-DGGE研究臭氧耦合ASBR/SBR控氮磷污泥减量化工艺中的细菌多样性[J]. 环境工程技术学报,2011,1(2):123-130.ZHAO L L, WANG H Y, YANG H F, et al. Bacterial diversity of the combined ozonation-ASBR/SBR sludge reduction with simultaneous nitrogen and phosphorus removal process using PCR-DGGE[J]. Journal of Environmental Engineering Technology,2011,1(2):123-130. [32] BOWMAN D D. Introduction to the alpha-proteobacteria: Wolbachia and Bartonella, Rickettsia, Brucella, Ehrlichia, and Anaplasma[J]. Topics in Companion Animal Medicine,2011,26(4):173-177. [33] MATHIEU L, BOUTELEUX C, FASS S, et al. Reversible shift in the alpha-, beta- and gamma-proteobacteria populations of drinking water biofilms during discontinuous chlorination[J]. Water Research,2009,43(14):3375-3386. [34] YA T, DU S, LI Z Y, et al. Successional dynamics of molecular ecological network of anammox microbial communities under elevated salinity[J]. Water Research,2021,188:116540. [35] NEWTON R J, JONES S E, EILER A, et al. A guide to the natural history of freshwater lake bacteria[J]. Microbiology and Molecular Biology Reviews:MMBR,2011,75(1):14-49. [36] LIU C X, DONG Y H, HOU L Y, et al. Acidobacteria community responses to nitrogen dose and form in Chinese fir plantations in southern China[J]. Current Microbiology,2017,74(3):396-403. [37] 周琨, 冉毅, 吴进, 等. “沼改厕” 推广模式的实现及其在四川省的应用[J]. 农业工程学报,2021,37(18):273-280.ZHOU K, RAN Y, WU J, et al. Model for popularizing "conversion of biogas to toilet" and its application in Sichuan Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(18):273-280. [38] 陈兰鹏. 山东莒县“沼改厕” 技术模式及效益分析[J]. 中国沼气,2022,40(5):55-58.CHEN L P. Technical mode and benefit of "biogas digester to toilet" in Juxian County of Shandong Province[J]. China Biogas,2022,40(5):55-58. [39] 彭兰. 典型农村生活污水处理工艺选择[J]. 乡村科技,2022,13(10):137-141. ⊗