留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微生物燃料电池工作原理及产电性能提升策略

蒋进元 张月 何绪文 谭伟 宋浩洋 石冬妮 赵洪兵

蒋进元,张月,何绪文,等.微生物燃料电池工作原理及产电性能提升策略[J].环境工程技术学报,2024,14(2):699-709 doi: 10.12153/j.issn.1674-991X.20230563
引用本文: 蒋进元,张月,何绪文,等.微生物燃料电池工作原理及产电性能提升策略[J].环境工程技术学报,2024,14(2):699-709 doi: 10.12153/j.issn.1674-991X.20230563
JIANG J Y,ZHANG Y,HE X W,et al.Working principle of microbial fuel cell and strategies for enhancing power generation performance[J].Journal of Environmental Engineering Technology,2024,14(2):699-709 doi: 10.12153/j.issn.1674-991X.20230563
Citation: JIANG J Y,ZHANG Y,HE X W,et al.Working principle of microbial fuel cell and strategies for enhancing power generation performance[J].Journal of Environmental Engineering Technology,2024,14(2):699-709 doi: 10.12153/j.issn.1674-991X.20230563

微生物燃料电池工作原理及产电性能提升策略

doi: 10.12153/j.issn.1674-991X.20230563
基金项目: 黄河流域生态保护和高质量发展联合研究项目(2022-YRUC-01-0203);广元市长江水生态环境保护研究项目(2022-LHYJ-02-0509-06)
详细信息
    作者简介:

    蒋进元(1974—),男,研究员,博士,主要从事水污染控制技术研究,jiangjy@craes.org.cn

    通讯作者:

    张月(1999—),女,硕士研究生,主要从事水污染控制技术研究,zhang08150924@163.com

  • 中图分类号: X703

Working principle of microbial fuel cell and strategies for enhancing power generation performance

  • 摘要:

    微生物燃料电池(MFC)是一种解决其他能源在环境方面不足的新技术,目前低能量输出是MFC实际应用的关键瓶颈。基于MFC工作原理,提出微生物活性差、电子迁移阻力、质子传输阻力及阴极还原反应缓慢是MFC能量输出的限制因素,并从以下5个方面综述了提升MFC产电性能策略:调节pH和选择最佳盐度,加强微生物代谢活性;改性阳极材料,降低电子迁移阻力;增强电解液电导率、优化隔膜材料及缩短电极间距减小质子传输阻力;制备高效阴极催化剂和选择优异电子受体加快阴极还原反应速率;改进MFC反应器构型,提高整体产电性能。未来,可在合成新型阴极催化剂、降低膜污染、优化微生物生长环境、制备优异的电极材料和改进MFC反应器配置5个方面开展重点研究。

     

  • 图  1  WoS中关于微生物燃料电池技术研究的年发文量

    Figure  1.  Annual publications on research on microbial fuel cell technology in WoS

    图  2  MFC工作原理示意[26]

    Figure  2.  Schematic diagram of MFC working principle

    图  3  阳极电子转移示意[43]

    Figure  3.  Schematic diagram of anode electron transfer

    图  4  双室MFC中陶瓷膜传递质子结构示意[54]

    Figure  4.  Schematic diagram of proton transfer structure through ceramic membranes in dual chamber MFC

    图  5  ORR的2种途径[81]

    Figure  5.  Two ways of ORR

    图  6  MFC反应器构型

    Figure  6.  Configurations of MFC reactor

    表  1  MFC结构

    Table  1.   Structure of MFC

    组件 组成和功能
    阳极室 由阳极电极和微生物组成,容纳污水,
    是微生物降解底物的场所
    阴极室 由阴极电极和电催化剂组成,是
    阴极还原反应发生的场所
    阳极 一般采用碳基电极作为阳极电极,如碳布或碳纸,阳极电极
    与金属丝连接,以收集细菌氧化过程中产生的电子,
    并将电子提供给阴极电极
    阴极 通常采用涂有活性催化剂的碳基电极作为阴极电极,将各
    种铂、非铂、杂原子掺杂的催化剂用作还原反应催化剂,
    以加速阴极还原反应动力学
    电解液 从阳极室到阴极室产生的质子由电解液转移
    燃料 各种有机来源均可作为MFC的燃料,
    如生活污水和各种工业废水
    微生物 将底物氧化为CO2,产生电子,并将电子
    从电池内部转移到阳极表面[20]
    隔膜 阻隔阳极室和阴极室,具有传导质子的作用
    下载: 导出CSV

    表  2  MFC影响因素及对应措施

    Table  2.   MFC influencing factors and corresponding measures

    序号 工作原理 限速步骤 影响因素 策略方法
    1 阳极室中微生物分解废水中有机物,产生CO2、H+和电子 底物降解 微生物
    活性
    调节pH或选择最佳盐度
    2 电子从微生物传递到阳极,并通过外电路传递到阴极,从而产生电流 电子转移 阳极材料 改性阳极材料
    3 H+通过隔膜从阳极
    到达阴极
    质子传递 优化膜材料
    电极间距 缩短电极间距
    电解液 加强电解液
    电导率
    4 在阴极上H+与电子受
    体和电子反应生成水
    阴极还原反应 催化剂 制备高效
    催化剂
    电子受体 选择优异电子受体
    下载: 导出CSV

    表  3  不同MFC反应器构型的优缺点

    Table  3.   Advantages and disadvantages of different MFC configurations

    MFC构型优点缺点
    单室MFC结构简单,采用空气阴极,直接以O2作为电子受体,
    不需定期更换阴极电解液,两极间距小
    只有1个电极室,不利于单独研究,有的缺乏质子交换膜的隔离,
    阴极催化剂容易受到微生物的污染[95]
    H型MFC保证了两极室的空间独立性,避免了相互干扰电极间距大,传质阻力大,需要人工曝气,
    溶解氧浓度低,氧还原反应动力学缓慢
    平板型MFC采用PEM电极组件,电极间距较短,促进了电极之间的质子转移[96]
    最大限度减少了内阻;两极室采用蛇形流场板,
    强化了液体流动,增强了物质基质的传输[97]
    O2容易渗透到阳极
    上流式MFC提高了阳极接触面积,不用设搅拌设备[98]人工曝气额外消耗能量,溶解氧浓度低
    圆筒形MFC离子交换膜面积大,电极间距小,启动快,
    电池阻抗低;阳极上附着的生物量多,电化学活性高[90]
    人工曝气额外消耗能量,溶解氧浓度低
    下载: 导出CSV

    表  4  不同MFC反应器构型产电性能

    Table  4.   Electricity generation performance of different MFC reactor configurations

    MFC类型 是否
    存在
    PEM
    电极
    间距/
    cm
    PEM
    面积/
    cm2
    离子
    强度/
    (mmol/L)
    内阻/Ω 功率密度/
    (W/m2
    数据
    来源
    单室 4 16 68 390 0.354 文献[20]
    0 16 68 120 1.18 文献[20]
    H型双室 12 7 68 1 800 0.031 文献[20]
    10 6 1.7 310±65 0.069 文献[86]
    5 1.7 200±50 0.23 文献[52]
    平板式 0 3.9 45.3±6.5 12.9 文献[99]
    上流式 17 29.2 文献[100]
    84 3.1 文献[89]
    圆筒型 1 50 49.66 1.364 文献[101]
    下载: 导出CSV
  • [1] JADHAV D A, CARMONA-MARTÍNEZ A A, CHENDAKE A D, et al. Modeling and optimization strategies towards performance enhancement of microbial fuel cells[J]. Bioresource Technology,2021,320:124256. doi: 10.1016/j.biortech.2020.124256
    [2] 徐戴非, 吴兵党, 杨晶晶, 等. 藻炭改性电极强化微生物燃料电池产电及去除硝基苯性能[J]. 环境工程技术学报,2023,13(6):2092-2104. doi: 10.12153/j.issn.1674-991X.20230092

    XU D F, WU B D, YANG J J, et al. Removal efficiency of nitrobenzene and electricity generation by microbial fuel cell with algal biochar modified electrode[J]. Journal of Environmental Engineering Technology,2023,13(6):2092-2104. doi: 10.12153/j.issn.1674-991X.20230092
    [3] 操家顺, 贺含悦, 李超, 等. 不同方式预处理污泥对微生物燃料电池的影响[J]. 环境科学研究,2018,31(8):1389-1398.

    CAO J S, HE H Y, LI C, et al. Effects of different pretreatments on sludge in microbial fuel cell[J]. Research of Environmental Sciences,2018,31(8):1389-1398.
    [4] 綦琪, 王许云, 贾云. 微生物燃料电池电极材料研究进展[J]. 科技导报,2015,33(14):28-31. doi: 10.3981/j.issn.1000-7857.2015.14.004

    QI Q, WANG X Y, JIA Y. Latest research development of electrode materials for microbial fuel cells[J]. Science & Technology Review,2015,33(14):28-31. doi: 10.3981/j.issn.1000-7857.2015.14.004
    [5] PANDEY P, SHINDE V N, DEOPURKAR R L, et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery[J]. Applied Energy,2016,168:706-723. doi: 10.1016/j.apenergy.2016.01.056
    [6] WEE J H. Applications of proton exchange membrane fuel cell systems[J]. Renewable and Sustainable Energy Reviews,2007,11(8):1720-1738. doi: 10.1016/j.rser.2006.01.005
    [7] LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science,2015,347(6225):e1258832. doi: 10.1126/science.1258832
    [8] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展,2012,24(1):157-162.

    CHEN L X, XIAO Y, ZHAO F. Biocathodes in microbial fuel cells[J]. Progress in Chemistry,2012,24(1):157-162.
    [9] SINGH D, PRATAP D, BARANWAL Y, et al. A green technology for power generation[J]. Annals of Biological Research,2010,1(3):128-138.
    [10] VENKATA MOHAN S, MOHANAKRISHNA G, REDDY B P, et al. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment[J]. Biochemical Engineering Journal,2008,39(1):121-130. doi: 10.1016/j.bej.2007.08.023
    [11] DU Z W, LI H R, GU T Y. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances,2007,25(5):464-482. doi: 10.1016/j.biotechadv.2007.05.004
    [12] DURRUTY I, BONANNI P S, GONZÁLEZ J F, et al. Evaluation of potato-processing wastewater treatment in a microbial fuel cell[J]. Bioresource Technology,2012,105:81-87. doi: 10.1016/j.biortech.2011.11.095
    [13] PARKHEY P, SAHU R. Microfluidic microbial fuel cells: recent advancements and future prospects[J]. International Journal of Hydrogen Energy,2021,46(4):3105-3123. doi: 10.1016/j.ijhydene.2020.07.019
    [14] JADHAV D A, MUNGRAY A K, ARKATKAR A, et al. Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability[J]. Sustainable Energy Technologies and Assessments,2021,45:101226. doi: 10.1016/j.seta.2021.101226
    [15] 李朝明, 许丹, 黄铭意, 等. 不同阳极设置对人工湿地-微生物燃料电池脱氮及产能的影响[J]. 环境工程技术学报,2023,13(1):205-213. doi: 10.12153/j.issn.1674-991X.20220048

    LI C M, XU D, HUANG M Y, et al. Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells[J]. Journal of Environmental Engineering Technology,2023,13(1):205-213. doi: 10.12153/j.issn.1674-991X.20220048
    [16] 孔晓英, 李连华, 孙永明, 等. 微生物燃料电池产能原理及输出功率的影响因素[J]. 现代化工,2007,27(增刊2):282-284.
    [17] 顾熠澐. 微生物燃料电池输出功率影响因素综述[J]. 水电与新能源,2014(2):69-74.

    GU Y Y. Output power and its influencing factors of microbial fuel cells: a review[J]. Hydropower and New Energy,2014(2):69-74.
    [18] JUNG S P, PANDIT S. Important factors influencing microbial fuel cell performance[M]//Microbial electrochemical technology. Amsterdam: Elsevier, 2019: 377-406.
    [19] CHEN S L, PATIL S A, BROWN R K, et al. Strategies for optimizing the power output of microbial fuel cells: transitioning from fundamental studies to practical implementation[J]. Applied Energy,2019,233/234:15-28. doi: 10.1016/j.apenergy.2018.10.015
    [20] Liang P, Huang X, Fan M Z, et al. Composition and distribution of internal resistance in three types of microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2007, 77: 551-558.
    [21] ABOURACHED C, ENGLISH M J, LIU H. Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse[J]. Journal of Cleaner Production,2016,137:144-149. doi: 10.1016/j.jclepro.2016.07.048
    [22] 崔康平, 金松. 微生物燃料电池阳极室内电子受体竞争研究[J]. 环境科学研究,2010,23(1):90-93.

    CUI K P, JIN S. Competition between electron acceptors in anodic chamber of microbial fuel cells[J]. Research of Environmental Sciences,2010,23(1):90-93.
    [23] 赵阳, 宋永会, 段亮. 微生物燃料电池降低活化内阻和欧姆内阻技术研究进展[J]. 环境工程技术学报,2021,11(2):343-353. doi: 10.12153/j.issn.1674-991X.20200167

    ZHAO Y, SONG Y H, DUAN L. Technical research progress of reducing activation internal resistance and ohmic internal resistance in microbial fuel cells[J]. Journal of Environmental Engineering Technology,2021,11(2):343-353. doi: 10.12153/j.issn.1674-991X.20200167
    [24] WANG S Q, TIAN S, ZHANG P Y, et al. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor[J]. Journal of Environmental Management,2019,252:109682. doi: 10.1016/j.jenvman.2019.109682
    [25] NACHAMMAI K T, RAMACHANDRAN S, NAGARAJAN C, et al. Exploration of bioinformatics on microbial fuel cell technology: trends, challenges, and future prospects[J]. Journal of Chemistry,2023,2023:6902054.
    [26] RISMANI-YAZDI H, CARVER S M, CHRISTY A D, et al. Cathodic limitations in microbial fuel cells: an overview[J]. Journal of Power Sources,2008,180(2):683-694. doi: 10.1016/j.jpowsour.2008.02.074
    [27] 王维大, 李浩然, 冯雅丽, 等. 微生物燃料电池的研究应用进展[J]. 化工进展,2014,33(5):1067-1076. doi: 10.3969/j.issn.1000-6613.2014.05.001

    WANG W D, LI H R, FENG Y L, et al. Research and application advances in microbial fuel cell[J]. Chemical Industry and Engineering Progress,2014,33(5):1067-1076. doi: 10.3969/j.issn.1000-6613.2014.05.001
    [28] LOGAN B E, REGAN J M. Microbial fuel cells: challenges and applications[J]. Environmental Science & Technology,2006,40(17):5172-5180.
    [29] ZHOU M H, CHI M L, LUO J M, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources,2011,196(10):4427-4435. doi: 10.1016/j.jpowsour.2011.01.012
    [30] LIU H, CHENG S A, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology,2005,39(14):5488-5493.
    [31] ZHANG E R, LIU L, CUI Y Y. Effect of pH on the performance of the anode in microbial fuel cells[J]. Advanced Materials Research,2012,608/609:884-888. doi: 10.4028/www.scientific.net/AMR.608-609.884
    [32] YUAN Y, ZHAO B, ZHOU S G, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells[J]. Bioresource Technology,2011,102(13):6887-6891. doi: 10.1016/j.biortech.2011.04.008
    [33] 段亮, 李世龙, 邢飞. 正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展[J]. 环境工程技术学报,2023,13(3):1150-1160. doi: 10.12153/j.issn.1674-991X.20220593

    DUAN L, LI S L, XING F. Technical research progress of controlling reverse solute flux and membrane fouling in osmotic microbial fuel cell[J]. Journal of Environmental Engineering Technology,2023,13(3):1150-1160. doi: 10.12153/j.issn.1674-991X.20220593
    [34] BEHERA M, GHANGREKAR M M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH[J]. Bioresource Technology,2009,100(21):5114-5121. doi: 10.1016/j.biortech.2009.05.020
    [35] KUMAR S S, KUMAR V, GNANESWAR GUDE V, et al. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in microbial fuel cells (MFC) treating sulfate-laden wastewater[J]. Bioresource Technology,2020,306:123110. doi: 10.1016/j.biortech.2020.123110
    [36] GUO F, LUO H Q, SHI Z Y, et al. Substrate salinity: a critical factor regulating the performance of microbial fuel cells, a review[J]. Science of the Total Environment,2021,763:143021. doi: 10.1016/j.scitotenv.2020.143021
    [37] OH S E, LOGAN B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells[J]. Applied Microbiology and Biotechnology,2006,70(2):162-169. doi: 10.1007/s00253-005-0066-y
    [38] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology,2019,17:307-319. doi: 10.1038/s41579-019-0173-x
    [39] ALI YAQOOB A, IBRAHIM M N M, RODRÍGUEZ-COUTO S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview[J]. Biochemical Engineering Journal,2020,164:107779. doi: 10.1016/j.bej.2020.107779
    [40] HE L, DU P, CHEN Y Z, et al. Advances in microbial fuel cells for wastewater treatment[J]. Renewable and Sustainable Energy Reviews,2017,71:388-403. doi: 10.1016/j.rser.2016.12.069
    [41] CI S Q, WEN Z H, CHEN J H, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J]. Electrochemistry Communications,2012,14(1):71-74. doi: 10.1016/j.elecom.2011.11.006
    [42] HUGGINS T, WANG H M, KEARNS J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells[J]. Bioresource Technology,2014,157:114-119. doi: 10.1016/j.biortech.2014.01.058
    [43] AIYER K S. How does electron transfer occur in microbial fuel cells[J]. World Journal of Microbiology and Biotechnology,2020,36(2):19. doi: 10.1007/s11274-020-2801-z
    [44] MEHDINIA A, ZIAEI E, JABBARI A. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells[J]. Electrochimica Acta,2014,130:512-518. doi: 10.1016/j.electacta.2014.03.011
    [45] WEI J C, LIANG P, HUANG X. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology,2011,102(20):9335-9344. doi: 10.1016/j.biortech.2011.07.019
    [46] KUMAR G G, SATHIYA SARATHI V G, NAHM K S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J]. Biosensors and Bioelectronics,2013,43:461-475. doi: 10.1016/j.bios.2012.12.048
    [47] ZHU Y X, JI J Y, REN J Y, et al. Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,455:92-96.
    [48] CHOU H T, LEE H J, LEE C Y, et al. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold[J]. Bioresource Technology,2014,169:532-536. doi: 10.1016/j.biortech.2014.07.027
    [49] PARK I H, CHRISTY M, KIM P, et al. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics,2014,58:75-80. doi: 10.1016/j.bios.2014.02.044
    [50] KANG C S, EAKTASANG N, KWON D Y, et al. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell[J]. Bioresource Technology,2014,165:27-30. doi: 10.1016/j.biortech.2014.03.148
    [51] WU X Y, TONG F, SONG T S, et al. Effect of zeolite-coated anode on the performance of microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology,2015,90(1):87-92.
    [52] SCOTT K, RIMBU G A, KATURI K P, et al. Application of modified carbon anodes in microbial fuel cells[J]. Process Safety and Environmental Protection,2007,85(5):481-488. doi: 10.1205/psep07018
    [53] WEN Z H, CI S Q, MAO S, et al. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells[J]. Journal of Power Sources,2013,234:100-106. doi: 10.1016/j.jpowsour.2013.01.146
    [54] VIDHYESWARI D, SURENDHAR A, BHUVANESHWARI S. General aspects and novel PEMss in microbial fuel cell technology: a review[J]. Chemosphere,2022,309:136454. doi: 10.1016/j.chemosphere.2022.136454
    [55] WANG X, CHENG S A, ZHANG X Y, et al. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)[J]. International Journal of Hydrogen Energy,2011,36(21):13900-13906. doi: 10.1016/j.ijhydene.2011.03.052
    [56] AARON D, TSOURIS C, HAMILTON C Y, et al. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy[J]. Energies,2010,3(4):592-606. doi: 10.3390/en3040592
    [57] TAMAKLOE R Y, DONKOR M K E, SINGH K. Fabrication and study of power- output of MultiChamber microbial fuel cells (MFCs) with clay as ion exchange partition[J]. European Scientific Journal, ESJ,2017,13(30):173. doi: 10.19044/esj.2017.v13n30p173
    [58] ZHOU G Y, YOSHINO Y, YAMASHITA T, et al. Effect of anode size, membrane and membrane size on power generation and wastewater treatment in microbial fuel cells[J]. Applied Mechanics and Materials,2012,164:506-510. doi: 10.4028/www.scientific.net/AMM.164.506
    [59] LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology,2004,38(14):4040-4046.
    [60] JANICEK A, FAN Y Z, LIU H. Design of microbial fuel cells for practical application: a review and analysis of scale-up studies[J]. Biofuels,2014,5(1):79-92. doi: 10.4155/bfs.13.69
    [61] 马骏, 苏冬云, 濮海坤, 等. 微生物燃料电池反应器构型设计[J]. 电源技术,2015,39(10):2318-2320. doi: 10.3969/j.issn.1002-087X.2015.10.084

    MA J, SU D Y, PU H K, et al. Reactor configuration design of microbial fuel cell[J]. Chinese Journal of Power Sources,2015,39(10):2318-2320. doi: 10.3969/j.issn.1002-087X.2015.10.084
    [62] FLIMBAN S G A, HASSAN S H A, RAHMAN M M, et al. The effect of Nafion membrane fouling on the power generation of a microbial fuel cell[J]. International Journal of Hydrogen Energy,2020,45(25):13643-13651. doi: 10.1016/j.ijhydene.2018.02.097
    [63] ZHANG X Y, CHENG S A, WANG X, et al. Separator characteristics for increasing performance of microbial fuel cells[J]. Environmental Science & Technology,2009,43(21):8456-8461.
    [64] GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics,2003,18(4):327-334. doi: 10.1016/S0956-5663(02)00110-0
    [65] DAUD S M, KIM B H, GHASEMI M, et al. Separators used in microbial electrochemical technologies: current status and future prospects[J]. Bioresource Technology,2015,195:170-179. doi: 10.1016/j.biortech.2015.06.105
    [66] YANG E, CHAE K J, CHOI M J, et al. Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment[J]. Desalination,2019,452:40-67. doi: 10.1016/j.desal.2018.11.007
    [67] PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering,2003,81(3):348-355. doi: 10.1002/bit.10501
    [68] PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy,2010,35(17):9349-9384. doi: 10.1016/j.ijhydene.2010.05.017
    [69] BEHERA M, GHANGREKAR M M. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness[J]. Water Science & Technology,2011,64(12):2468-2473. doi: 10.2166/wst.2011.822
    [70] TAMBOLI E, ESWARI J. Microbial fuel cell configurations[J/OL]. Microbial Electrochemical Technology, 2019. DOI: 10.1016/B978-0-444-64052-9.00016-9.
    [71] HOU B, SUN J, HU Y Y. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes[J]. Bioresource Technology,2011,102(6):4433-4438. doi: 10.1016/j.biortech.2010.12.092
    [72] SANGEETHA T, MUTHUKUMAR M. Influence of electrode material and electrode distance on bioelectricity production from sago-processing wastewater using microbial fuel cell[J]. Environmental Progress & Sustainable Energy,2013,32(2):390-395.
    [73] GHANGREKAR M M, SHINDE V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresource Technology,2007,98(15):2879-2885. doi: 10.1016/j.biortech.2006.09.050
    [74] PAPILLON J, ONDEL O, MAIRE É. Scale up of single-chamber microbial fuel cells with stainless steel 3D anode: effect of electrode surface areas and electrode spacing[J]. Bioresource Technology Reports,2021,13:100632. doi: 10.1016/j.biteb.2021.100632
    [75] CHENG S A, LIU H, LOGAN B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science & Technology,2006,40(7):2426-2432.
    [76] NIE Y, LI L, WEI Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews,2015,44(8):2168-2201. doi: 10.1039/C4CS00484A
    [77] YU D S, NAGELLI E, DU F, et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. The Journal of Physical Chemistry Letters,2010,1(14):2165-2173. doi: 10.1021/jz100533t
    [78] ERABLE B, FÉRON D, BERGEL A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review[J]. ChemSusChem,2012,5(6):975-987. doi: 10.1002/cssc.201100836
    [79] GAUTAM R K, BHATTACHARJEE H, VENKATA M S, et al. Nitrogen doped graphene supported α-MnO2 nanorods for efficient ORR in a microbial fuel cell[J]. RSC Advances,2016,6(111):110091-110101. doi: 10.1039/C6RA23392A
    [80] XIA Z H, AN L, CHEN P K, et al. Oxygen reduction: non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors[J]. Advanced Energy Materials,2016,6(17):1670104.
    [81] STACY J, REGMI Y N, LEONARD B, et al. The recent progress and future of oxygen reduction reaction catalysis: a review[J]. Renewable and Sustainable Energy Reviews,2017,69:401-414. doi: 10.1016/j.rser.2016.09.135
    [82] PANDIT S, SENGUPTA A, KALE S, et al. Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane[J]. Bioresource Technology,2011,102(3):2736-2744. doi: 10.1016/j.biortech.2010.11.038
    [83] YOU S J, ZHAO Q L, ZHANG J N, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. Journal of Power Sources,2006,162(2):1409-1415. doi: 10.1016/j.jpowsour.2006.07.063
    [84] LI J, FU Q, LIAO Q, et al. Persulfate: a self-activated cathodic electron acceptor for microbial fuel cells[J]. Journal of Power Sources,2009,194(1):269-274. doi: 10.1016/j.jpowsour.2009.04.055
    [85] OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental Science & Technology,2004,38(18):4900-4904.
    [86] LI F X, SHARMA Y, LEI Y, et al. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation[J]. Applied Biochemistry and Biotechnology,2010,160(1):168-181. doi: 10.1007/s12010-008-8516-5
    [87] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology,2006,40(17):5181-5192.
    [88] SAMARASINGHE N, LONGTIN N, FERNANDO S. Performance of Methylococcus capsulatus based microbial and enzymatic proton exchange membrane fuel cells[J]. Renewable Energy,2022,195:17-27. doi: 10.1016/j.renene.2022.06.023
    [89] HE Z, MINTEER S D, ANGENENT L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental Science & Technology,2005,39(14):5262-5267.
    [90] 刘春梅, 廖强, 叶丁丁, 等. 矩形与双筒型微生物燃料电池产电特性比较[J]. 电源技术,2015,39(9):1891-1894. doi: 10.3969/j.issn.1002-087X.2015.09.028

    LIU C M, LIAO Q, YE D D, et al. Comparison of electricity generation performance of rectangular and tubular microbial fuel cells[J]. Chinese Journal of Power Sources,2015,39(9):1891-1894. doi: 10.3969/j.issn.1002-087X.2015.09.028
    [91] BOND D R, LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555. doi: 10.1128/AEM.69.3.1548-1555.2003
    [92] 赵世辉. 双室型微生物燃料电池在制浆废水处理中的应用研究[D]. 广州: 华南理工大学, 2011.
    [93] ABUBACKAR H N, BIRYOL İ, AYOL A. Yeast industry wastewater treatment with microbial fuel cells: effect of electrode materials and reactor configurations[J]. International Journal of Hydrogen Energy,2023,48(33):12424-12432. doi: 10.1016/j.ijhydene.2022.05.277
    [94] CHENG S A, DEMPSEY B A, LOGAN B E. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies[J]. Environmental Science & Technology,2007,41(23):8149-8153.
    [95] SONG Y E, LEE S, KIM M, et al. Metal-free cathodic catalyst with nitrogen- and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells[J]. Journal of Power Sources,2020,451:227816. doi: 10.1016/j.jpowsour.2020.227816
    [96] VARANASI J L, PRASAD S, SINGH H, et al. Improvement of bioelectricity generation and microalgal productivity with concomitant wastewater treatment in flat-plate microbial carbon capture cell[J]. Fuel,2020,263:116696. doi: 10.1016/j.fuel.2019.116696
    [97] 张军. 微生物燃料电池阳极构型及其物质传输强化和产电特性[D]. 重庆: 重庆大学, 2015.
    [98] 赵立新, 邹立军, 王宣, 等. 以葡萄糖为燃料的上流式单室微生物燃料电池[J]. 大庆石油学院学报,2010,34(1):76-79.

    ZHAO L X, ZOU L J, WANG X, et al. An up-flow single-chamber microbial fuel cell using glucose as fuel[J]. Journal of Daqing Petroleum Institute,2010,34(1):76-79.
    [99] PARK Y, PARK S, NGUYEN V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal,2017,316:673-679. doi: 10.1016/j.cej.2017.02.005
    [100] HE Z, WAGNER N, MINTEER S D, et al. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology,2006,40(17):5212-5217.
    [101] ZHANG M, MA Z K, ZHAO N, et al. Increased power generation from cylindrical microbial fuel cell inoculated with P. aeruginosa[J]. Biosensors and Bioelectronics,2019,141:111394. ◇ doi: 10.1016/j.bios.2019.111394
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  706
  • HTML全文浏览量:  97
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 录用日期:  2023-12-29
  • 修回日期:  2023-10-11

目录

    /

    返回文章
    返回