Kinetic control of sodium hypochlorite electrolysis process and disinfection effect in sewage treatment
-
摘要:
为提升次氯酸钠电解工艺的产氯量和满足城镇污水处理站深度处理单元出水的消毒要求,从反应动力学角度,探究次氯酸钠电解工艺的电解参数如盐水浓度、电流密度和电解温度对次氯酸钠生产过程的影响,分析深度处理单元出水水质对次氯酸钠消毒效果的影响,明晰电解参数和出水水质的影响机制。结果表明:当盐水浓度、电流密度、电解温度和电解时间分别为40 g/L、20 A/dm2、32 ℃和2.5 h时,能够有效控制温度影响、析氯电位、歧化反应和活化能,并使次氯酸钠产量提高到9.28 g/L。当次氯酸钠的投加量至少为5 mg/L和控制接触反应时间为5 min时,次氯酸钠对粪大肠杆菌群的灭菌性比其对COD和氨氮的氧化性更占竞争优势,并将水样中粪大肠杆菌群数减少至102.97个/L,达到了GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准中细菌学指标要求。
Abstract:In order to increase the chlorine production of sodium hypochlorite electrolysis process and meet the disinfection requirements of effluent from the advanced treatment unit in township sewage treatment station, from the perspective of reaction kinetics, the influence of electrolytic parameters such as saline concentration, current density and electrolytic temperature on the production process of sodium hypochlorite was investigated, and the influence of effluent quality of the advanced treatment unit on the disinfection effect of sodium hypochlorite was analyzed, to clarify the influence mechanism of electrolytic parameters and effluent quality. The results showed that the temperature effect, chlorine evolution potential, disproportionation reaction and activation energy could be effectively controlled by adjusting the saline concentration, current density, electrolytic temperature and time to 40 g/L, 20 A/dm2, 32 ℃ and 2.5 h, respectively, and then the yield of sodium hypochlorite could be increased to 9.28 g/L. When the dosage of sodium hypochlorite was at least 5 mg/L and the contact reaction time was 5 min, the sterilization performance of sodium hypochlorite against fecal coliform groups in denitrification filter effluent was more competitive than its oxidation performance of COD and ammonium, and could reduce the number of fecal coliform groups in water samples to 102.97 L-1, and finally meet the bacteria index requirements of A-level standard of Discharge Standard of Pollutants for Municipal Waste-water Treatment Plant (GB 18918-2002).
-
表 1 某城镇污水处理站的反硝化滤池出水水质
Table 1. Effluent quality of denitrification filter in a township wastewater treatment station
COD/
(mg/L)氨氮浓度/
(mg/L)pH 粪大肠杆菌群数/(个/L) (15~32)±5 (0.8~3.6)±0.1 (6.4~7.2)±0.2 (2.9×104~3.5×104)±5×102 表 2 不同盐水浓度下次氯酸钠浓度曲线的拟合方程
Table 2. Fitting equations of sodium hypochlorite concentration curve under different saline concentrations
序号 盐水浓度/(g/L) 曲线拟合方程 参数取值 R2 1 10
$ y = {y_{0,i}} + {a_i}t $y0,1=165.9,a1=491.4 0.973 2 20 y0,2=−30,a2=724.1 0.992 3 30 y0,3=114.9,a3=908.8 0.989 4 40
$ y = {y_{0,i}} + {a_i}t + {b_i}{t^2} $y0,4=32,a4=1716.3,b4=−252.8 0.997 5 50 y0,5=159.5,a5=2141.3,b5=−411.5 0.988 注:i表示在不同盐水浓度下次氯酸钠浓度曲线拟合方程对应的序号,依次为1、2、3、4和5。 表 3 不同电流密度下盐水浓度变化率的自然对数ln[M0/(M0−Mt)]与电解时间(t)的拟合方程
Table 3. Fitting equations of the interrelation between natural logarithm of saline concentration ln[M0/(M0−Mt)] and electrolysis time (t) at different current densities
序号 电流密度/(A/dm2) 曲线拟合方程 k R2 1 5 ln[M0/(M0−Mt)]=kit 0.021 0.915 2 10 0.048 0.990 3 15 0.067 0.985 4 20 0.078 0.992 5 25 0.083 0.997 注:同表2。 表 4 不同电解槽温度下电解生成次氯酸钠的反应速率常数及其表观活化能
Table 4. Reaction rate constant and its apparent activation energy of sodium hypochlorite at different bath temperatures
T/K b/h−1 ln|b| lnA Ea/(kJ/mol) R2 299 1.225 0.203 −145.4 43.6 0.92 301 1.020 0.019 303 0.305 −1.187 305 0.075 −2.590 307 −0.419 −0.871 −57.8 17.4 0.96 309 −0.250 −1.386 311 −0.219 −1.521 313 −0.131 −2.036 -
[1] 张崇淼, 苗艳辉, 张庆珮, 等. 氯消毒和紫外消毒对城市污水处理厂二沉池出水中粪大肠菌群耐药性的影响[J]. 环境科学研究,2014,27(4):422-426.ZHANG C M, MIAO Y H, ZHANG Q P, et al. Effects of chlorination and ultraviolet disinfection on antibiotic resistance of fecal coliforms in secondary settling tank effluent of municipal wastewater treatment plant[J]. Research of Environmental Sciences,2014,27(4):422-426. [2] SILLANPÄÄ M, NCIBI M C, MATILAINEN A, et al. Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review[J]. Chemosphere,2018,190:54-71. doi: 10.1016/j.chemosphere.2017.09.113 [3] 董欣杨, 刘为. 医院生活污水回用处理工艺的参数确定及工程应用效果[J]. 环境工程技术学报,2020,10(2):267-272.DONG X Y, LIU W. Parameter determination and engineering application of water reuse technology in hospital domestic sewage treatment[J]. Journal of Environmental Engineering Technology,2020,10(2):267-272. [4] 王慕, 谈振娇, 李激, 等. 城镇污水处理厂次氯酸钠消毒效果的影响因素研究[J]. 中国给水排水,2021,37(1):22-27.WANG M, TAN Z J, LI J, et al. Influence factors of sodium hypochlorite disinfection performance in municipal wastewater treatment plant[J]. China Water & Wastewater,2021,37(1):22-27. [5] 汪红访, 张翠玲, 唐玉霖, 等. 次氯酸钠发生器及在水处理中的应用研究进展[J]. 当代化工研究,2018(9):16-18.WANG H F, ZHANG C L, TANG Y L, et al. Research progress on sodium hypochlorite generator and its application in water treatment[J]. Modern Chemical Research,2018(9):16-18. [6] ZHANG H Y, ZHAO L T, LIU D B, et al. Early period corrosion and scaling characteristics of ductile iron pipe for ground water supply with sodium hypochlorite disinfection[J]. Water Research,2020,176:115742. doi: 10.1016/j.watres.2020.115742 [7] WANG J, SHEN J, YE D, et al. Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China[J]. Environmental Pollution,2020,262:114665. doi: 10.1016/j.envpol.2020.114665 [8] 王晓晴. 电解制备次氯酸钠消毒水的工艺及应用研究[D]. 北京: 北京化工大学, 2021. [9] HUANG X, QU Y, CID C A, et al. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell[J]. Water Research,2016,92:164-172. doi: 10.1016/j.watres.2016.01.040 [10] 徐万昌, 贾燕南, 邬晓梅, 等. 村镇饮用水不同次氯酸钠消毒模式对比研究[J]. 中国水利水电科学研究院学报,2019,17(2):139-144.XU W C, JIA Y N, WU X M, et al. Comparative study on different sodium hypochlorite disinfection patterns of rural drinking water[J]. Journal of China Institute of Water Resources and Hydropower Research,2019,17(2):139-144. [11] JENKINS S. Technology profile: sodium hypochlorite chemical production[J]. Chemical Engineering,2013,120(4):37. [12] 袁渭康, 朱开宏. 化学反应工程分析[M]. 上海: 华东理工大学出版社, 1995. [13] 许友仁. 次氯酸钠电解发生器的电极降温问题[J]. 中国消毒学杂志,1995,12(2):8.XU Y R. Electrode cooling problem of sodium hypochlorite electrolytic generator[J]. Chinese Journal of Disinfection,1995,12(2):8. [14] LLANOS J, MORALEDA I, SÁEZ C, et al. Electrochemical production of perchlorate as an alternative for the valorization of brines[J]. Chemosphere,2019,220:637-643. doi: 10.1016/j.chemosphere.2018.12.153 [15] DONG H, YU W L, HOFFMANN M R. Mixed metal oxide electrodes and the chlorine evolution reaction[J]. The Journal of Physical Chemistry C,2021,125(38):20745-20761. doi: 10.1021/acs.jpcc.1c05671 [16] 苏瑜, 罗鑫龙, 马德垺, 等. 次氯酸钠水溶液稳定性及增稠体系研究[J]. 精细化工,2000,17(12):708-710.SU Y, LUO X L, MA D F, et al. Study of the stability of aqueous sodium hypochlorite solution and thickened system[J]. Fine Chemicals,2000,17(12):708-710. [17] TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater engineering: treatment and reuse[M]. 4th ed. Boston: McGraw-Hill, 2003. ⊗