留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

次氯酸钠电解工艺动力学调控及在污水处理中消毒效果

高峰 高升 陈涛 李毓 年正 严程 王重阳

高峰,高升,陈涛,等.次氯酸钠电解工艺动力学调控及在污水处理中消毒效果[J].环境工程技术学报,2024,14(2):633-641 doi: 10.12153/j.issn.1674-991X.20230572
引用本文: 高峰,高升,陈涛,等.次氯酸钠电解工艺动力学调控及在污水处理中消毒效果[J].环境工程技术学报,2024,14(2):633-641 doi: 10.12153/j.issn.1674-991X.20230572
GAO F,GAO S,CHEN T,et al.Kinetic control of sodium hypochlorite electrolysis process and disinfection effect in sewage treatment[J].Journal of Environmental Engineering Technology,2024,14(2):633-641 doi: 10.12153/j.issn.1674-991X.20230572
Citation: GAO F,GAO S,CHEN T,et al.Kinetic control of sodium hypochlorite electrolysis process and disinfection effect in sewage treatment[J].Journal of Environmental Engineering Technology,2024,14(2):633-641 doi: 10.12153/j.issn.1674-991X.20230572

次氯酸钠电解工艺动力学调控及在污水处理中消毒效果

doi: 10.12153/j.issn.1674-991X.20230572
基金项目: 云南省基础研究计划专项面上项目(202301AT070457);工业生态与环境工程教育部重点实验室开放课题(KLIEEE-20-03);中国电建集团昆明勘测设计研究院有限公司科技创新计划项目 (KD-ZDYF2022-003)
详细信息
    作者简介:

    高峰(1984—),男,讲师,博士,研究方向为饮用水深度处理和污水生物处理过程仿真与强化,xiaogao0859@126.com

    通讯作者:

    高升(1984—),男,教授级高工,研究方向为水环境污染治理及水处理过程强化,411541265@qq.com

  • 中图分类号: X703

Kinetic control of sodium hypochlorite electrolysis process and disinfection effect in sewage treatment

  • 摘要:

    为提升次氯酸钠电解工艺的产氯量和满足城镇污水处理站深度处理单元出水的消毒要求,从反应动力学角度,探究次氯酸钠电解工艺的电解参数如盐水浓度、电流密度和电解温度对次氯酸钠生产过程的影响,分析深度处理单元出水水质对次氯酸钠消毒效果的影响,明晰电解参数和出水水质的影响机制。结果表明:当盐水浓度、电流密度、电解温度和电解时间分别为40 g/L、20 A/dm2、32 ℃和2.5 h时,能够有效控制温度影响、析氯电位、歧化反应和活化能,并使次氯酸钠产量提高到9.28 g/L。当次氯酸钠的投加量至少为5 mg/L和控制接触反应时间为5 min时,次氯酸钠对粪大肠杆菌群的灭菌性比其对COD和氨氮的氧化性更占竞争优势,并将水样中粪大肠杆菌群数减少至102.97个/L,达到了GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准中细菌学指标要求。

     

  • 图  1  次氯酸钠电解工艺示意

    Figure  1.  Schematic diagram of sodium hypochlorite electrolysis process

    图  2  在不同盐水浓度下次氯酸钠浓度和电解槽温度与电解时间的关系

    Figure  2.  Interrelation between sodium hypochlorite concentration and bath temperature with electrolysis time at different saline concentrations

    图  3  在高盐水浓度下氯酸钠和高氯酸钠浓度曲线

    Figure  3.  Concentration curve of sodium chlorate and sodium perchlorate at high saline concentrations

    图  4  不同电流密度下盐水浓度的变化

    Figure  4.  Concentration curve of electrolyte at different current densities

    图  5  次氯酸钠浓度、电流效率和电能消耗与电解时间的关系

    Figure  5.  Relation between sodium hypochlorite concentration, current efficiency and electronic consumption withelectrolysis time

    图  6  不同电流密度下盐水浓度变化率的自然对数ln[M0/(M0Mt)]与电解时间的关系

    Figure  6.  Relation between natural logarithm of saline concentration ln[M0/(M0Mt)] and electrolysis time at different current densities

    图  7  在不同电解液初始温度下电解过程中电解槽温度与次氯酸钠浓度的关系

    Figure  7.  Relation between bath temperature and sodium hypochlorite concentration in electrolytic process at different initial temperature of electrolyte

    图  8  不同次氯酸钠投加量下粪大肠杆菌群对数(lgn)与消毒时间的关系

    Figure  8.  Interrelation between the logarithm of fecal coliform (lgn) and disinfection time at different dosage of sodium hypochlorite

    图  9  不同次氯酸钠投加量和消毒时间下粪大肠杆菌群数对数(lgn)与出水水质的关系

    Figure  9.  Interrelation between the logarithm of fecal coliform (lgn) and effluent quality at different dosages and disinfection time

    表  1  某城镇污水处理站的反硝化滤池出水水质

    Table  1.   Effluent quality of denitrification filter in a township wastewater treatment station

    COD/
    (mg/L)
    氨氮浓度/
    (mg/L)
    pH粪大肠杆菌群数/(个/L)
    (15~32)±5(0.8~3.6)±0.1(6.4~7.2)±0.2(2.9×104~3.5×104)±5×102
    下载: 导出CSV

    表  2  不同盐水浓度下次氯酸钠浓度曲线的拟合方程

    Table  2.   Fitting equations of sodium hypochlorite concentration curve under different saline concentrations

    序号 盐水浓度/(g/L) 曲线拟合方程 参数取值 R2
    1 10
    $ y = {y_{0,i}} + {a_i}t $
    y0,1=165.9,a1=491.4 0.973
    2 20 y0,2=−30,a2=724.1 0.992
    3 30 y0,3=114.9,a3=908.8 0.989
    4 40
    $ y = {y_{0,i}} + {a_i}t + {b_i}{t^2} $
    y0,4=32,a4=1716.3,b4=−252.8 0.997
    5 50 y0,5=159.5,a5=2141.3,b5=−411.5 0.988
      注:i表示在不同盐水浓度下次氯酸钠浓度曲线拟合方程对应的序号,依次为1、2、3、4和5。
    下载: 导出CSV

    表  3  不同电流密度下盐水浓度变化率的自然对数ln[M0/(M0Mt)]与电解时间(t)的拟合方程

    Table  3.   Fitting equations of the interrelation between natural logarithm of saline concentration ln[M0/(M0Mt)] and electrolysis time (t) at different current densities

    序号 电流密度/(A/dm2) 曲线拟合方程 k R2
    1 5 ln[M0/(M0Mt)]=kit 0.021 0.915
    2 10 0.048 0.990
    3 15 0.067 0.985
    4 20 0.078 0.992
    5 25 0.083 0.997
      注:同表2
    下载: 导出CSV

    表  4  不同电解槽温度下电解生成次氯酸钠的反应速率常数及其表观活化能

    Table  4.   Reaction rate constant and its apparent activation energy of sodium hypochlorite at different bath temperatures

    T/K b/h−1 ln|b| lnA Ea/(kJ/mol) R2
    299 1.225 0.203 −145.4 43.6 0.92
    301 1.020 0.019
    303 0.305 −1.187
    305 0.075 −2.590
    307 −0.419 −0.871 −57.8 17.4 0.96
    309 −0.250 −1.386
    311 −0.219 −1.521
    313 −0.131 −2.036
    下载: 导出CSV
  • [1] 张崇淼, 苗艳辉, 张庆珮, 等. 氯消毒和紫外消毒对城市污水处理厂二沉池出水中粪大肠菌群耐药性的影响[J]. 环境科学研究,2014,27(4):422-426.

    ZHANG C M, MIAO Y H, ZHANG Q P, et al. Effects of chlorination and ultraviolet disinfection on antibiotic resistance of fecal coliforms in secondary settling tank effluent of municipal wastewater treatment plant[J]. Research of Environmental Sciences,2014,27(4):422-426.
    [2] SILLANPÄÄ M, NCIBI M C, MATILAINEN A, et al. Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review[J]. Chemosphere,2018,190:54-71. doi: 10.1016/j.chemosphere.2017.09.113
    [3] 董欣杨, 刘为. 医院生活污水回用处理工艺的参数确定及工程应用效果[J]. 环境工程技术学报,2020,10(2):267-272.

    DONG X Y, LIU W. Parameter determination and engineering application of water reuse technology in hospital domestic sewage treatment[J]. Journal of Environmental Engineering Technology,2020,10(2):267-272.
    [4] 王慕, 谈振娇, 李激, 等. 城镇污水处理厂次氯酸钠消毒效果的影响因素研究[J]. 中国给水排水,2021,37(1):22-27.

    WANG M, TAN Z J, LI J, et al. Influence factors of sodium hypochlorite disinfection performance in municipal wastewater treatment plant[J]. China Water & Wastewater,2021,37(1):22-27.
    [5] 汪红访, 张翠玲, 唐玉霖, 等. 次氯酸钠发生器及在水处理中的应用研究进展[J]. 当代化工研究,2018(9):16-18.

    WANG H F, ZHANG C L, TANG Y L, et al. Research progress on sodium hypochlorite generator and its application in water treatment[J]. Modern Chemical Research,2018(9):16-18.
    [6] ZHANG H Y, ZHAO L T, LIU D B, et al. Early period corrosion and scaling characteristics of ductile iron pipe for ground water supply with sodium hypochlorite disinfection[J]. Water Research,2020,176:115742. doi: 10.1016/j.watres.2020.115742
    [7] WANG J, SHEN J, YE D, et al. Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China[J]. Environmental Pollution,2020,262:114665. doi: 10.1016/j.envpol.2020.114665
    [8] 王晓晴. 电解制备次氯酸钠消毒水的工艺及应用研究[D]. 北京: 北京化工大学, 2021.
    [9] HUANG X, QU Y, CID C A, et al. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell[J]. Water Research,2016,92:164-172. doi: 10.1016/j.watres.2016.01.040
    [10] 徐万昌, 贾燕南, 邬晓梅, 等. 村镇饮用水不同次氯酸钠消毒模式对比研究[J]. 中国水利水电科学研究院学报,2019,17(2):139-144.

    XU W C, JIA Y N, WU X M, et al. Comparative study on different sodium hypochlorite disinfection patterns of rural drinking water[J]. Journal of China Institute of Water Resources and Hydropower Research,2019,17(2):139-144.
    [11] JENKINS S. Technology profile: sodium hypochlorite chemical production[J]. Chemical Engineering,2013,120(4):37.
    [12] 袁渭康, 朱开宏. 化学反应工程分析[M]. 上海: 华东理工大学出版社, 1995.
    [13] 许友仁. 次氯酸钠电解发生器的电极降温问题[J]. 中国消毒学杂志,1995,12(2):8.

    XU Y R. Electrode cooling problem of sodium hypochlorite electrolytic generator[J]. Chinese Journal of Disinfection,1995,12(2):8.
    [14] LLANOS J, MORALEDA I, SÁEZ C, et al. Electrochemical production of perchlorate as an alternative for the valorization of brines[J]. Chemosphere,2019,220:637-643. doi: 10.1016/j.chemosphere.2018.12.153
    [15] DONG H, YU W L, HOFFMANN M R. Mixed metal oxide electrodes and the chlorine evolution reaction[J]. The Journal of Physical Chemistry C,2021,125(38):20745-20761. doi: 10.1021/acs.jpcc.1c05671
    [16] 苏瑜, 罗鑫龙, 马德垺, 等. 次氯酸钠水溶液稳定性及增稠体系研究[J]. 精细化工,2000,17(12):708-710.

    SU Y, LUO X L, MA D F, et al. Study of the stability of aqueous sodium hypochlorite solution and thickened system[J]. Fine Chemicals,2000,17(12):708-710.
    [17] TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater engineering: treatment and reuse[M]. 4th ed. Boston: McGraw-Hill, 2003. ⊗
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  124
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 录用日期:  2023-12-06
  • 修回日期:  2023-11-05

目录

    /

    返回文章
    返回