Community structure and dominant species niche characteristics of periphytic algae in the Beijing section of the Chaobai River
-
摘要:
为明确北京市潮白河流域浮游植物群落变化特征,于2021年5月和9月对潮白河17个样点的着生藻类进行调查。应用着生藻类种类数和细胞密度对群落结构进行分析,计算优势种的优势度指数(Y) 、优势种更替率(R),运用生态位宽度(Bi)、生态位重叠指数(Oik)、总体相关性分析优势种的生态位特征。结果表明:2次调查共鉴定着生藻类109种,隶属4门41属,着生藻类优势种(Y>0.2)共8种,优势种的生态位宽度为0.140 6~0.420 9,优势种的生态位重叠指数为0.055 1~0.897 1,总体关联性测度结果均为显著正关联,优势种受季节更替的影响较大,优势种间对资源的利用共性较小,着生藻类群落结构趋于稳定,整体朝正向演替发展。研究表明,着生藻类作为一项生物指标对环境条件的变动能够进行较为敏感的响应,基于着生藻类优势种生态位特征,能够对着生藻类群落结构及其演替特征进行描述。
Abstract:To clarify the changes in phytoplankton communities in Chaobai River basin of Beijing, 17 sampling sites of periphytic algae were selected and two surveys were conducted in May 2021 and September 2021. Community structure was analyzed by applying the number of periphytic algae species and cell density, and the dominance index of the dominant species(Y) and dominant species turnover rate (R) were calculated. The niche width (Bi), niche overlap (Oik) and overall relevance were used to analyze the niche characteristics of the dominant species. The results showed that a total of 109 species of periphytic algae belonging to 4 phylums and 41 genera were found and recorded in two phases. There were 8 dominant species (Y>0.2) of periphytic algae in all sampling periods. The niche width values of dominant species ranged from 0.140 6 to 0.420 9. The niche overlap values of the dominant species ranged from 0.055 1 to 0.897 1, and the overall correlation measurement results were significantly positive correlations. The dominant species were greatly affected by seasonal alternation, and the commonality of resource utilization among dominant species was relatively small. The structure of the periphytic algae tended to stabilize, and the overall development was toward positive succession. The research shows that periphytic algae, as a biological indicator, can respond sensitively to changes in environmental conditions. Based on the niche characteristics of the dominant species of periphytic algae, the community structure and succession characteristics of periphytic algae can be described.
-
Key words:
- Chaobai River /
- periphytic algae /
- community structure /
- ecological niche
-
表 1 潮白河着生藻优势物种名录
Table 1. Composition of dominant periphytic species in the Chaobai River
门 优势物种 拉丁种名 春季 秋季 Fi Y Fi Y 蓝藻门 小席藻 Phormidium tenue 0.529 4 0.030 3 黏球藻 Gloeocapsa sp. 1.000 0 0.207 3 硅藻门 扁圆卵形藻 Cocconeis
placentula0.941 2 0.161 2 尖针杆藻 Synedra acus 0.705 9 0.029 3 短小舟形藻 Navicula exigua 0.352 9 0.021 3 0.882 4 0.025 7 微型舟形藻 Navicula minima 0.294 1 0.034 9 0.882 4 0.174 7 短线脆杆藻 Fragilaria
brevistriata0.235 3 0.024 8 短小曲壳藻 Achnanthes exigua 0.764 7 0.151 0 表 2 潮白河着生藻类优势种生态位宽度
Table 2. Niche width of dominant species of periphytic algae in the Chaobai River
优势物种 春季 秋季 小席藻 0.392 4 黏球藻 0.238 5 扁圆卵形藻 0.403 9 尖针杆藻 0.156 1 短小舟形藻 0.191 7 0.420 9 微型舟形藻 0.259 9 0.241 5 短线脆杆藻 0.140 6 短小曲壳藻 0.234 5 表 3 潮白河春季着生藻类生态位重叠指数
Table 3. Niche overlap index of periphytic algae in the Chaobai River in spring
项目 小席藻 尖针杆藻 短小舟形藻 微型舟形藻 短线脆杆藻 小席藻 1.000 0 尖针杆藻 0.055 1 1.000 0 短小舟形藻 0.558 2 0.091 1 1.000 0 微型舟形藻 0.533 5 0.018 3 0.854 4 1.000 0 短线脆杆藻 0.448 0 0.163 6 0.757 6 0.773 6 1.000 0 表 4 潮白河秋季着生藻类生态位重叠指数
Table 4. Niche overlap index of periphytic algae in the Chaobai River in autumn
项目 扁圆卵形藻 短小曲壳藻 微型舟形藻 短小舟形藻 黏球藻 扁圆卵形藻 1.000 0 短小曲壳藻 0.133 3 1.000 0 微型舟形藻 0.178 8 0.897 1 1.000 0 短小舟形藻 0.343 5 0.544 1 0.382 6 1.000 0 黏球藻 0.133 5 0.112 5 0.083 1 0.426 8 1.000 0 表 5 着生藻类总体关联性
Table 5. General inter-specific association of periphytic algae
采样时间 ST2 σT2 VR W χ2[χ2 0.95(N),
χ20.05(N)]测度结果 2021年5月
(春季)2.339 1 1.0727 2.1806 37.0710 (8.67, 27.59) 显著正关联 2021年9月
(秋季)2.8512 1.5848 1.7991 30.5852 (8.67, 27.59) 显著正关联 -
[1] STEVENSON J. Ecological assessments with algae: a review and synthesis[J]. Journal of Phycology,2014,50(3):437-461. doi: 10.1111/jpy.12189 [2] 胡建成, 郭姝含, 唐涛, 等. 基于着生硅藻多参数指标评价赤水河生态状况[J]. 中国环境监测,2020,36(3):94-104.HU J C, GUO S H, TANG T, et al. Using benthic diatom-based multi-metric indices to assess ecological conditions of the Chishui River[J]. Environmental Monitoring in China,2020,36(3):94-104. [3] 计叶, 吴雨蒙, 许秋瑾. 水环境的生物监测方法及其应用[J]. 环境工程技术学报,2019,9(5):616-622. doi: 10.12153/j.issn.1674-991X.2019.04.150JI Y, WU Y M, XU Q J. Biological monitoring method of water environment and its application[J]. Journal of Environmental Engineering Technology,2019,9(5):616-622. doi: 10.12153/j.issn.1674-991X.2019.04.150 [4] 刘园园, 阿依巧丽, 张森瑞, 等. 着生藻类和浮游藻类在三峡库区河流健康评价中的适宜性比较研究[J]. 生态学报,2020,40(11):3833-3843.LIU Y Y, AYI Q L, ZHANG S R, et al. Comparative study on the suitability of periphytic algae and phytoplankton in river health assessment[J]. Acta Ecologica Sinica,2020,40(11):3833-3843. [5] ZHAO K X, YANG J, LÜ J P, et al. Structural characteristics of periphytic algal community and its relationship with environmental factors in the Taiyuan region of the Fenhe River[J]. Water,2022,14(14):2151. doi: 10.3390/w14142151 [6] LEI X M, HUANG H, LIAN J S, et al. Community structure of coralline algae and its relationship with environment in Sanya reefs, China[J]. Aquatic Ecosystem Health & Management,2018,21(1):19-29. [7] RAJFUR M. Algae as a source of information on surface waters contamination with heavy metals [J]. Ecological Chemistry and Engineering, 2013, 20(10): 1089-1101. [8] SMITH E P. Niche breadth, resource availability, and inference[J]. Ecology,1982,63(6):1675-1681. doi: 10.2307/1940109 [9] WESTMAN W E. Measuring realized niche spaces: climatic response of chaparral and coastal sage scrub[J]. Ecology,1991,72(5):1678-1684. doi: 10.2307/1940967 [10] 张光明, 谢寿昌. 生态位概念演变与展望[J]. 生态学杂志,1997,16(6):46-51. doi: 10.3321/j.issn:1000-4890.1997.06.010ZHANG G M, XIE S C. Developement of niche concept and its perspectives: a review[J]. Chinese Journal of Ecology,1997,16(6):46-51. doi: 10.3321/j.issn:1000-4890.1997.06.010 [11] 汤雁滨, 廖一波, 寿鹿, 等. 南麂列岛潮间带大型底栖动物群落优势种生态位[J]. 生态学报,2016,36(2):489-498.TANG Y B, LIAO Y B, SHOU L, et al. Intertidal zone of the Nanji Islands is a niche for dominant species of the macrobenthic community[J]. Acta Ecologica Sinica,2016,36(2):489-498. [12] 韩晓凤, 王咏雪, 求锦津, 等. 台州南部近岸海域春秋季主要鱼类生态位及其种间联结性[J]. 水产学报,2020,44(4):621-631.HAN X F, WANG Y X, QIU J J, et al. Niche and interspecific associations of dominant fishes in southern coastal waters in Taizhou, China[J]. Journal of Fisheries of China,2020,44(4):621-631. [13] 刘凌, 朱良珍, 叶键, 等. 张福河浮游植物群落结构及生态位特征[J]. 水资源保护,2021,37(3):7-12.LIU L, ZHU L Z, YE J, et al. Community structure and niche characteristics of phytoplankton in Zhangfu River[J]. Water Resources Protection,2021,37(3):7-12. [14] 李丽娟, 郑红星. 华北典型河流年径流演变规律及其驱动力分析: 以潮白河为例[J]. 地理学报,2000,55(3):309-317. doi: 10.3321/j.issn:0375-5444.2000.03.007LI L J, ZHENG H X. Characteristics and driving forces of annual runoff changes for rivers in North China: a case study in the Chaobaihe River[J]. Acta Geographica Sinica,2000,55(3):309-317. doi: 10.3321/j.issn:0375-5444.2000.03.007 [15] 张磊, 王晓燕. 潮白河流域水文要素特征分析[J]. 首都师范大学学报(自然科学版),2010,31(1):65-68.ZHANG L, WANG X Y. Character analysis of hydrologic factors in chaobai river basin[J]. Journal of Capital Normal University (Natural Sciences Edition),2010,31(1):65-68. [16] 陈毅, 张可刚, 郭纯青, 等. 河流生态健康评价研究: 以潮白河为例[J]. 水利科技与经济,2011,17(2):9-12.CHEN Y, ZHANG K G, GUO C Q, et al. Health assessment of river ecosystem: Chao-Bai River as a case study[J]. Water Conservancy Science and Technology and Economy,2011,17(2):9-12. [17] 金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 2版. 北京: 中国环境科学出版社, 1990: 252-254. [18] 胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006. [19] MCNAUGHTON S J. Relationships among functional properties of Californian grassland[J]. Nature,1967,216(5111):168-169. [20] COLWELL R K, FUTUYMA D J. On the measurement of niche breadth and overlap[J]. Ecology,1971,52(4):567-576. doi: 10.2307/1934144 [21] PIANKA E R. The structure of lizard communities[J]. Annual Review of Ecology and Systematics,1973,4:53-74. doi: 10.1146/annurev.es.04.110173.000413 [22] YANG G, HE D, WANG C, et al. Study on biological oceanography characteristics of planktonic copepods in waters north of Taiwan: Ⅰ. abundance distribution[J]. Acta Oceanologica Sinica,2000(2):69-81. [23] 林岩, 丁晓宇, 吕航, 等. 冰封期乌梁素海浮游植物生态位和种间联结性研究[J]. 水生态学杂志,2023,44(3):102-109.LIN Y, DING X Y, LÜ H, et al. Ecological niche and interspecific association of phytoplankton during the ice-on period of ulansuhai lake[J]. Journal of Hydroecology,2023,44(3):102-109. [24] 陶敏, 岳兴建, 岳珊, 等. 四川丘陵区水库浮游植物群落结构与蓝藻水华风险: 基于优势种生态位与种间联结研究[J]. 生态学报,2021,41(23):9457-9469.TAO M, YUE X J, YUE S, et al. Phytoplankton community structure and cyanobacteria bloom risk of reservoirs in hilly regions of Sichuan Province based on dominant species niche and interspecific association[J]. Acta Ecologica Sinica,2021,41(23):9457-9469. [25] 张小林, 张靖天, 迟春娟, 等. 乌溪江梯级水库的营养特征及水生态健康评价[J]. 环境工程技术学报,2018,8(5):502-509.ZHANG X L, ZHANG J T, CHI C J, et al. Nutritional characteristics and aquatic ecosystem health assessment in cascade reservoirs of Wuxijiang[J]. Journal of Environmental Engineering Technology,2018,8(5):502-509. [26] 李晓东, 潘成梅, 安瑞志, 等. 西藏拉萨河中下游不同水文期浮游植物优势种生态位及种间联结性[J]. 湖泊科学,2023,35(1):118-130.LI X D, PAN C M, AN R Z, et al. Niche and interspecific association of dominant phytoplankton species in different hydrological periods in the middle and lower reaches of Lhasa River, Tibet, China[J]. Journal of Lake Sciences,2023,35(1):118-130. [27] ÁLVAREZ-YÉPIZ J C, BÚRQUEZ A, DOVČIAK M. Ontogenetic shifts in plant–plant interactions in a rare cycad within angiosperm communities[J]. Oecologia,2014,175(2):725-735. doi: 10.1007/s00442-014-2929-3 [28] QU Y M, WU N C, GUSE B, et al. Distinct indicators of land use and hydrology characterize different aspects of riverine phytoplankton communities[J]. Science of the Total Environment,2022,851:158209. doi: 10.1016/j.scitotenv.2022.158209 [29] 马一明, 李秋华, 潘少朴, 等. 贵州高原花溪水库浮游植物优势种生态位及种间联结性动态分析[J]. 湖泊科学,2021,33(3):785-796. doi: 10.18307/2021.0314MA Y M, LI Q H, PAN S P, et al. Dynamic analysis of niche and interspecific association of dominant phytoplankton species in Huaxi Reservoir of Guizhou Plateau[J]. Journal of Lake Sciences,2021,33(3):785-796. doi: 10.18307/2021.0314 [30] 马宝珊, 魏开金, 徐进, 等. 雅砻江下游及其主要支流安宁河着生藻类多样性与空间分布[J]. 中国水产科学,2021,28(12):1602-1611.MA B S, WEI K J, XU J, et al. Diversity and spatial distribution of periphytic algae in the lower reaches of the Yalong River and its main tributary, the Anning River[J]. Journal of Fishery Sciences of China,2021,28(12):1602-1611. [31] 马宝珊, 徐滨, 魏开金, 等. 安宁河中游浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志,2020,39(10):3332-3341. [32] 贺玉晓, 刘天慧, 任玉芬, 等. 北运河秋冬季浮游植物群落结构特征及影响因子分析[J]. 环境科学学报,2020,40(5):1710-1721.HE Y X, LIU T H, REN Y F, et al. Characteristics and influencing factors of phytoplankton community structure in autumn and winter of the North Canal, Beijing[J]. Acta Scientiae Circumstantiae,2020,40(5):1710-1721. [33] DOLÉDEC S, CHESSEL D, GIMARET-CARPENTIER C. Niche separation in community analysis: a new method[J]. Ecology,2000,81(10):2914-2927. doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2 [34] SPATHARIS S, MOUILLOT D, DO C T, et al. A niche-based modeling approach to phytoplankton community assembly rules[J]. Oecologia,2009,159(1):171-180. doi: 10.1007/s00442-008-1178-8 [35] XIAO W P, WANG L, LAWS E, et al. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea[J]. Progress in Oceanography,2018,162:223-239. doi: 10.1016/j.pocean.2018.03.008 [36] 谭好臣, 王瑗媛, 陈阳亮, 等. 多水源水库浮游植物优势种生态位及种间联结性动态分析: 以山东峡山水库为例[J]. 湖泊科学,2023,35(3):844-853.TAN H C, WANG Y Y, CHEN Y L, et al. Dynamic analysis of niche and interspecific association of dominant phytoplankton species in Xiashan Reservoir[J]. Journal of Lake Sciences,2023,35(3):844-853. [37] ROXBURGH S H, CHESSON P. A new method for detecting species associations with spatially autocorrelated data[J]. Ecology,1998,79(6):2180-2192. ⊕ doi: 10.1890/0012-9658(1998)079[2180:ANMFDS]2.0.CO;2