短程反硝化强化脱氮的影响因素及其耦合工艺应用进展

薛同站, 全志道, 李卫华, 杨厚云, 闫祥宇, 杨欣蕾

薛同站,全志道,李卫华,等.短程反硝化强化脱氮的影响因素及其耦合工艺应用进展[J].环境工程技术学报,2024,14(2):663-671. DOI: 10.12153/j.issn.1674-991X.20230621
引用本文: 薛同站,全志道,李卫华,等.短程反硝化强化脱氮的影响因素及其耦合工艺应用进展[J].环境工程技术学报,2024,14(2):663-671. DOI: 10.12153/j.issn.1674-991X.20230621
XUE T Z,QUAN Z D,LI W H,et al.Influencing factors of partial denitrification to enhance nitrogen removal and its coupled process application progress[J].Journal of Environmental Engineering Technology,2024,14(2):663-671. DOI: 10.12153/j.issn.1674-991X.20230621
Citation: XUE T Z,QUAN Z D,LI W H,et al.Influencing factors of partial denitrification to enhance nitrogen removal and its coupled process application progress[J].Journal of Environmental Engineering Technology,2024,14(2):663-671. DOI: 10.12153/j.issn.1674-991X.20230621

短程反硝化强化脱氮的影响因素及其耦合工艺应用进展

基金项目: 国家自然科学基金项目(51978003);国家重点研发计划项目(2020YFC1908600);安徽高校自然科学研究项目(2022AH050258)
详细信息
    作者简介:

    薛同站(1972—),男,副教授,研究方向为环境污染控制与废物资源化利用,xtongzan@126.com

    通讯作者:

    全志道(1998—),男,硕士研究生,研究方向为环境污染控制与废物资源化利用,1073063806@qq.com

  • 中图分类号: X703

Influencing factors of partial denitrification to enhance nitrogen removal and its coupled process application progress

  • 摘要:

    短程反硝化(PD)工艺作为脱氮的前端工艺以其效率高、能耗低以及温室气体排放量少等优点而备受青睐,成为近年来研究热点。短程反硝化耦合厌氧氨氧化(PD/A)工艺是一种新型生物脱氮工艺,不仅在氮循环中发挥着重要作用,而且在节能和环保方面具有很高的经济和实用价值。基于已有研究成果,介绍了PD工艺的研究现状,分析了不同接种污泥对PD工艺启动的影响;从磁效应、碳源、碳氮比(C/N)以及铁炭比等方面进行评述,揭示了关键影响因子对PD工艺强化脱氮过程中微生物群落结构、关键酶活性和细胞代谢途径的影响机理;浅析了PD/A工艺不同耦合形式的特点,对耦合工艺处理城市生活污水、养殖废水和垃圾渗滤液等实际废水的研究与应用进展进行总结;最后,展望了PD/A工艺在污水脱氮处理方面的前景,并结合现有研究提出了PD/A工艺处理垃圾渗滤液的潜在工程应用方案,认为克服PD工艺的影响因素及优化PD/A的参数以提升工艺运行的高效性和稳定性是未来研究的重点方向。

    Abstract:

    As a front-end process for nitrogen removal, partial denitrification (PD) has been favored due to its advantages, such as high efficiency, low energy consumption, and low greenhouse gas emission. It has become a research hotspot in recent years. Partial denitrification coupled anammox process (PD/A) is a new biological nitrogen removal process, which not only plays an important role in the nitrogen cycle, but also holds high economic and practical value in terms of energy saving and environmental protection. The research status of PD process was introduced, and the influence of different inoculated sludge on PD process start-up was analyzed, based on existing research results. The magnetic effect, carbon source, C/N and iron-carbon ratio were reviewed to elucidate the mechanism of the influence of key factors on microbial community structure, key enzyme activity and cell metabolic pathways during enhanced nitrogen removal by PD process. The characteristics of different coupling forms of PD/A process were analyzed, and the research and application progress of the coupling process in treating practical wastewater such as municipal sewage, aquaculture wastewater and landfill leachate were summarized. Finally, the outlook of PD/A process in wastewater nitrogen removal treatment was prospected, and the potential engineering application scheme of PD/A process in landfill leachate treatment was proposed. It was considered that the key direction of future research was to overcome the influencing factors of PD and optimize the parameters of PD/A to enhance the efficiency and stability of the process.

  • 图  1   PD/A反应机理

    Nar—硝酸盐还原酶;Nir—亚硝酸盐还原酶;HZO—联氨氧化酶;HH—联氨水解酶;PDB—短程反硝化细菌;AnAOB—厌氧氨氧化细菌。

    Figure  1.   PD/A reaction mechanism

    图  2   铁元素参与氮转化过程

    Feammox—铁还原氨氧化;NDFO—铁型反硝化。

    Figure  2.   Nitrogen conversion process involving iron elements

    图  3   PN+PD/A处理垃圾渗滤液工艺流程

    Figure  3.   PN+PD/A process flow chart of landfill leachate treatment

    表  1   不同碳源下${\rm NO}_2^-{\text{-N}} $的积累情况

    Table  1   Accumulation of ${\rm NO}_2^-{\text{-N}} $ of different carbon sources

    碳源类型 碳源 接种污泥 运行条件 进水${\rm NO}_3^-{\text{-N}} $
    浓度/(mg/L)
    ${\rm NO}_3^-{\text{-N}} $
    去除率/%
    NAR/% 功能菌属 数据来源
    小分子碳源 乙酸钠 污水处理厂二沉池污泥 SBR反应器,
    温度为25 ℃,
    pH为9.0,C/N为2.5
    60 84.91 87.01 Thauera 文献[29]
    葡萄糖 污水处理厂缺氧池污泥 SBR反应器,
    pH为6.8~7.2,C/N为11
    25 99 97 Competibacter
    Thaurea
    文献[30]
    乙醇 实验室培养良好的污泥 SBR反应器,
    不控制温度,
    C/N为1.77
    800 99.3 99 Thaurea 文献[31]
    甘油 以甘油为碳源培养的污泥 SBR反应器,
    温度为17~27 ℃,
    pH为7.0~7.5
    40 >90 87.3 Saccharibacteria 文献[32]
    大分子碳源 淀粉 污水处理厂澄清池污泥 SBR反应器,
    温度为28~30 ℃,
    C/N为6.4
    40 98 81.1 Dechloromonas
    Thauera
    文献[33]
    复杂碳源 城市污水+少量
    乙酸钠
    实验室培养良好的污泥 SBR反应器,
    温度为26 ℃,
    C/N为3.0
    40 97.9 85.6 Brocadia 文献[9]
    污泥发酵液 实验室缺氧污泥 SBR反应器,
    温度为18~23℃,
    C/N为4.0
    30 99 80 文献[34]
    垃圾渗滤液+
    生活污水
    ASBR反应器,
    温度为20~22 ℃,
    pH为7.0~7.5,C/N为3.2
    40±5 92 70 Thauera
    文献[35]
    下载: 导出CSV

    表  2   PD/A工艺的实际应用

    Table  2   Practical application of PD/A process

    污水种类 污水特性 污泥
    类型
    处理
    工艺
    运行条件 ${\rm NH}_4^+{\text{-N}} $
    去除率/
    %
    ${\rm NO}_3^-{\text{-N}} $
    去除率/
    %
    NAR/% TN
    去除率/
    %
    功能菌属 数据来源
    城市生活
    污水
    低C/N 短程反硝化污泥 分离式
    PD/A
    SBR反应器,
    UASB反应器,
    HRT为2.0~2.3 h,
    温度为14.8~28.2 ℃
    92.8 95.8 80 91.2 Thauera、
    Jettenia
    Brocadia
    文献[51]
    短程硝化
    悬浮污泥
    PN/A-EPD/A工艺 一体式固定膜
    序批式反应器
    (IFAS-SBR),
    温度为(30±1)℃,
    HRT为12 h
    90 77.4 90.1 Brocadia
    Competibacter
    文献[52]
    养殖废水 高COD、
    高氨氮
    厌氧氨氧化污泥、反硝化污泥 一体式
    PD/A
    UASB反应器,
    温度为30 ℃,
    pH为8.0,
    HRT为24 h
    93.13 89.42 Thauera
    Brocadia
    文献[53]
    反硝化污泥、
    厌氧污泥
    一体式
    PD/A
    UASB反应器,
    温度为31~35 ℃,
    HRT为24 h
    88.2 84.2 Brocadia 文献[54]
    垃圾渗
    滤液
    高C/N,
    生化性差
    短程硝化
    污泥
    一体式
    PD/A
    SBR反应器,
    温度为(30±1)℃,
    C/N为3.0
    80 90 75.6 84.8 Thauera
    Brocadia
    文献[55]
    污水处理厂剩余污泥 PVA/SA凝胶一体式PD/A
    SBR反应器,
    乙酸钠为碳源,
    温度为13 ℃,
    C/N为3.0±0.1
    90 95 86.8 90 Thauera
    Kuenenia
    文献[56]
    下载: 导出CSV
  • [1]

    PAL M, YESANKAR P J, DWIVEDI A, et al. Biotic control of harmful algal blooms (HABs): a brief review[J]. Journal of Environmental Management,2020,268:110687. DOI: 10.1016/j.jenvman.2020.110687

    [2]

    YOU Q G, WANG J H, QI G X, et al. Anammox and partial denitrification coupling: a review[J]. RSC Advances,2020,10(21):12554-12572. DOI: 10.1039/D0RA00001A

    [3]

    ZHANG M, WANG S Y, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment,2019,692:393-401. DOI: 10.1016/j.scitotenv.2019.07.293

    [4] 常根旺, 杨津津, 李绍康, 等. 短程反硝化耦合厌氧氨氧化强化脱氮工艺研究与应用进展[J]. 环境工程技术学报,2022,12(5):1519-1527. DOI: 10.12153/j.issn.1674-991X.20210578

    CHANG G W, YANG J J, LI S K, et al. Research and application progress of partial denitrification coupled with anammox for enhanced denitrification[J]. Journal of Environmental Engineering Technology,2022,12(5):1519-1527. DOI: 10.12153/j.issn.1674-991X.20210578

    [5]

    LI M, WU H M, ZHANG J, et al. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: effect of C/N ratios[J]. Bioresource Technology,2017,240:157-164. DOI: 10.1016/j.biortech.2017.02.054

    [6] 田夏迪, 茹临锋, 吕心涛, 等. 短程反硝化工艺的研究进展与展望[J]. 中国给水排水,2020,36(2):7-15.

    TIAN X D, RU L F, LÜ X T, et al. Research progresses and prospect of partial denitrification process[J]. China Water & Wastewater,2020,36(2):7-15.

    [7]

    GONG L X, HUO M X, YANG Q, et al. Performance of heterotrophic partial denitrification under feast-famine condition of electron donor: a case study using acetate as external carbon source[J]. Bioresource Technology,2013,133:263-269. DOI: 10.1016/j.biortech.2012.12.108

    [8]

    LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research,2014,64:237-254. DOI: 10.1016/j.watres.2014.06.042

    [9]

    CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal,2019,362:107-115. DOI: 10.1016/j.cej.2018.12.160

    [10]

    DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: opportunities of extending application for anammox[J]. Environment International,2019,131:105001. DOI: 10.1016/j.envint.2019.105001

    [11]

    GUO Y, LUO Z B, SHEN J H, et al. The main anammox-based processes, the involved microbes and the novel process concept from the application perspective[J]. Frontiers of Environmental Science & Engineering,2021,16(7):84.

    [12]

    CHEN H, TU Z, WU S, et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment[J]. Chemosphere,2021,278:130436. DOI: 10.1016/j.chemosphere.2021.130436

    [13]

    IZADI P, SINHA P, ANDALIB M, et al. Coupling fundamental mechanisms and operational controls in mainstream partial denitrification for partial denitrification anammox applications: a review[J]. Journal of Cleaner Production,2023,400:136741. DOI: 10.1016/j.jclepro.2023.136741

    [14] 陈子健, 周忠波, 孟凡刚. 基于碳减排的厌氧氨氧化脱氮工艺应用及强化调控进展[J]. 环境工程技术学报, 2024,14(2):389-397.

    CHEN Z J, ZHOU Z B, MENG F G. Advances in application and reinforced control of Anammox nitrogen removal process based on carbon emission reduction[J]. Journal of Environmental Engineering Technology, 2024,14(2):389-397.

    [15]

    DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology,2016,100(4):2011-2021. DOI: 10.1007/s00253-015-7052-9

    [16]

    LE T, PENG B, SU C Y, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox[J]. Water Environment Research:A Research Publication of the Water Environment Federation,2019,91(11):1455-1465. DOI: 10.1002/wer.1140

    [17]

    AL-HAZMI H E, MAKTABIFARD M, GRUBBA D, et al. An advanced synergy of partial denitrification-anammox for optimizing nitrogen removal from wastewater: a review[J]. Bioresource Technology,2023,381:129168. DOI: 10.1016/j.biortech.2023.129168

    [18]

    MA B, WANG S Y, CAO S B, et al. Biological nitrogen removal from sewage via anammox: recent advances[J]. Bioresource Technology,2016,200:981-990. DOI: 10.1016/j.biortech.2015.10.074

    [19] 柳全龙, 范亚骏, 张淼, 等. C/N对短程反硝化 ${\rm NO}_2^-{\text{-N}} $积累特性影响及机理分析[J]. 工业水处理,2022,42(6):159-167.

    LIU Q L, FAN Y J, ZHANG M, et al. Influence of C/N on ${\rm NO}_2^-{\text{-N}} $ accumulation characteristic and mechanism analysis in short-cut denitrification[J]. Industrial Water Treatment,2022,42(6):159-167.

    [20]

    CHEN H, HU H Y, CHEN Q Q, et al. Successful start-up of the anammox process: influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology,2016,211:594-602. DOI: 10.1016/j.biortech.2016.03.139

    [21]

    WANG Z B, LIU X L, NI S Q, et al. Weak magnetic field: a powerful strategy to enhance partial nitrification[J]. Water Research,2017,120:190-198. DOI: 10.1016/j.watres.2017.04.058

    [22]

    CHEN B, LIU H W, WU Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium[J]. ECS Transactions,2014,59(1):439-448. DOI: 10.1149/05901.0439ecst

    [23]

    YAN L L, LIU Y, WEN Y, et al. Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen[J]. Bioresource Technology,2015,179:460-466. DOI: 10.1016/j.biortech.2014.12.042

    [24] 韩庆祥, 邵凤琴. 磁场对活性污泥法处理废水的强化作用[J]. 抚顺石油学院学报,2002,22(3):8-10.

    HAN Q X, SHAO F Q. The increasing effect of magnetic field on wastewater treatment by activated sludge process[J]. Journal of Fushun Petroleum Institute,2002,22(3):8-10.

    [25] 于聪. 磁场调控短程反硝化体系亚硝态氮积累特性研究[D]. 济南: 济南大学, 2020.
    [26]

    WANG H T, GUO L, REN X M, et al. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process[J]. Bioresource Technology,2022,350:126891. DOI: 10.1016/j.biortech.2022.126891

    [27]

    POCHANA K, KELLER J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Science and Technology,1999,39(6):61-68. DOI: 10.2166/wst.1999.0262

    [28]

    SHI L L, DU R, PENG Y Z. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology,2019,283:18-27. DOI: 10.1016/j.biortech.2019.03.063

    [29]

    SI Z, PENG Y Z, YANG A M, et al. Rapid nitrite production via partial denitrification: pilot-scale operation and microbial community analysis[J]. Environmental Science:Water Research & Technology,2018,4(1):80-86.

    [30]

    LIU X H, LIU R Y, YANG Q, et al. Achieving and control of partial denitrification in anoxic-oxic process of real municipal wastewater treatment plant[J]. Bioresource Technology,2021,341:125765. DOI: 10.1016/j.biortech.2021.125765

    [31]

    DU R, CAO S B, LI B K, et al. Step-feeding organic carbon enhances high-strength nitrate and ammonia removal via DEAMOX process[J]. Chemical Engineering Journal,2019,360:501-510. DOI: 10.1016/j.cej.2018.12.011

    [32]

    ZHANG T, CAO J S, ZHU Q R, et al. Revealing the characteristics and formation mechanisms of partial denitrification granular sludge for efficient nitrite accumulation driven by glycerol[J]. Chemical Engineering Journal,2022,428:131195. DOI: 10.1016/j.cej.2021.131195

    [33]

    SHI L L, DU R, PENG Y Z, et al. Successful establishment of partial denitrification by introducing hydrolytic acidification of slowly biodegradable organic matter[J]. Bioresource Technology,2020,315:123887. DOI: 10.1016/j.biortech.2020.123887

    [34]

    CAO S B, WANG S Y, PENG Y Z, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge[J]. Bioresource Technology,2013,149:570-574. DOI: 10.1016/j.biortech.2013.09.072

    [35]

    WU L N, LI Z, HUANG S, et al. Low energy treatment of landfill leachate using simultaneous partial nitrification and partial denitrification with anaerobic ammonia oxidation[J]. Environment International,2019,127:452-461. DOI: 10.1016/j.envint.2019.02.071

    [36] 吴代顺, 桂丽娟, 陈晓志, 等. 不同类型碳源及其投加量对污泥反硝化的影响研究[J]. 兰州交通大学学报,2012,31(3):99-103.

    WU D S, GUI L J, CHEN X Z, et al. Effects of different types and dosages of carbon sources on denitrification of activated sludge[J]. Journal of Lanzhou Jiaotong University,2012,31(3):99-103.

    [37]

    LE T, PENG B, SU C Y, et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox[J]. Water Environment Research:a Research Publication of the Water Environment Federation,2019,91(3):185-197. DOI: 10.1002/wer.1016

    [38]

    MIAO Y Y, PENG Y Z, ZHANG L, et al. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios[J]. Chemical Engineering Journal,2018,334:664-672. DOI: 10.1016/j.cej.2017.10.072

    [39]

    ZHANG X J, CHEN Z, ZHOU Y, et al. Impacts of the heavy metals Cu(Ⅱ), Zn(Ⅱ) and Fe(Ⅱ) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(Ⅱ) makes a difference[J]. Science of the Total Environment,2019,648:798-804. DOI: 10.1016/j.scitotenv.2018.08.206

    [40]

    BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology,2014,170:506-512. DOI: 10.1016/j.biortech.2014.07.106

    [41]

    ERDIM E, YÜCESOY ÖZKAN Z, KURT H, et al. Overcoming challenges in mainstream Anammox applications: utilization of nanoscale zero valent iron (nZVI)[J]. Science of the Total Environment,2019,651:3023-3033. DOI: 10.1016/j.scitotenv.2018.09.140

    [42]

    WANG L F, ZHAO Y H, LI Y, et al. Fe-loaded biochar facilitates simultaneous bisphenol A biodegradation and efficient nitrate reduction: physicochemical properties and biological mechanism[J]. Journal of Cleaner Production,2022,372:133814. DOI: 10.1016/j.jclepro.2022.133814

    [43] 吕永涛, 刘婷, 曾玉莲, 等. Fe0-活性炭强化短程反硝化脱氮及影响因素[J]. 环境科学,2017,38(5):1991-1996.

    LÜ Y T, LIU T, ZENG Y L, et al. Enhanced short-cut denitrification by Fe0-activated carbon and its influencing factors[J]. Environmental Science,2017,38(5):1991-1996.

    [44] 徐炳阳, 黄显怀, 李卫华. 铁碳内电解耦合生物厌氧反硝化促进低C/N条件下脱氮[J]. 水处理技术,2019,45(8):108-111.

    XU B Y, HUANG X H, LI W H. Iron-carbon internal electrolysis coupled with biological anaerobic denitrification promotes nitrogen removal under low C/N conditions[J]. Technology of Water Treatment,2019,45(8):108-111.

    [45]

    MAK C Y, LIN J G, CHEN W H, et al. The short- and long-term inhibitory effects of Fe(Ⅱ) on anaerobic ammonium oxidizing (Anammox) process[J]. Water Science and Technology,2019,79(10):1860-1867. DOI: 10.2166/wst.2019.188

    [46]

    CHEN Y Z, ZHAO Z C, LIU H, et al. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration[J]. Chemosphere,2020,245:125650. DOI: 10.1016/j.chemosphere.2019.125650

    [47]

    ZHENG B Y, ZHANG L, GUO J H, et al. Suspended sludge and biofilm shaped different anammox communities in two pilot-scale one-stage anammox reactors[J]. Bioresource Technology,2016,211:273-279. DOI: 10.1016/j.biortech.2016.03.049

    [48] 王维奇, 王秀杰, 李军, 等. 部分反硝化耦合厌氧氨氧化脱氮性能研究[J]. 中国环境科学,2019,39(2):641-647.

    WANG W Q, WANG X J, LI J, et al. Study on the performance of partial denitrification coupled with anaerobic ammonia oxidation for nitrogen removal[J]. China Environmental Science,2019,39(2):641-647.

    [49]

    JI J T, PENG Y Z, WANG B, et al. Synergistic partial-denitrification, anammox, and in situ fermentation (SPDAF) process for advanced nitrogen removal from domestic and nitrate-containing wastewater[J]. Environmental Science & Technology,2020,54(6):3702-3713.

    [50]

    LI J W, PENG Y Z, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research,2019,160:178-187. DOI: 10.1016/j.watres.2019.05.070

    [51]

    DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-anammox: a method for high nitrate wastewater treatment[J]. Environment International,2019,126:707-716. DOI: 10.1016/j.envint.2019.03.007

    [52]

    CUI H H, ZHANG L, ZHANG Q, et al. Advanced nitrogen removal from low C/N municipal wastewater by combining partial nitrification-anammox and endogenous partial denitrification-anammox (PN/A-EPD/A) process in a single-stage reactor[J]. Bioresource Technology,2021,339:125501. DOI: 10.1016/j.biortech.2021.125501

    [53]

    JIAN J X, LIAO X J, LI S P, et al. Nitrogen removal performance and sludge characteristics of wastewater from industrial recirculating aquaculture systems via anammox coupled with denitrification[J]. Journal of Water Process Engineering,2022,49:103092. DOI: 10.1016/j.jwpe.2022.103092

    [54] 顾平. 猪场废水厌氧氨氧化反硝化甲烷化复合工艺特征分析及应用研究[D]. 南昌: 南昌大学, 2011.
    [55]

    WANG Z, ZHANG L, ZHANG F Z, et al. Enhanced nitrogen removal from nitrate-rich mature leachate via partial denitrification (PD)-anammox under real-time control[J]. Bioresource Technology,2019,289:121615. DOI: 10.1016/j.biortech.2019.121615

    [56]

    JIANG H, WANG Z, REN S, et al. Enrichment and retention of key functional bacteria of partial denitrification-Anammox (PD/A) process via cell immobilization: a novel strategy for fast PD/A application[J]. Bioresource Technology,2021,326:124744. DOI: 10.1016/j.biortech.2021.124744

    [57]

    DU R, CAO S B, ZHANG H Y, et al. Flexible nitrite supply alternative for mainstream anammox: advances in enhancing process stability[J]. Environmental Science & Technology,2020,54(10):6353-6364.

    [58] 李志荣. 厌氧氨氧化技术用于垃圾渗滤液处理的研究与应用现状[J]. 环保科技,2022,28(3):54-59.

    LI Z R. The research and application of ANAMMOX for the treatment of landfill leachate[J]. Environmental Protection and Technology,2022,28(3):54-59.

    [59]

    SUN H W, PENG Y Z, SHI X N. Advanced treatment of landfill leachate using anaerobic–aerobic process: organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite[J]. Bioresource Technology,2015,177:337-345. DOI: 10.1016/j.biortech.2014.10.152

    [60] 王众. 厌氧氨氧化处理晚期垃圾渗滤液的工艺技术与机理[D]. 哈尔滨: 哈尔滨工业大学, 2021. ◇
  • 期刊类型引用(1)

    1. 吴宇伦,李泽敏,成晓倩,邱光磊,韦朝海. 基于机器学习的短程硝化/短程反硝化-厌氧氨氧化工艺脱氮性能预测与关键参数识别. 环境工程. 2024(09): 180-190 . 百度学术

    其他类型引用(5)

图(3)  /  表(2)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  279
  • PDF下载量:  60
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-08-25
  • 修回日期:  2023-12-17
  • 录用日期:  2023-12-28
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回