留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短程反硝化强化脱氮的影响因素及其耦合工艺应用进展

薛同站 全志道 李卫华 杨厚云 闫祥宇 杨欣蕾

薛同站,全志道,李卫华,等.短程反硝化强化脱氮的影响因素及其耦合工艺应用进展[J].环境工程技术学报,2024,14(2):663-671 doi: 10.12153/j.issn.1674-991X.20230621
引用本文: 薛同站,全志道,李卫华,等.短程反硝化强化脱氮的影响因素及其耦合工艺应用进展[J].环境工程技术学报,2024,14(2):663-671 doi: 10.12153/j.issn.1674-991X.20230621
XUE T Z,QUAN Z D,LI W H,et al.Influencing factors of partial denitrification to enhance nitrogen removal and its coupled process application progress[J].Journal of Environmental Engineering Technology,2024,14(2):663-671 doi: 10.12153/j.issn.1674-991X.20230621
Citation: XUE T Z,QUAN Z D,LI W H,et al.Influencing factors of partial denitrification to enhance nitrogen removal and its coupled process application progress[J].Journal of Environmental Engineering Technology,2024,14(2):663-671 doi: 10.12153/j.issn.1674-991X.20230621

短程反硝化强化脱氮的影响因素及其耦合工艺应用进展

doi: 10.12153/j.issn.1674-991X.20230621
基金项目: 国家自然科学基金项目(51978003);国家重点研发计划项目(2020YFC1908600);安徽高校自然科学研究项目(2022AH050258)
详细信息
    作者简介:

    薛同站(1972—),男,副教授,研究方向为环境污染控制与废物资源化利用,xtongzan@126.com

    通讯作者:

    全志道(1998—),男,硕士研究生,研究方向为环境污染控制与废物资源化利用,1073063806@qq.com

  • 中图分类号: X703

Influencing factors of partial denitrification to enhance nitrogen removal and its coupled process application progress

  • 摘要:

    短程反硝化(PD)工艺作为脱氮的前端工艺以其效率高、能耗低以及温室气体排放量少等优点而备受青睐,成为近年来研究热点。短程反硝化耦合厌氧氨氧化(PD/A)工艺是一种新型生物脱氮工艺,不仅在氮循环中发挥着重要作用,而且在节能和环保方面具有很高的经济和实用价值。基于已有研究成果,介绍了PD工艺的研究现状,分析了不同接种污泥对PD工艺启动的影响;从磁效应、碳源、碳氮比(C/N)以及铁炭比等方面进行评述,揭示了关键影响因子对PD工艺强化脱氮过程中微生物群落结构、关键酶活性和细胞代谢途径的影响机理;浅析了PD/A工艺不同耦合形式的特点,对耦合工艺处理城市生活污水、养殖废水和垃圾渗滤液等实际废水的研究与应用进展进行总结;最后,展望了PD/A工艺在污水脱氮处理方面的前景,并结合现有研究提出了PD/A工艺处理垃圾渗滤液的潜在工程应用方案,认为克服PD工艺的影响因素及优化PD/A的参数以提升工艺运行的高效性和稳定性是未来研究的重点方向。

     

  • 图  1  PD/A反应机理

    Nar—硝酸盐还原酶;Nir—亚硝酸盐还原酶;HZO—联氨氧化酶;HH—联氨水解酶;PDB—短程反硝化细菌;AnAOB—厌氧氨氧化细菌。

    Figure  1.  PD/A reaction mechanism

    图  2  铁元素参与氮转化过程

    Feammox—铁还原氨氧化;NDFO—铁型反硝化。

    Figure  2.  Nitrogen conversion process involving iron elements

    图  3  PN+PD/A处理垃圾渗滤液工艺流程

    Figure  3.  PN+PD/A process flow chart of landfill leachate treatment

    表  1  不同碳源下${\rm NO}_2^-{\text{-N}} $的积累情况

    Table  1.   Accumulation of ${\rm NO}_2^-{\text{-N}} $ of different carbon sources

    碳源类型 碳源 接种污泥 运行条件 进水${\rm NO}_3^-{\text{-N}} $
    浓度/(mg/L)
    ${\rm NO}_3^-{\text{-N}} $
    去除率/%
    NAR/% 功能菌属 数据来源
    小分子碳源 乙酸钠 污水处理厂二沉池污泥 SBR反应器,
    温度为25 ℃,
    pH为9.0,C/N为2.5
    60 84.91 87.01 Thauera 文献[29]
    葡萄糖 污水处理厂缺氧池污泥 SBR反应器,
    pH为6.8~7.2,C/N为11
    25 99 97 Competibacter
    Thaurea
    文献[30]
    乙醇 实验室培养良好的污泥 SBR反应器,
    不控制温度,
    C/N为1.77
    800 99.3 99 Thaurea 文献[31]
    甘油 以甘油为碳源培养的污泥 SBR反应器,
    温度为17~27 ℃,
    pH为7.0~7.5
    40 >90 87.3 Saccharibacteria 文献[32]
    大分子碳源 淀粉 污水处理厂澄清池污泥 SBR反应器,
    温度为28~30 ℃,
    C/N为6.4
    40 98 81.1 Dechloromonas
    Thauera
    文献[33]
    复杂碳源 城市污水+少量
    乙酸钠
    实验室培养良好的污泥 SBR反应器,
    温度为26 ℃,
    C/N为3.0
    40 97.9 85.6 Brocadia 文献[9]
    污泥发酵液 实验室缺氧污泥 SBR反应器,
    温度为18~23℃,
    C/N为4.0
    30 99 80 文献[34]
    垃圾渗滤液+
    生活污水
    ASBR反应器,
    温度为20~22 ℃,
    pH为7.0~7.5,C/N为3.2
    40±5 92 70 Thauera
    文献[35]
    下载: 导出CSV

    表  2  PD/A工艺的实际应用

    Table  2.   Practical application of PD/A process

    污水种类 污水特性 污泥
    类型
    处理
    工艺
    运行条件 ${\rm NH}_4^+{\text{-N}} $
    去除率/
    %
    ${\rm NO}_3^-{\text{-N}} $
    去除率/
    %
    NAR/% TN
    去除率/
    %
    功能菌属 数据来源
    城市生活
    污水
    低C/N 短程反硝化污泥 分离式
    PD/A
    SBR反应器,
    UASB反应器,
    HRT为2.0~2.3 h,
    温度为14.8~28.2 ℃
    92.8 95.8 80 91.2 Thauera、
    Jettenia
    Brocadia
    文献[51]
    短程硝化
    悬浮污泥
    PN/A-EPD/A工艺 一体式固定膜
    序批式反应器
    (IFAS-SBR),
    温度为(30±1)℃,
    HRT为12 h
    90 77.4 90.1 Brocadia
    Competibacter
    文献[52]
    养殖废水 高COD、
    高氨氮
    厌氧氨氧化污泥、反硝化污泥 一体式
    PD/A
    UASB反应器,
    温度为30 ℃,
    pH为8.0,
    HRT为24 h
    93.13 89.42 Thauera
    Brocadia
    文献[53]
    反硝化污泥、
    厌氧污泥
    一体式
    PD/A
    UASB反应器,
    温度为31~35 ℃,
    HRT为24 h
    88.2 84.2 Brocadia 文献[54]
    垃圾渗
    滤液
    高C/N,
    生化性差
    短程硝化
    污泥
    一体式
    PD/A
    SBR反应器,
    温度为(30±1)℃,
    C/N为3.0
    80 90 75.6 84.8 Thauera
    Brocadia
    文献[55]
    污水处理厂剩余污泥 PVA/SA凝胶一体式PD/A
    SBR反应器,
    乙酸钠为碳源,
    温度为13 ℃,
    C/N为3.0±0.1
    90 95 86.8 90 Thauera
    Kuenenia
    文献[56]
    下载: 导出CSV
  • [1] PAL M, YESANKAR P J, DWIVEDI A, et al. Biotic control of harmful algal blooms (HABs): a brief review[J]. Journal of Environmental Management,2020,268:110687. doi: 10.1016/j.jenvman.2020.110687
    [2] YOU Q G, WANG J H, QI G X, et al. Anammox and partial denitrification coupling: a review[J]. RSC Advances,2020,10(21):12554-12572. doi: 10.1039/D0RA00001A
    [3] ZHANG M, WANG S Y, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment,2019,692:393-401. doi: 10.1016/j.scitotenv.2019.07.293
    [4] 常根旺, 杨津津, 李绍康, 等. 短程反硝化耦合厌氧氨氧化强化脱氮工艺研究与应用进展[J]. 环境工程技术学报,2022,12(5):1519-1527. doi: 10.12153/j.issn.1674-991X.20210578

    CHANG G W, YANG J J, LI S K, et al. Research and application progress of partial denitrification coupled with anammox for enhanced denitrification[J]. Journal of Environmental Engineering Technology,2022,12(5):1519-1527. doi: 10.12153/j.issn.1674-991X.20210578
    [5] LI M, WU H M, ZHANG J, et al. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: effect of C/N ratios[J]. Bioresource Technology,2017,240:157-164. doi: 10.1016/j.biortech.2017.02.054
    [6] 田夏迪, 茹临锋, 吕心涛, 等. 短程反硝化工艺的研究进展与展望[J]. 中国给水排水,2020,36(2):7-15.

    TIAN X D, RU L F, LÜ X T, et al. Research progresses and prospect of partial denitrification process[J]. China Water & Wastewater,2020,36(2):7-15.
    [7] GONG L X, HUO M X, YANG Q, et al. Performance of heterotrophic partial denitrification under feast-famine condition of electron donor: a case study using acetate as external carbon source[J]. Bioresource Technology,2013,133:263-269. doi: 10.1016/j.biortech.2012.12.108
    [8] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research,2014,64:237-254. doi: 10.1016/j.watres.2014.06.042
    [9] CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal,2019,362:107-115. doi: 10.1016/j.cej.2018.12.160
    [10] DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: opportunities of extending application for anammox[J]. Environment International,2019,131:105001. doi: 10.1016/j.envint.2019.105001
    [11] GUO Y, LUO Z B, SHEN J H, et al. The main anammox-based processes, the involved microbes and the novel process concept from the application perspective[J]. Frontiers of Environmental Science & Engineering,2021,16(7):84.
    [12] CHEN H, TU Z, WU S, et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment[J]. Chemosphere,2021,278:130436. doi: 10.1016/j.chemosphere.2021.130436
    [13] IZADI P, SINHA P, ANDALIB M, et al. Coupling fundamental mechanisms and operational controls in mainstream partial denitrification for partial denitrification anammox applications: a review[J]. Journal of Cleaner Production,2023,400:136741. doi: 10.1016/j.jclepro.2023.136741
    [14] 陈子健, 周忠波, 孟凡刚. 基于碳减排的厌氧氨氧化脱氮工艺应用及强化调控进展[J]. 环境工程技术学报, 2024,14(2):389-397.

    CHEN Z J, ZHOU Z B, MENG F G. Advances in application and reinforced control of Anammox nitrogen removal process based on carbon emission reduction[J]. Journal of Environmental Engineering Technology, 2024,14(2):389-397.
    [15] DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology,2016,100(4):2011-2021. doi: 10.1007/s00253-015-7052-9
    [16] LE T, PENG B, SU C Y, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox[J]. Water Environment Research:A Research Publication of the Water Environment Federation,2019,91(11):1455-1465. doi: 10.1002/wer.1140
    [17] AL-HAZMI H E, MAKTABIFARD M, GRUBBA D, et al. An advanced synergy of partial denitrification-anammox for optimizing nitrogen removal from wastewater: a review[J]. Bioresource Technology,2023,381:129168. doi: 10.1016/j.biortech.2023.129168
    [18] MA B, WANG S Y, CAO S B, et al. Biological nitrogen removal from sewage via anammox: recent advances[J]. Bioresource Technology,2016,200:981-990. doi: 10.1016/j.biortech.2015.10.074
    [19] 柳全龙, 范亚骏, 张淼, 等. C/N对短程反硝化 ${\rm NO}_2^-{\text{-N}} $积累特性影响及机理分析[J]. 工业水处理,2022,42(6):159-167.

    LIU Q L, FAN Y J, ZHANG M, et al. Influence of C/N on ${\rm NO}_2^-{\text{-N}} $ accumulation characteristic and mechanism analysis in short-cut denitrification[J]. Industrial Water Treatment,2022,42(6):159-167.
    [20] CHEN H, HU H Y, CHEN Q Q, et al. Successful start-up of the anammox process: influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology,2016,211:594-602. doi: 10.1016/j.biortech.2016.03.139
    [21] WANG Z B, LIU X L, NI S Q, et al. Weak magnetic field: a powerful strategy to enhance partial nitrification[J]. Water Research,2017,120:190-198. doi: 10.1016/j.watres.2017.04.058
    [22] CHEN B, LIU H W, WU Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium[J]. ECS Transactions,2014,59(1):439-448. doi: 10.1149/05901.0439ecst
    [23] YAN L L, LIU Y, WEN Y, et al. Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen[J]. Bioresource Technology,2015,179:460-466. doi: 10.1016/j.biortech.2014.12.042
    [24] 韩庆祥, 邵凤琴. 磁场对活性污泥法处理废水的强化作用[J]. 抚顺石油学院学报,2002,22(3):8-10.

    HAN Q X, SHAO F Q. The increasing effect of magnetic field on wastewater treatment by activated sludge process[J]. Journal of Fushun Petroleum Institute,2002,22(3):8-10.
    [25] 于聪. 磁场调控短程反硝化体系亚硝态氮积累特性研究[D]. 济南: 济南大学, 2020.
    [26] WANG H T, GUO L, REN X M, et al. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process[J]. Bioresource Technology,2022,350:126891. doi: 10.1016/j.biortech.2022.126891
    [27] POCHANA K, KELLER J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Science and Technology,1999,39(6):61-68. doi: 10.2166/wst.1999.0262
    [28] SHI L L, DU R, PENG Y Z. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology,2019,283:18-27. doi: 10.1016/j.biortech.2019.03.063
    [29] SI Z, PENG Y Z, YANG A M, et al. Rapid nitrite production via partial denitrification: pilot-scale operation and microbial community analysis[J]. Environmental Science:Water Research & Technology,2018,4(1):80-86.
    [30] LIU X H, LIU R Y, YANG Q, et al. Achieving and control of partial denitrification in anoxic-oxic process of real municipal wastewater treatment plant[J]. Bioresource Technology,2021,341:125765. doi: 10.1016/j.biortech.2021.125765
    [31] DU R, CAO S B, LI B K, et al. Step-feeding organic carbon enhances high-strength nitrate and ammonia removal via DEAMOX process[J]. Chemical Engineering Journal,2019,360:501-510. doi: 10.1016/j.cej.2018.12.011
    [32] ZHANG T, CAO J S, ZHU Q R, et al. Revealing the characteristics and formation mechanisms of partial denitrification granular sludge for efficient nitrite accumulation driven by glycerol[J]. Chemical Engineering Journal,2022,428:131195. doi: 10.1016/j.cej.2021.131195
    [33] SHI L L, DU R, PENG Y Z, et al. Successful establishment of partial denitrification by introducing hydrolytic acidification of slowly biodegradable organic matter[J]. Bioresource Technology,2020,315:123887. doi: 10.1016/j.biortech.2020.123887
    [34] CAO S B, WANG S Y, PENG Y Z, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge[J]. Bioresource Technology,2013,149:570-574. doi: 10.1016/j.biortech.2013.09.072
    [35] WU L N, LI Z, HUANG S, et al. Low energy treatment of landfill leachate using simultaneous partial nitrification and partial denitrification with anaerobic ammonia oxidation[J]. Environment International,2019,127:452-461. doi: 10.1016/j.envint.2019.02.071
    [36] 吴代顺, 桂丽娟, 陈晓志, 等. 不同类型碳源及其投加量对污泥反硝化的影响研究[J]. 兰州交通大学学报,2012,31(3):99-103.

    WU D S, GUI L J, CHEN X Z, et al. Effects of different types and dosages of carbon sources on denitrification of activated sludge[J]. Journal of Lanzhou Jiaotong University,2012,31(3):99-103.
    [37] LE T, PENG B, SU C Y, et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox[J]. Water Environment Research:a Research Publication of the Water Environment Federation,2019,91(3):185-197. doi: 10.1002/wer.1016
    [38] MIAO Y Y, PENG Y Z, ZHANG L, et al. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios[J]. Chemical Engineering Journal,2018,334:664-672. doi: 10.1016/j.cej.2017.10.072
    [39] ZHANG X J, CHEN Z, ZHOU Y, et al. Impacts of the heavy metals Cu(Ⅱ), Zn(Ⅱ) and Fe(Ⅱ) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(Ⅱ) makes a difference[J]. Science of the Total Environment,2019,648:798-804. doi: 10.1016/j.scitotenv.2018.08.206
    [40] BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology,2014,170:506-512. doi: 10.1016/j.biortech.2014.07.106
    [41] ERDIM E, YÜCESOY ÖZKAN Z, KURT H, et al. Overcoming challenges in mainstream Anammox applications: utilization of nanoscale zero valent iron (nZVI)[J]. Science of the Total Environment,2019,651:3023-3033. doi: 10.1016/j.scitotenv.2018.09.140
    [42] WANG L F, ZHAO Y H, LI Y, et al. Fe-loaded biochar facilitates simultaneous bisphenol A biodegradation and efficient nitrate reduction: physicochemical properties and biological mechanism[J]. Journal of Cleaner Production,2022,372:133814. doi: 10.1016/j.jclepro.2022.133814
    [43] 吕永涛, 刘婷, 曾玉莲, 等. Fe0-活性炭强化短程反硝化脱氮及影响因素[J]. 环境科学,2017,38(5):1991-1996.

    LÜ Y T, LIU T, ZENG Y L, et al. Enhanced short-cut denitrification by Fe0-activated carbon and its influencing factors[J]. Environmental Science,2017,38(5):1991-1996.
    [44] 徐炳阳, 黄显怀, 李卫华. 铁碳内电解耦合生物厌氧反硝化促进低C/N条件下脱氮[J]. 水处理技术,2019,45(8):108-111.

    XU B Y, HUANG X H, LI W H. Iron-carbon internal electrolysis coupled with biological anaerobic denitrification promotes nitrogen removal under low C/N conditions[J]. Technology of Water Treatment,2019,45(8):108-111.
    [45] MAK C Y, LIN J G, CHEN W H, et al. The short- and long-term inhibitory effects of Fe(Ⅱ) on anaerobic ammonium oxidizing (Anammox) process[J]. Water Science and Technology,2019,79(10):1860-1867. doi: 10.2166/wst.2019.188
    [46] CHEN Y Z, ZHAO Z C, LIU H, et al. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration[J]. Chemosphere,2020,245:125650. doi: 10.1016/j.chemosphere.2019.125650
    [47] ZHENG B Y, ZHANG L, GUO J H, et al. Suspended sludge and biofilm shaped different anammox communities in two pilot-scale one-stage anammox reactors[J]. Bioresource Technology,2016,211:273-279. doi: 10.1016/j.biortech.2016.03.049
    [48] 王维奇, 王秀杰, 李军, 等. 部分反硝化耦合厌氧氨氧化脱氮性能研究[J]. 中国环境科学,2019,39(2):641-647.

    WANG W Q, WANG X J, LI J, et al. Study on the performance of partial denitrification coupled with anaerobic ammonia oxidation for nitrogen removal[J]. China Environmental Science,2019,39(2):641-647.
    [49] JI J T, PENG Y Z, WANG B, et al. Synergistic partial-denitrification, anammox, and in situ fermentation (SPDAF) process for advanced nitrogen removal from domestic and nitrate-containing wastewater[J]. Environmental Science & Technology,2020,54(6):3702-3713.
    [50] LI J W, PENG Y Z, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research,2019,160:178-187. doi: 10.1016/j.watres.2019.05.070
    [51] DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-anammox: a method for high nitrate wastewater treatment[J]. Environment International,2019,126:707-716. doi: 10.1016/j.envint.2019.03.007
    [52] CUI H H, ZHANG L, ZHANG Q, et al. Advanced nitrogen removal from low C/N municipal wastewater by combining partial nitrification-anammox and endogenous partial denitrification-anammox (PN/A-EPD/A) process in a single-stage reactor[J]. Bioresource Technology,2021,339:125501. doi: 10.1016/j.biortech.2021.125501
    [53] JIAN J X, LIAO X J, LI S P, et al. Nitrogen removal performance and sludge characteristics of wastewater from industrial recirculating aquaculture systems via anammox coupled with denitrification[J]. Journal of Water Process Engineering,2022,49:103092. doi: 10.1016/j.jwpe.2022.103092
    [54] 顾平. 猪场废水厌氧氨氧化反硝化甲烷化复合工艺特征分析及应用研究[D]. 南昌: 南昌大学, 2011.
    [55] WANG Z, ZHANG L, ZHANG F Z, et al. Enhanced nitrogen removal from nitrate-rich mature leachate via partial denitrification (PD)-anammox under real-time control[J]. Bioresource Technology,2019,289:121615. doi: 10.1016/j.biortech.2019.121615
    [56] JIANG H, WANG Z, REN S, et al. Enrichment and retention of key functional bacteria of partial denitrification-Anammox (PD/A) process via cell immobilization: a novel strategy for fast PD/A application[J]. Bioresource Technology,2021,326:124744. doi: 10.1016/j.biortech.2021.124744
    [57] DU R, CAO S B, ZHANG H Y, et al. Flexible nitrite supply alternative for mainstream anammox: advances in enhancing process stability[J]. Environmental Science & Technology,2020,54(10):6353-6364.
    [58] 李志荣. 厌氧氨氧化技术用于垃圾渗滤液处理的研究与应用现状[J]. 环保科技,2022,28(3):54-59.

    LI Z R. The research and application of ANAMMOX for the treatment of landfill leachate[J]. Environmental Protection and Technology,2022,28(3):54-59.
    [59] SUN H W, PENG Y Z, SHI X N. Advanced treatment of landfill leachate using anaerobic–aerobic process: organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite[J]. Bioresource Technology,2015,177:337-345. doi: 10.1016/j.biortech.2014.10.152
    [60] 王众. 厌氧氨氧化处理晚期垃圾渗滤液的工艺技术与机理[D]. 哈尔滨: 哈尔滨工业大学, 2021. ◇
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  244
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-26
  • 录用日期:  2023-12-29
  • 修回日期:  2023-12-18

目录

    /

    返回文章
    返回