留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬季天津临港复合型人工湿地对抗生素抗性基因的去除效果

张欣宇 邢畅 王丽平 贾雪红 张宇轩 徐秀丽

张欣宇,邢畅,王丽平,等.冬季天津临港复合型人工湿地对抗生素抗性基因的去除效果[J].环境工程技术学报,2024,14(4):1284-1298 doi: 10.12153/j.issn.1674-991X.20230632
引用本文: 张欣宇,邢畅,王丽平,等.冬季天津临港复合型人工湿地对抗生素抗性基因的去除效果[J].环境工程技术学报,2024,14(4):1284-1298 doi: 10.12153/j.issn.1674-991X.20230632
ZHANG X Y,XING C,WANG L P,et al.Removal of antibiotic resistance genes by composite constructed wetlands of Tianjin Lingang in Winter[J].Journal of Environmental Engineering Technology,2024,14(4):1284-1298 doi: 10.12153/j.issn.1674-991X.20230632
Citation: ZHANG X Y,XING C,WANG L P,et al.Removal of antibiotic resistance genes by composite constructed wetlands of Tianjin Lingang in Winter[J].Journal of Environmental Engineering Technology,2024,14(4):1284-1298 doi: 10.12153/j.issn.1674-991X.20230632

冬季天津临港复合型人工湿地对抗生素抗性基因的去除效果

doi: 10.12153/j.issn.1674-991X.20230632
基金项目: 中央级公益性科研院所基本科研业务费专项(2022YSKY-03)
详细信息
    作者简介:

    张欣宇(2000—),女,硕士研究生,主要研究方向为资源与环境,z1920831143@163.com

    通讯作者:

    王丽平(1974—),女,研究员,主要从事河口与近岸海域环境监测和生态风险评价研究,wanglp@craes.org.cn

  • 中图分类号: X714

Removal of antibiotic resistance genes by composite constructed wetlands of Tianjin Lingang in Winter

  • 摘要:

    环境中耐药菌和抗生素抗性基因(ARGs)因抗生素的大量应用而广泛存在,影响抗生素对疾病的治疗效果,对人体健康和生态安全构成威胁。研究表明人工湿地(CWs)能够有效去除ARGs,但目前对于北方冬季复合型CWs对ARGs的去除效果尚不明确。以天津临港复合型的CWs(调节塘+水平潜流湿地+表流湿地工艺)为研究对象,开展冬季其对ARGs去除效果的研究;针对不同功能区采集水体样本,采用高通量荧光定量PCR对水体中16S rRNA基因、ARGs、可移动遗传元件(MGEs)及细菌种群组成进行检测,综合分析CWs对ARGs的去除效果,探讨冬季运行期间影响去除效果的关键因素。结果表明:冬季水体中表征细菌数量的16S rRNA基因绝对丰度为2.70×104~1.41×105拷贝/mL;ARGs总检出率为72.5%,其中floR和sul2并非源于进水。各ARGs在不同功能区的丰度差异明显,不同功能区对ARGs的去除效果也存在明显差异。整体来看,CWs对氨基糖苷类抗性基因和多重耐药基因的去除效果最好,总绝对丰度去除率分别为85.59%、47.78%,总相对丰度去除率分别为97.09%、89.44%;对β-内酰胺类抗性基因去除效果最差,总绝对丰度和相对丰度去除率分别为−404.40%、−2.01%。调节塘、水平潜流湿地、表流湿地对ARGs总绝对丰度去除率分别为38.05%、−7.78%和−2.41%;总相对丰度去除率分别为75.02%、−45.60%和−7.75%,不同功能区的去除效果表现为调节塘>表流湿地>水平潜流湿地,其中调节塘对除四环素类抗性基因外的其他ARGs的绝对丰度均有较好的去除效果,水平潜流湿地对磺胺类抗性基因去除效果较好,表流湿地对大环内酯类抗性基因有一定的去除效果。冬季低温、MGEs、不同工艺类型功能区及其运行时间是ARGs去除效果的关键影响因素,ARGs对细菌宿主的非选择性促进了其在天津临港CWs系统中各种细菌类群间的迅速传播。建议今后加强CWs对新污染物ARGs去除效果的优化技术研究。

     

  • 图  1  天津临港CWs不同功能区采样点位布设

    Figure  1.  Layout of sampling stations in different functional zones of Tianjin Lingang CWs

    图  2  天津临港CWs不同功能区采样点16S rRNA基因绝对丰度

    Figure  2.  Absolute abundances of 16S rRNA genes at the sampling stations in different functional zones of Tianjin Lingang CWs

    图  3  不同功能区采样点ARGs绝对丰度和相对丰度

    Figure  3.  Absolute abundance and relative abundance of ARGs at each sampling point in different functional zones

    图  4  天津临港CWs不同功能区对不同ARGs的去除率(续)

    Figure  4.  Removal rate of different ARGs in different functional zones of Tianjin Lingang CWs (continued)

    图  5  不同功能区MGEs绝对丰度分布

    Figure  5.  MGEs absolute abundance distribution at different functional zones

    图  6  天津临港CWs中主要ARGs绝对丰度与MGEs绝对丰度相关性

    注:**表示P<0.01;*表示P<0.05。

    Figure  6.  Correlation between absolute abundances of main ARGs and MGEs in Tianjin Lingang CWs

    图  7  各采样点属水平上的细菌组成

    Figure  7.  Bacterial composition at genus level at each sampling site

    图  8  细菌与ARGs的Network分析

    注:红色线条代表正相关,绿色线条代表负相关。

    Figure  8.  Network analysis of bacteria and ARG

    表  1  目标基因种类及名称

    Table  1.   Target gene species and name

    种类目标基因
    β-内酰胺类ampC、blaCMY、blaOXA10、blaTEM、cphA
    磺胺类sul1、sul2
    氯霉素类cmlA1
    多重耐药基因floR、qacEdelta1、qacH
    大环内酯类ermF、ermT、ereA
    四环素类tetB、tetG、tetX、tetM
    氨基糖苷类aac(6')-I1、aadA、aadA2、strA、strB、aac(6')-Ib
    MGEsintI-1 、cIntI-1、tnpA-01、tnpA-02、tnpA-03、tnpA-04、tnpA-05、tnpA-07、IS613、Tp614
    下载: 导出CSV

    表  2  各采样点ARGs检出率

    Table  2.   Detection rate of ARGs of each sampling point  

    ARGs T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 检出率/%
    β-内酰胺类 ampC + + + + + + + + + + 100
    blaOXA10 + + + + + + + 70
    blaTEM + + + + + + + + + + 100
    cphA + + + + + + + + + + 100
    磺胺类 sul1 + + + + + + + + + 90
    sul2 + + + + + 50
    氯霉素类 cmlA1 + + + + + + + + + + 100
    多重耐药基因 floR + + + + + + + + 80
    qacEdelta1 + + + + + + + + + + 100
    qacH + + + + + + + + + + 100
    大环内酯类 ereA + + + + + + + + + + 100
    ermF + + + + + + + + + 90
    ermT + + + + + + + + + + 100
    四环素类 tetG + + + + + + + + 80
    tetX + + + + + + + + + + 100
    氨基糖苷类 aac(6')-Ib + + + + + + + + + + 100
    aadA + + + + + + + + + 90
    aadA2 + + + + + + + + + + 100
    strB + + + + + + + + + 90
      注:+表示检出;−表示未检出。
    下载: 导出CSV

    表  3  ARGs绝对丰度与16S rRNA基因绝对丰度的相关系数

    Table  3.   Correlation coefficient between absolute abundance of ARGs and the absolute abundance of 16S rRNA gene

    ARGs 16S rRNA
    β-内酰胺类 cphA 0.685*
    blaTEM 0.758*
    blaOXA10 −0.436
    ampC 0.285
    磺胺类 sul1 0.367
    sul2 0.900
    氯霉素类 cmlA1 −0.689*
    多重耐药基因 qacH 0.079
    qacEdelta1 −0.139
    floR 0.881**
    大环内酯类 ermT 0.176
    ermF 0.533
    ereA 0.624
    四环素类 tetX 0.394
    tetG 0.095
    氨基糖苷类 strB −0.321
    aadA 0.091
    aadA2 −0.018
    aac(6′)-Ib 0.217
    总ARGs 0.869**
      注:**表示P<0.01;*表示P<0.05。
    下载: 导出CSV

    表  4  不同类型CWs对ARGs去除效果

    Table  4.   Removal effect of ARGs by different types of constructed wetlands % 

    人工湿地类型16S rRNA磺胺类
    抗性基因
    四环素类
    抗性基因
    β-内酰胺类
    抗性基因
    大环内酯类
    抗性基因
    氨基糖苷类
    抗性基因
    甲氧苄啶类
    抗性基因
    多重耐药
    基因
    sul1sul2sul3tetOtetXtetMtxtBblaOXA-48blaTEMermBermCaac(6')-IbdfrAqnrA
    水平潜流湿地[66]32.096.995.2−18.155.9−145.691.5
    表流湿地+潜流湿地[67]73.975.980.2去除效果差
    4个表流湿地+
    1个潜流湿地[68]
    97.295.483.498.999.899.699.143.1
    表流湿地[69]74.091.090.098.0
    水平潜流湿地[70]16.5~79.326.5~79.38.4~90.120.6~88.0
    潮汐-复合流湿地[71]82.82~85.6693.10~94.87
    下载: 导出CSV
  • [1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65(5):725-759. doi: 10.1016/j.chemosphere.2006.03.026
    [2] CHOO P S. Degradation of oxytetracycline hydrochloride in fresh- and seawater[J]. Asian Fisheries Science,1994,7(4):195-200.
    [3] COSTANZO S D, MURBY J, BATES J. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin,2005,51(1/2/3/4):218-223.
    [4] WHITE J R, BELMONT M A, METCALFE C D. Pharmaceutical compounds in wastewater: wetland treatment as a potential solution[J]. The Scientific World Journal,2006,6:1731-1736. doi: 10.1100/tsw.2006.287
    [5] ÁVILA C, GARCÍA J. Pharmaceuticals and personal care products (PPCPs) in the environment and their removal from wastewater through constructed wetlands[M]//Persistent Organic Pollutants (POPs): Analytical Techniques, Environmental Fate and Biological Effects. Amsterdam: Elsevier, 2015: 195-244.
    [6] SUI Q, CAO X Q, LU S G, et al. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review[J]. Emerging Contaminants,2015,1(1):14-24. doi: 10.1016/j.emcon.2015.07.001
    [7] SHIFFLETT S D, SCHUBAUER-BERIGAN J. Assessing the risk of utilizing tidal coastal wetlands for wastewater management[J]. Journal of Environmental Management,2019,236:269-279.
    [8] Centers for Disease Control and Prevention (US). Antibiotic resistance threats in the United States, 2019[R/OL]. [2023-03-10]. http://dx. doi.org/10.15620/cdc:82532.
    [9] PRUDEN A, PEI R T, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology,2006,40(23):7445-7450.
    [10] 罗义, 周启星. 抗生素抗性基因(ARGs): 一种新型环境污染物[J]. 环境科学学报,2008,28(8):1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002

    LUO Y, ZHOU Q X. Antibiotic resistance genes (ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae,2008,28(8):1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002
    [11] 徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学,2010,29(2):169-178.

    XU B J, LUO Y, ZHOU Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes (ARGs) in the environment[J]. Environmental Chemistry,2010,29(2):169-178.
    [12] LUO Y, WANG Q, LU Q, et al. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class Ⅰ integrons[J]. Environmental Science & Technology Letters,2014,1(5):266-270.
    [13] TAMMINEN M, KARKMAN A, LÕHMUS A, et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure[J]. Environmental Science & Technology,2011,45(2):386-391.
    [14] SCHMIEDER R, EDWARDS R. Insights into antibiotic resistance through metagenomic approaches[J]. Future Microbiology,2012,7(1):73-89. doi: 10.2217/fmb.11.135
    [15] OUYANG W Y, HUANG F Y, ZHAO Y, et al. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China[J]. Applied Microbiology and Biotechnology,2015,99(13):5697-5707. doi: 10.1007/s00253-015-6416-5
    [16] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment,2012,421/422:173-183. doi: 10.1016/j.scitotenv.2012.01.061
    [17] DONG H Y, YUAN X J, WANG W D, et al. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: a field study[J]. Journal of Environmental Management,2016,178:11-19.
    [18] 张冰, 赵琳, 陈坦. 城市污水处理厂抗生素抗性基因研究进展[J]. 环境工程技术学报,2023,13(4):1384-1394. doi: 10.12153/j.issn.1674-991X.20220847

    ZHANG B, ZHAO L, CHEN T. Research progress of antibiotic resistance genes in wastewater treatment plants[J]. Journal of Environmental Engineering Technology,2023,13(4):1384-1394. doi: 10.12153/j.issn.1674-991X.20220847
    [19] VYMAZAL J. Constructed wetlands for treatment of industrial wastewaters: a review[J]. Ecological Engineering,2014,73:724-751. doi: 10.1016/j.ecoleng.2014.09.034
    [20] SGROI M, PELISSARI C, ROCCARO P, et al. Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations[J]. Chemical Engineering Journal,2018,332:619-627. doi: 10.1016/j.cej.2017.09.122
    [21] YAN Y J, XU J C. Improving winter performance of constructed wetlands for wastewater treatment in northern China: a review[J]. Wetlands,2014,34(2):243-253. doi: 10.1007/s13157-013-0444-7
    [22] CHEN Y H, LI P, HUANG Y S, et al. Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment[J]. Water Research,2019,162:127-138. doi: 10.1016/j.watres.2019.06.047
    [23] LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response[J]. Environmental Pollution, 2019, 254(Pt A): 112996.
    [24] GARCÍA J, GARCÍA-GALÁN M J, DAY J W, et al. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: increasing removal with wetlands and reducing environmental impacts[J]. Bioresource Technology,2020,307:123228. doi: 10.1016/j.biortech.2020.123228
    [25] 刘红磊, 李艳英, 周滨, 等. 北方滨海人工湿地水生生物群落快速重建目标及适宜物种清单确定: 以天津临港二期湿地为例[J]. 生态学报,2021,41(15):6091-6102.

    LIU H L, LI Y Y, ZHOU B, et al. Determination of biological community reconstruction targets and suitable species list for constructed wetland in North China coastal area: a case study of Tianjin Lingang Constructed Wetland (Phase Ⅱ)[J]. Acta Ecologica Sinica,2021,41(15):6091-6102.
    [26] 张宇轩. 海岸带环境中抗生素抗性基因分布特征及其影响机制研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2020.
    [27] LACHMAYR K L, KERKHOF L J, DIRIENZO A G, et al. Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream[J]. Applied and Environmental Microbiology,2009,75(1):203-211. doi: 10.1128/AEM.01254-08
    [28] TANG S Y, LIAO Y H, XU Y C, et al. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: a review[J]. Bioresource Technology,2020,314:123759. doi: 10.1016/j.biortech.2020.123759
    [29] FENG J W, CUI B H, YUAN B X, et al. Purification mechanism of low-pollution water in three submerged plants and analysis of bacterial community structure in plant rhizospheres[J]. Environmental Engineering Science,2020,37(8):560-571. doi: 10.1089/ees.2019.0459
    [30] ZHU Y N, CUI L J, LI J, et al. Long-term performance of nutrient removal in an integrated constructed wetland[J]. Science of the Total Environment,2021,779:146268. doi: 10.1016/j.scitotenv.2021.146268
    [31] CHATTERJEE D, KUOTSU R, AO M, et al. Does rise in temperature adversely affect soil fertility, carbon fractions, microbial biomass and enzyme activities under different land uses[J]. Current Science,2019,116(12):2044. doi: 10.18520/cs/v116/i12/2044-2054
    [32] KIM S Y, ZHOU X, FREEMAN C, et al. Changing thermal sensitivity of bacterial communities and soil enzymes in a bog peat in spring, summer and autumn[J]. Applied Soil Ecology,2022,173:104382. doi: 10.1016/j.apsoil.2021.104382
    [33] MANASA S L, PANIGRAHY M, PANIGRAHI K C S, et al. Overview of cold stress regulation in plants[J]. The Botanical Review,2022,88(3):359-387. doi: 10.1007/s12229-021-09267-x
    [34] HE S, DING L L, XU K, et al. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge[J]. Bioresource Technology,2016,211:494-501. doi: 10.1016/j.biortech.2016.03.069
    [35] GRATZ R, BRUMBAROVA T, IVANOV R, et al. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor fer-like iron deficiency-induced transcription factor[J]. The New Phytologist,2020,225(1):250-267. doi: 10.1111/nph.16168
    [36] McATEER P G, CHRISTINE TREGO A, THORN C, et al. Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater[J]. Bioresource Technology,2020,307:123221. doi: 10.1016/j.biortech.2020.123221
    [37] MU X Y, ZHANG S H, LV X, et al. Water flow and temperature drove epiphytic microbial community shift: insight into nutrient removal in constructed wetlands from microbial assemblage and co-occurrence patterns[J]. Bioresource Technology,2021,332:125134. doi: 10.1016/j.biortech.2021.125134
    [38] MORCILLO R J L, MANZANERA M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites,2021,11(6):337. doi: 10.3390/metabo11060337
    [39] PERSONNIC N, STRIEDNIG B, HILBI H. Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms[J]. The ISME Journal,2021,15(1):196-210. doi: 10.1038/s41396-020-00774-0
    [40] WANG S K, WANG R M, VYZMAL J, et al. Shifts of active microbial community structure and functions in constructed wetlands responded to continuous decreasing temperature in winter[J]. Chemosphere,2023,335:139080. doi: 10.1016/j.chemosphere.2023.139080
    [41] ABOU-KANDIL A, SHIBLI A, AZAIZEH H, et al. Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: effect of mixed vegetation and substrate type[J]. Science of the Total Environment,2021,759:144193. doi: 10.1016/j.scitotenv.2020.144193
    [42] ALLEN H K, DONATO J, WANG H H, et al. Call of the wild: antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology,2010,8(4):251-259. doi: 10.1038/nrmicro2312
    [43] 朱永官, 欧阳纬莹, 吴楠, 等. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊,2015,30(4):509-516.

    ZHU Y G, OUYANG W Y, WU N, et al. Antibiotic resistance: sources and mitigation[J]. Bulletin of Chinese Academy of Sciences,2015,30(4):509-516.
    [44] HUANG X, ZHENG J L, LIU C X, et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type[J]. Chemical Engineering Journal,2017,308:692-699. doi: 10.1016/j.cej.2016.09.110
    [45] ANDERSON J C, CARLSON J C, LOW J E, et al. Performance of a constructed wetland in Grand Marais, Manitoba, Canada: removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater[J]. Chemistry Central Journal,2013,7(1):54. doi: 10.1186/1752-153X-7-54
    [46] 宋冉冉, 国晓春, 卢少勇, 等. 东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J]. 环境科学研究,2021,34(9):2143-2153.

    SONG R R, GUO X C, LU S Y, et al. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of East Dongting Lake Basin[J]. Research of Environmental Sciences,2021,34(9):2143-2153.
    [47] JU F, BECK K, YIN X L, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes[J]. The ISME Journal,2019,13(2):346-360. doi: 10.1038/s41396-018-0277-8
    [48] LIAO H P, LU X M, RENSING C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science & Technology,2018,52(1):266-276.
    [49] HE Y J, NURUL S, SCHMITT H, et al. Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents[J]. Science of the Total Environment,2018,631/632:1572-1581. doi: 10.1016/j.scitotenv.2018.03.083
    [50] ZHANG L, YAN C Z, WANG D P, et al. Spatiotemporal dynamic changes of antibiotic resistance genes in constructed wetlands and associated influencing factors[J]. Environmental Pollution,2022,303:119176. doi: 10.1016/j.envpol.2022.119176
    [51] LUO Y, MAO D Q, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology,2010,44(19):7220-7225.
    [52] BENGTSSON-PALME J, KRISTIANSSON E, LARSSON D G J. Environmental factors influencing the development and spread of antibiotic resistance[J]. FEMS Microbiology Reviews,2018,42(1):fux053.
    [53] HU A Y, WANG H J, LI J W, et al. Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China[J]. Journal of Hazardous Materials,2020,398:122820. doi: 10.1016/j.jhazmat.2020.122820
    [54] SONG H L, ZHANG S, GUO J H, et al. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J]. Chemosphere,2018,203:434-441. doi: 10.1016/j.chemosphere.2018.04.006
    [55] LIU L, LIU Y H, WANG Z, et al. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands[J]. Journal of Hazardous Materials,2014,278:304-310. doi: 10.1016/j.jhazmat.2014.06.015
    [56] HALL R M, COLLIS C M. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination[J]. Molecular Microbiology,1995,15(4):593-600. doi: 10.1111/j.1365-2958.1995.tb02368.x
    [57] HOU L Y, ZHANG L P, LI F R, et al. Urban ponds as hotspots of antibiotic resistome in the urban environment[J]. Journal of Hazardous Materials,2021,403:124008. doi: 10.1016/j.jhazmat.2020.124008
    [58] BONDARCZUK K, PIOTROWSKA-SEGET Z. Microbial diversity and antibiotic resistance in a final effluent-receiving lake[J]. Science of the Total Environment, 2019, 650(Pt 2): 2951-2961.
    [59] AI J, LI Y C, LV Y, et al. Study on microbes and antibiotic resistance genes in Karst primitive mountain marshes: a case study of Niangniang Mountain in Guizhou, China[J]. Ecotoxicology and Environmental Safety,2022,247:114210. doi: 10.1016/j.ecoenv.2022.114210
    [60] WALSH T R, WEEKS J, LIVERMORE D M, et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study[J]. The Lancet Infectious Diseases,2011,11(5):355-362. doi: 10.1016/S1473-3099(11)70059-7
    [61] LIU L, LIU C X, ZHENG J Y, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere,2013,91(8):1088-1093. doi: 10.1016/j.chemosphere.2013.01.007
    [62] CHEN J, YING G G, WEI X D, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species[J]. Science of the Total Environment,2016,571:974-982. doi: 10.1016/j.scitotenv.2016.07.085
    [63] 刘勋涛, 李春阳, 陈汐昂, 等. 全氟化合物控制政策、识别控制技术及生态风险评估进展[J]. 农业环境科学学报,2023,42(9):1911-1927.

    LIU X T, LI C Y, CHEN X A, et al. Development progress of perfluorinated compounds in control policy, identification and control technology, and ecological risk assessment[J]. Journal of Agro-Environment Science,2023,42(9):1911-1927.
    [64] FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere,2017,173:99-106. doi: 10.1016/j.chemosphere.2017.01.027
    [65] 颜秉斐, 肖书虎, 廖纯刚, 等. 潜流人工湿地长效运行脱氮研究进展[J]. 环境工程技术学报,2019,9(3):239-244.

    YAN B F, XIAO S H, LIAO C G, et al. Research progress of long-term nitrogen removal in subsurface flow constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(3):239-244.
    [66] YI X Z, TRAN N H, YIN T R, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research,2017,121:46-60. doi: 10.1016/j.watres.2017.05.008
    [67] 郑吉, 郭莉, 刘扬, 等. 生态湿地中抗生素抗性基因的污染控制研究[J]. 环境污染与防治,2020,42(11):1363-1367.

    ZHENG J, GUO L, LIU Y, et al. Research on pollution control of antibiotic resistance genes in ecological wetland[J]. Environmental Pollution & Control,2020,42(11):1363-1367.
    [68] CHEN J, LIU Y S, SU H C, et al. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland[J]. Environmental Science and Pollution Research International,2015,22(3):1794-1803. doi: 10.1007/s11356-014-2800-4
    [69] 张金璐. 表面流人工湿地对养殖废水中抗生素和抗性基因去除效应研究[D]. 长沙: 湖南农业大学, 2017.
    [70] CHEN J, WEI X D, LIU Y S, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: optimization of wetland substrates and hydraulic loading[J]. Science of the Total Environment,2016,565:240-248. doi: 10.1016/j.scitotenv.2016.04.176
    [71] 程羽霄, 吴丹, 陈铨乐, 等. 潮汐-复合流人工湿地系统优化及对抗生素抗性基因的去除效果[J]. 环境科学,2021,42(8):3799-3807.

    CHENG Y X, WU D, CHEN Q L, et al. Optimization of tidal-combined flow constructed wetland system and its removal effect on antibiotic resistance genes[J]. Environmental Science,2021,42(8):3799-3807.
    [72] LIU L, LI J, XIN Y, et al. Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems[J]. Environmental Pollution,2021,269:116152. ◇ doi: 10.1016/j.envpol.2020.116152
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  72
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31

目录

    /

    返回文章
    返回