Removal of antibiotic resistance genes by composite constructed wetlands of Tianjin Lingang in Winter
-
摘要:
环境中耐药菌和抗生素抗性基因(ARGs)因抗生素的大量应用而广泛存在,影响抗生素对疾病的治疗效果,对人体健康和生态安全构成威胁。研究表明人工湿地(CWs)能够有效去除ARGs,但目前对于北方冬季复合型CWs对ARGs的去除效果尚不明确。以天津临港复合型的CWs(调节塘+水平潜流湿地+表流湿地工艺)为研究对象,开展冬季其对ARGs去除效果的研究;针对不同功能区采集水体样本,采用高通量荧光定量PCR对水体中16S rRNA基因、ARGs、可移动遗传元件(MGEs)及细菌种群组成进行检测,综合分析CWs对ARGs的去除效果,探讨冬季运行期间影响去除效果的关键因素。结果表明:冬季水体中表征细菌数量的16S rRNA基因绝对丰度为2.70×104~1.41×105拷贝/mL;ARGs总检出率为72.5%,其中floR和sul2并非源于进水。各ARGs在不同功能区的丰度差异明显,不同功能区对ARGs的去除效果也存在明显差异。整体来看,CWs对氨基糖苷类抗性基因和多重耐药基因的去除效果最好,总绝对丰度去除率分别为85.59%、47.78%,总相对丰度去除率分别为97.09%、89.44%;对β-内酰胺类抗性基因去除效果最差,总绝对丰度和相对丰度去除率分别为−404.40%、−2.01%。调节塘、水平潜流湿地、表流湿地对ARGs总绝对丰度去除率分别为38.05%、−7.78%和−2.41%;总相对丰度去除率分别为75.02%、−45.60%和−7.75%,不同功能区的去除效果表现为调节塘>表流湿地>水平潜流湿地,其中调节塘对除四环素类抗性基因外的其他ARGs的绝对丰度均有较好的去除效果,水平潜流湿地对磺胺类抗性基因去除效果较好,表流湿地对大环内酯类抗性基因有一定的去除效果。冬季低温、MGEs、不同工艺类型功能区及其运行时间是ARGs去除效果的关键影响因素,ARGs对细菌宿主的非选择性促进了其在天津临港CWs系统中各种细菌类群间的迅速传播。建议今后加强CWs对新污染物ARGs去除效果的优化技术研究。
-
关键词:
- 抗生素抗性基因(ARGs) /
- 可移动遗传元件(MGEs) /
- 细菌种群 /
- 人工湿地(CWs) /
- 冬季
Abstract:Drug-resistant bacteria and antibiotic resistance genes (ARGs) exist widely in the environment due to the extensive application of antibiotics, which affect the therapeutic effect of antibiotics on diseases and pose a great threat to human health and ecological security. Studies have shown that constructed wetlands (CWs) can effectively remove ARGs, but the effect of composite CWs on ARGs removal in northern China in winter is still unclear. Tianjin Lingang CWs, a compound of regulating pond, horizontal subsurface flow wetland and surface flow wetland, was used as the research object to study the removal effect of ARGs in winter. Water samples were collected from different functional zones, and 16S rRNA genes, ARGs, mobile genetic elements (MGEs) and bacterial population composition in water were detected by high-throughput quantitative PCR. The removal effect of ARGs was comprehensively analyzed, and the key factors affecting the removal effect during winter operations were discussed. The results showed that the absolute abundance of 16S rRNA gene was 2.70×104-1.41×105 copies/mL. The total detection rate of ARGs was 72.5%, in which floR and sul2 did not originate from influent water. The abundance of ARGs in different functional zones was significantly different, and the removal effect of ARGs in different functional zones was also significantly different. Overall, CWs in Tianjin Lingang had the best removal effect on aminoglycoside resistance genes and multi-drug resistance genes, with total absolute abundance removal rates of 85.59% and 47.78%, and total relative abundance removal rates of 97.09% and 89.44%, respectively. The removal efficiency of β-lactam resistance genes was the worst, and the total absolute abundance and relative abundance removal rates were −404.40% and −2.01%, respectively. The removal rates of total absolute abundance of ARGs were 38.05%, −7.78% and −2.41% in regulating pond, horizontal subsurface flow wetland and surface flow wetland, and the total relative abundance removal rates were 75.02%, −45.60% and −7.75%, respectively. The removal effects of different functional zones were as follows: the regulating pond > surface flow wetland > horizontal subsurface flow wetland, in which the regulating pond had a better removal effect for the absolute abundance of other ARGs except tetracycline resistance genes, the horizontal subsurface flow wetland had a better removal effect for sulfonamides resistance genes, and the surface flow wetland had a certain removal effect for macrolide resistance genes. Low temperature, MGEs, functional zones of different process types and operation time were the key factors affecting the removal effect of ARGs. The non-selectivity of ARGs to bacterial hosts promoted the rapid spread of ARGS among various bacterial groups in Tianjin Lingang CWs system. It is suggested to strengthen the optimization technology research to improve the removal effect of new pollutant ARGs by CWs.
-
表 1 目标基因种类及名称
Table 1. Target gene species and name
种类 目标基因 β-内酰胺类 ampC、blaCMY、blaOXA10、blaTEM、cphA 磺胺类 sul1、sul2 氯霉素类 cmlA1 多重耐药基因 floR、qacEdelta1、qacH 大环内酯类 ermF、ermT、ereA 四环素类 tetB、tetG、tetX、tetM 氨基糖苷类 aac(6')-I1、aadA、aadA2、strA、strB、aac(6')-Ib MGEs intI-1 、cIntI-1、tnpA-01、tnpA-02、tnpA-03、tnpA-04、tnpA-05、tnpA-07、IS613、Tp614 表 2 各采样点ARGs检出率
Table 2. Detection rate of ARGs of each sampling point
ARGs T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 检出率/% β-内酰胺类 ampC + + + + + + + + + + 100 blaOXA10 + + + + + + − − + − 70 blaTEM + + + + + + + + + + 100 cphA + + + + + + + + + + 100 磺胺类 sul1 + + + + + + + + − + 90 sul2 − − + + + + − + − − 50 氯霉素类 cmlA1 + + + + + + + + + + 100 多重耐药基因 floR − + − + + + + + + + 80 qacEdelta1 + + + + + + + + + + 100 qacH + + + + + + + + + + 100 大环内酯类 ereA + + + + + + + + + + 100 ermF + + + + + + − + + + 90 ermT + + + + + + + + + + 100 四环素类 tetG + + + + + + + − − + 80 tetX + + + + + + + + + + 100 氨基糖苷类 aac(6')-Ib + + + + + + + + + + 100 aadA + + + + + + + − + + 90 aadA2 + + + + + + + + + + 100 strB + + + + + + + + − + 90 注:+表示检出;−表示未检出。 表 3 ARGs绝对丰度与16S rRNA基因绝对丰度的相关系数
Table 3. Correlation coefficient between absolute abundance of ARGs and the absolute abundance of 16S rRNA gene
ARGs 16S rRNA β-内酰胺类 cphA 0.685* blaTEM 0.758* blaOXA10 −0.436 ampC 0.285 磺胺类 sul1 0.367 sul2 0.900 氯霉素类 cmlA1 −0.689* 多重耐药基因 qacH 0.079 qacEdelta1 −0.139 floR 0.881** 大环内酯类 ermT 0.176 ermF 0.533 ereA 0.624 四环素类 tetX 0.394 tetG 0.095 氨基糖苷类 strB −0.321 aadA 0.091 aadA2 −0.018 aac(6′)-Ib 0.217 总ARGs 0.869** 注:**表示P<0.01;*表示P<0.05。 表 4 不同类型CWs对ARGs去除效果
Table 4. Removal effect of ARGs by different types of constructed wetlands
% 人工湿地类型 16S rRNA 磺胺类
抗性基因四环素类
抗性基因β-内酰胺类
抗性基因大环内酯类
抗性基因氨基糖苷类
抗性基因甲氧苄啶类
抗性基因多重耐药
基因sul1 sul2 sul3 tetO tetX tetM txtB blaOXA-48 blaTEM ermB ermC aac(6')-Ib dfrA qnrA 水平潜流湿地[66] 32.0 96.9 95.2 −18.1 55.9 −145.6 91.5 表流湿地+潜流湿地[67] 73.9 75.9 80.2 去除效果差 4个表流湿地+
1个潜流湿地[68]97.2 95.4 83.4 98.9 99.8 99.6 99.1 43.1 表流湿地[69] 74.0 91.0 90.0 98.0 水平潜流湿地[70] 16.5~79.3 26.5~79.3 8.4~90.1 20.6~88.0 潮汐-复合流湿地[71] 82.82~85.66 93.10~94.87 -
[1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65(5):725-759. doi: 10.1016/j.chemosphere.2006.03.026 [2] CHOO P S. Degradation of oxytetracycline hydrochloride in fresh- and seawater[J]. Asian Fisheries Science,1994,7(4):195-200. [3] COSTANZO S D, MURBY J, BATES J. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin,2005,51(1/2/3/4):218-223. [4] WHITE J R, BELMONT M A, METCALFE C D. Pharmaceutical compounds in wastewater: wetland treatment as a potential solution[J]. The Scientific World Journal,2006,6:1731-1736. doi: 10.1100/tsw.2006.287 [5] ÁVILA C, GARCÍA J. Pharmaceuticals and personal care products (PPCPs) in the environment and their removal from wastewater through constructed wetlands[M]//Persistent Organic Pollutants (POPs): Analytical Techniques, Environmental Fate and Biological Effects. Amsterdam: Elsevier, 2015: 195-244. [6] SUI Q, CAO X Q, LU S G, et al. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review[J]. Emerging Contaminants,2015,1(1):14-24. doi: 10.1016/j.emcon.2015.07.001 [7] SHIFFLETT S D, SCHUBAUER-BERIGAN J. Assessing the risk of utilizing tidal coastal wetlands for wastewater management[J]. Journal of Environmental Management,2019,236:269-279. [8] Centers for Disease Control and Prevention (US). Antibiotic resistance threats in the United States, 2019[R/OL]. [2023-03-10]. http://dx. doi.org/10.15620/cdc:82532. [9] PRUDEN A, PEI R T, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology,2006,40(23):7445-7450. [10] 罗义, 周启星. 抗生素抗性基因(ARGs): 一种新型环境污染物[J]. 环境科学学报,2008,28(8):1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002LUO Y, ZHOU Q X. Antibiotic resistance genes (ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae,2008,28(8):1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002 [11] 徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学,2010,29(2):169-178.XU B J, LUO Y, ZHOU Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes (ARGs) in the environment[J]. Environmental Chemistry,2010,29(2):169-178. [12] LUO Y, WANG Q, LU Q, et al. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class Ⅰ integrons[J]. Environmental Science & Technology Letters,2014,1(5):266-270. [13] TAMMINEN M, KARKMAN A, LÕHMUS A, et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure[J]. Environmental Science & Technology,2011,45(2):386-391. [14] SCHMIEDER R, EDWARDS R. Insights into antibiotic resistance through metagenomic approaches[J]. Future Microbiology,2012,7(1):73-89. doi: 10.2217/fmb.11.135 [15] OUYANG W Y, HUANG F Y, ZHAO Y, et al. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China[J]. Applied Microbiology and Biotechnology,2015,99(13):5697-5707. doi: 10.1007/s00253-015-6416-5 [16] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment,2012,421/422:173-183. doi: 10.1016/j.scitotenv.2012.01.061 [17] DONG H Y, YUAN X J, WANG W D, et al. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: a field study[J]. Journal of Environmental Management,2016,178:11-19. [18] 张冰, 赵琳, 陈坦. 城市污水处理厂抗生素抗性基因研究进展[J]. 环境工程技术学报,2023,13(4):1384-1394. doi: 10.12153/j.issn.1674-991X.20220847ZHANG B, ZHAO L, CHEN T. Research progress of antibiotic resistance genes in wastewater treatment plants[J]. Journal of Environmental Engineering Technology,2023,13(4):1384-1394. doi: 10.12153/j.issn.1674-991X.20220847 [19] VYMAZAL J. Constructed wetlands for treatment of industrial wastewaters: a review[J]. Ecological Engineering,2014,73:724-751. doi: 10.1016/j.ecoleng.2014.09.034 [20] SGROI M, PELISSARI C, ROCCARO P, et al. Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations[J]. Chemical Engineering Journal,2018,332:619-627. doi: 10.1016/j.cej.2017.09.122 [21] YAN Y J, XU J C. Improving winter performance of constructed wetlands for wastewater treatment in northern China: a review[J]. Wetlands,2014,34(2):243-253. doi: 10.1007/s13157-013-0444-7 [22] CHEN Y H, LI P, HUANG Y S, et al. Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment[J]. Water Research,2019,162:127-138. doi: 10.1016/j.watres.2019.06.047 [23] LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response[J]. Environmental Pollution, 2019, 254(Pt A): 112996. [24] GARCÍA J, GARCÍA-GALÁN M J, DAY J W, et al. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: increasing removal with wetlands and reducing environmental impacts[J]. Bioresource Technology,2020,307:123228. doi: 10.1016/j.biortech.2020.123228 [25] 刘红磊, 李艳英, 周滨, 等. 北方滨海人工湿地水生生物群落快速重建目标及适宜物种清单确定: 以天津临港二期湿地为例[J]. 生态学报,2021,41(15):6091-6102.LIU H L, LI Y Y, ZHOU B, et al. Determination of biological community reconstruction targets and suitable species list for constructed wetland in North China coastal area: a case study of Tianjin Lingang Constructed Wetland (Phase Ⅱ)[J]. Acta Ecologica Sinica,2021,41(15):6091-6102. [26] 张宇轩. 海岸带环境中抗生素抗性基因分布特征及其影响机制研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2020. [27] LACHMAYR K L, KERKHOF L J, DIRIENZO A G, et al. Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream[J]. Applied and Environmental Microbiology,2009,75(1):203-211. doi: 10.1128/AEM.01254-08 [28] TANG S Y, LIAO Y H, XU Y C, et al. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: a review[J]. Bioresource Technology,2020,314:123759. doi: 10.1016/j.biortech.2020.123759 [29] FENG J W, CUI B H, YUAN B X, et al. Purification mechanism of low-pollution water in three submerged plants and analysis of bacterial community structure in plant rhizospheres[J]. Environmental Engineering Science,2020,37(8):560-571. doi: 10.1089/ees.2019.0459 [30] ZHU Y N, CUI L J, LI J, et al. Long-term performance of nutrient removal in an integrated constructed wetland[J]. Science of the Total Environment,2021,779:146268. doi: 10.1016/j.scitotenv.2021.146268 [31] CHATTERJEE D, KUOTSU R, AO M, et al. Does rise in temperature adversely affect soil fertility, carbon fractions, microbial biomass and enzyme activities under different land uses[J]. Current Science,2019,116(12):2044. doi: 10.18520/cs/v116/i12/2044-2054 [32] KIM S Y, ZHOU X, FREEMAN C, et al. Changing thermal sensitivity of bacterial communities and soil enzymes in a bog peat in spring, summer and autumn[J]. Applied Soil Ecology,2022,173:104382. doi: 10.1016/j.apsoil.2021.104382 [33] MANASA S L, PANIGRAHY M, PANIGRAHI K C S, et al. Overview of cold stress regulation in plants[J]. The Botanical Review,2022,88(3):359-387. doi: 10.1007/s12229-021-09267-x [34] HE S, DING L L, XU K, et al. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge[J]. Bioresource Technology,2016,211:494-501. doi: 10.1016/j.biortech.2016.03.069 [35] GRATZ R, BRUMBAROVA T, IVANOV R, et al. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor fer-like iron deficiency-induced transcription factor[J]. The New Phytologist,2020,225(1):250-267. doi: 10.1111/nph.16168 [36] McATEER P G, CHRISTINE TREGO A, THORN C, et al. Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater[J]. Bioresource Technology,2020,307:123221. doi: 10.1016/j.biortech.2020.123221 [37] MU X Y, ZHANG S H, LV X, et al. Water flow and temperature drove epiphytic microbial community shift: insight into nutrient removal in constructed wetlands from microbial assemblage and co-occurrence patterns[J]. Bioresource Technology,2021,332:125134. doi: 10.1016/j.biortech.2021.125134 [38] MORCILLO R J L, MANZANERA M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites,2021,11(6):337. doi: 10.3390/metabo11060337 [39] PERSONNIC N, STRIEDNIG B, HILBI H. Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms[J]. The ISME Journal,2021,15(1):196-210. doi: 10.1038/s41396-020-00774-0 [40] WANG S K, WANG R M, VYZMAL J, et al. Shifts of active microbial community structure and functions in constructed wetlands responded to continuous decreasing temperature in winter[J]. Chemosphere,2023,335:139080. doi: 10.1016/j.chemosphere.2023.139080 [41] ABOU-KANDIL A, SHIBLI A, AZAIZEH H, et al. Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: effect of mixed vegetation and substrate type[J]. Science of the Total Environment,2021,759:144193. doi: 10.1016/j.scitotenv.2020.144193 [42] ALLEN H K, DONATO J, WANG H H, et al. Call of the wild: antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology,2010,8(4):251-259. doi: 10.1038/nrmicro2312 [43] 朱永官, 欧阳纬莹, 吴楠, 等. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊,2015,30(4):509-516.ZHU Y G, OUYANG W Y, WU N, et al. Antibiotic resistance: sources and mitigation[J]. Bulletin of Chinese Academy of Sciences,2015,30(4):509-516. [44] HUANG X, ZHENG J L, LIU C X, et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type[J]. Chemical Engineering Journal,2017,308:692-699. doi: 10.1016/j.cej.2016.09.110 [45] ANDERSON J C, CARLSON J C, LOW J E, et al. Performance of a constructed wetland in Grand Marais, Manitoba, Canada: removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater[J]. Chemistry Central Journal,2013,7(1):54. doi: 10.1186/1752-153X-7-54 [46] 宋冉冉, 国晓春, 卢少勇, 等. 东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J]. 环境科学研究,2021,34(9):2143-2153.SONG R R, GUO X C, LU S Y, et al. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of East Dongting Lake Basin[J]. Research of Environmental Sciences,2021,34(9):2143-2153. [47] JU F, BECK K, YIN X L, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes[J]. The ISME Journal,2019,13(2):346-360. doi: 10.1038/s41396-018-0277-8 [48] LIAO H P, LU X M, RENSING C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science & Technology,2018,52(1):266-276. [49] HE Y J, NURUL S, SCHMITT H, et al. Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents[J]. Science of the Total Environment,2018,631/632:1572-1581. doi: 10.1016/j.scitotenv.2018.03.083 [50] ZHANG L, YAN C Z, WANG D P, et al. Spatiotemporal dynamic changes of antibiotic resistance genes in constructed wetlands and associated influencing factors[J]. Environmental Pollution,2022,303:119176. doi: 10.1016/j.envpol.2022.119176 [51] LUO Y, MAO D Q, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology,2010,44(19):7220-7225. [52] BENGTSSON-PALME J, KRISTIANSSON E, LARSSON D G J. Environmental factors influencing the development and spread of antibiotic resistance[J]. FEMS Microbiology Reviews,2018,42(1):fux053. [53] HU A Y, WANG H J, LI J W, et al. Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China[J]. Journal of Hazardous Materials,2020,398:122820. doi: 10.1016/j.jhazmat.2020.122820 [54] SONG H L, ZHANG S, GUO J H, et al. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J]. Chemosphere,2018,203:434-441. doi: 10.1016/j.chemosphere.2018.04.006 [55] LIU L, LIU Y H, WANG Z, et al. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands[J]. Journal of Hazardous Materials,2014,278:304-310. doi: 10.1016/j.jhazmat.2014.06.015 [56] HALL R M, COLLIS C M. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination[J]. Molecular Microbiology,1995,15(4):593-600. doi: 10.1111/j.1365-2958.1995.tb02368.x [57] HOU L Y, ZHANG L P, LI F R, et al. Urban ponds as hotspots of antibiotic resistome in the urban environment[J]. Journal of Hazardous Materials,2021,403:124008. doi: 10.1016/j.jhazmat.2020.124008 [58] BONDARCZUK K, PIOTROWSKA-SEGET Z. Microbial diversity and antibiotic resistance in a final effluent-receiving lake[J]. Science of the Total Environment, 2019, 650(Pt 2): 2951-2961. [59] AI J, LI Y C, LV Y, et al. Study on microbes and antibiotic resistance genes in Karst primitive mountain marshes: a case study of Niangniang Mountain in Guizhou, China[J]. Ecotoxicology and Environmental Safety,2022,247:114210. doi: 10.1016/j.ecoenv.2022.114210 [60] WALSH T R, WEEKS J, LIVERMORE D M, et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study[J]. The Lancet Infectious Diseases,2011,11(5):355-362. doi: 10.1016/S1473-3099(11)70059-7 [61] LIU L, LIU C X, ZHENG J Y, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere,2013,91(8):1088-1093. doi: 10.1016/j.chemosphere.2013.01.007 [62] CHEN J, YING G G, WEI X D, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species[J]. Science of the Total Environment,2016,571:974-982. doi: 10.1016/j.scitotenv.2016.07.085 [63] 刘勋涛, 李春阳, 陈汐昂, 等. 全氟化合物控制政策、识别控制技术及生态风险评估进展[J]. 农业环境科学学报,2023,42(9):1911-1927.LIU X T, LI C Y, CHEN X A, et al. Development progress of perfluorinated compounds in control policy, identification and control technology, and ecological risk assessment[J]. Journal of Agro-Environment Science,2023,42(9):1911-1927. [64] FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere,2017,173:99-106. doi: 10.1016/j.chemosphere.2017.01.027 [65] 颜秉斐, 肖书虎, 廖纯刚, 等. 潜流人工湿地长效运行脱氮研究进展[J]. 环境工程技术学报,2019,9(3):239-244.YAN B F, XIAO S H, LIAO C G, et al. Research progress of long-term nitrogen removal in subsurface flow constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(3):239-244. [66] YI X Z, TRAN N H, YIN T R, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research,2017,121:46-60. doi: 10.1016/j.watres.2017.05.008 [67] 郑吉, 郭莉, 刘扬, 等. 生态湿地中抗生素抗性基因的污染控制研究[J]. 环境污染与防治,2020,42(11):1363-1367.ZHENG J, GUO L, LIU Y, et al. Research on pollution control of antibiotic resistance genes in ecological wetland[J]. Environmental Pollution & Control,2020,42(11):1363-1367. [68] CHEN J, LIU Y S, SU H C, et al. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland[J]. Environmental Science and Pollution Research International,2015,22(3):1794-1803. doi: 10.1007/s11356-014-2800-4 [69] 张金璐. 表面流人工湿地对养殖废水中抗生素和抗性基因去除效应研究[D]. 长沙: 湖南农业大学, 2017. [70] CHEN J, WEI X D, LIU Y S, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: optimization of wetland substrates and hydraulic loading[J]. Science of the Total Environment,2016,565:240-248. doi: 10.1016/j.scitotenv.2016.04.176 [71] 程羽霄, 吴丹, 陈铨乐, 等. 潮汐-复合流人工湿地系统优化及对抗生素抗性基因的去除效果[J]. 环境科学,2021,42(8):3799-3807.CHENG Y X, WU D, CHEN Q L, et al. Optimization of tidal-combined flow constructed wetland system and its removal effect on antibiotic resistance genes[J]. Environmental Science,2021,42(8):3799-3807. [72] LIU L, LI J, XIN Y, et al. Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems[J]. Environmental Pollution,2021,269:116152. ◇ doi: 10.1016/j.envpol.2020.116152