Advances in application and reinforced control of Anammox nitrogen removal process based on carbon emission reduction
-
摘要:
随着我国“双碳”目标的提出和水处理行业提标改造的重点落在生物脱氮,污水处理厂从关注满足排放许可限制转向实现碳中和、能量自给及资源回收。厌氧氨氧化(Anammox)技术凭借无需外加有机碳源、占地面积小、污泥产量少以及脱氮效率高等节能降耗与碳减排优势,代表着未来污水生物脱氮的发展方向。基于已有研究成果,梳理对比了传统脱氮与Anammox反应的发展历程;重点综述了新兴短程硝化耦合Anammox(PN-A)工艺、短程反硝化耦合Anammox(PD-A)工艺和甲烷型反硝化耦合Anammox(DAMO-Anammox)工艺在城市主流工况的应用进展;详细探讨了主流Anammox工艺面临低温、进水负荷不均和光照等环境因素冲击时,可施行的“侧流污泥补充至主流”“侧流污水间歇性补充至主流”“驯化生物膜颗粒”等内源性以及外源性的强化调控策略及内在机制;最后围绕分子生物学技术、材料科学、数字信息技术和管理政策,对加快Anammox生物脱氮技术的创新发展与推广应用进行了展望。
-
关键词:
- 污水处理厂 /
- 厌氧氨氧化(Anammox) /
- 碳减排技术 /
- 强化调控 /
- 生物脱氮
Abstract:With the proposal of China's "dual carbon" goal and the focus of upgrading the water treatment industry to biological nitrogen removal, sewage treatment plants have shifted from focusing on meeting emission permit limits to realizing carbon neutrality, energy self-sufficiency and resource recovery potential. Anaerobic ammonia oxidation (Anammox) technology, with the advantages of no additional organic carbon source, small footprint, small sludge production and high nitrogen removal efficiency, represents the future development direction of biological nitrogen removal in sewage, with energy saving, consumption reduction and carbon emission reduction. Based on the existing research results, the discovery history of traditional nitrogen removal and Anammox reaction was summarized and compared. The application progress of emerging partial nitrification and Anammox (PN-A), partial denitrification and Anammox (PD-A), and anaerobic methane denitrification and Anammox (DAMO-Anammox) processes in urban mainstream conditions were reviewed. The endogenous and exogenous regulation strategies and their internal mechanisms, which could be implemented when the mainstream Anammox process was confronted with environmental factors such as low temperature, uneven influent load and light, were explored in detail. These strategies include "side-flow sludge supplement to mainstream" "side-flow sewage intermittent supplement to mainstream" and "acclimated biofilm particles", and so so on. Finally, future directions for accelerating the innovative development and application of Anammox nitrogen removal technology were proposed in terms of molecular biology technology, material sciences, digital information technology, and management policies.
-
我国于2020年9月宣布“碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”目标以来,节能减碳备受关注[1]。污水处理厂是进行氮、磷、有机污染物去除的重要工程,但从实际处理效果看,却有“以能消能,污染转嫁”的风险[2]。污水处理行业属我国能耗大户,每年耗电量可达400亿kW·h,相当于三峡电站半年的发电量[3]。伴随提标改造的重点转至深度脱氮,污水处理要消耗大量的电力、热力和化学药剂,从而增加了间接碳排放量,处理设施在运行过程中也会直接排放大量温室气体(CO2、CH4、N2O等)[4]。据联合国环境规划署报道,污水处理领域碳排放量约占全球碳排放总量的2%;到2030年,我国污水处理领域温室气体排放量将升至3.65亿t(以碳当量计),约占全国温室气体排放总量的3%[5]。
由此,将低碳理念贯穿到污水处理全过程,并研发具备减碳效能的污水生物脱氮工艺已势在必行。厌氧氨氧化(anaerobic ammonium oxidation,Anammox)具有零碳源自养脱氮属性[6],是实现碳减排的首选技术。基于此,笔者对厌氧氨氧化的技术发展进行了总结,重点阐释近些年主流厌氧氨氧化减碳工艺的相关应用与强化调控进展,以期为未来厌氧氨氧化的开发优化与推广应用提供参考借鉴。
1. 厌氧氨氧化的发现
传统生物脱氮技术是以活性污泥法为代表的硝化-反硝化反应,其中自养型好氧氨氧化菌(ammonia-oxidizing bacteria,AOB)与亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)先将污水中氨氮(${\mathrm{NH}}_4^+ $)分别氧化至亚硝酸盐(${\mathrm{NO}}_2^- $)和硝酸盐(${\mathrm{NO}}_3^- $);而后反硝化菌(denitrifying bacteria,DB)在缺氧生境将${\mathrm{NO}}_3^- $逐步还原为N2,从而实现高排放标准下氮污染物的移除(图1)[7]。但实际工程中,因硝化大量曝气(设备电耗高)与反硝化外加有机碳源(药剂成本大幅提升)、中途产生N2O等温室气体(吸热效率约是CO2的300倍)[8]、占地面积过大、产生大量剩余污泥需稳定化与安全化处置、运营维护复杂等问题,使得硝化-反硝化工艺难以实现低碳化。
短程硝化-反硝化技术是筛选AOB,把${\mathrm{NH}}_4^+ $氧化严格控制在${\mathrm{NO}}_2^- $阶段,而后反硝化菌直接将${\mathrm{NO}}_2^- $还原为N2,即${\mathrm{NH}}_4^+ $→${\mathrm{NO}}_2^- $→N2(图1)[9]。相比硝化-反硝化,因消除${\mathrm{NO}}_2^- $到${\mathrm{NO}}_3^- $的氧化过程,可节省约25%的曝气量,同时可节省40%因${\mathrm{NO}}_3^- $还原为${\mathrm{NO}}_2^- $过程的有机物消耗量以及后续40%的污泥产出[10]。短程反硝化要高出全程反硝化速率1.3~2.0倍,生化速率更快,因此也能有效减少缺氧区的使用容积,降低基建费用[11]。但该工艺并未从本质上跳出反硝化是唯一脱氮途径的理论范畴,碳减排优势仍显不足。
厌氧氨氧化的发现不但颠覆了传统硝化-反硝化脱氮路径,而且彻底改写了自然界氮循环过程,其已成为国内外在碳减排、可持续性污水治理领域的研究热点[12]。早在1977年奥地利理论化学家Broda[13]首次运用热力学原理推断出自然界还存在着${\mathrm{NH}}_4^+ $+${\mathrm{NO}}_2^- $→N2的这一生物反应;1997年,Kuenen[14]确定了厌氧氨氧化菌(AnAOB)隶属浮霉菌门并准确提出了厌氧氨氧化反应的化学计量式,即AnAOB可在厌氧或缺氧生境以${\mathrm{NH}}_4^+ $为电子供体、${\mathrm{NO}}_2^- $为电子受体同步实现对${\mathrm{NH}}_4^+ $和${\mathrm{NO}}_2^- $的移除并产生N2;2002年,世界上第一座厌氧氨氧化工程在荷兰鹿特丹Dokhaven污水处理厂投产运行[15],开启了新型自养污水脱氮技术工程化应用的时代。相比硝化-反硝化过程,厌氧氨氧化反应无需曝气与外加有机碳源(COD)[14],能极大降低设备电耗、药剂投加量及温室气体排放量;AnAOB世代时间长、生长缓慢[16],相应污泥产量也低;厌氧氨氧化也能实现令人满意的氮去除负荷,有报道最高可达76.7 kg/(m3·d)[17]。目前,全球范围内已建成的厌氧氨氧化商用污水处理厂超过200座[18]。此外,是否存在微生物可直接驱动${\mathrm{NH}}_4^+ $转化为N2,尚且未知。最近有研究发现了一种新的N2转化途径,即NH3→NH2OH→N2(直接氨氧化),该过程与完全好氧氨氧化的热力学预测相一致,这也为污水脱氮处理提供了新的可能[19]。
2. 城市污水处理主流厌氧氨氧化工艺
经过20多年的研究创新发展,全球针对侧流污泥消化液、垃圾渗滤液、工业废水等特殊工况高${\mathrm{NH}}_4^+ $的厌氧氨氧化工程技术应用已比较成熟[20],研究人员将注意力转向厌氧氨氧化主流脱氮,以期能扩大其应用场景。不同于侧流污水浓度高,进水${\mathrm{NH}}_4^+ $浓度通常达到500~3 000 mg/L,出水总氮(TN)浓度也在几十至200 mg/L,主流厌氧氨氧化工艺的氮去除负荷普遍在0.1 kg/(m3·d)数量级,有报道最高值能达6.8 kg/(m3·d)[21];进水${\mathrm{NH}}_4^+ $浓度大多在30~100 mg/L,相应地出水TN浓度也普遍低于20 mg/L[22]。鉴于城市污水处理中,主流区进水污染物以COD和${\mathrm{NH}}_4^+ $为主,厌氧氨氧化反应电子受体${\mathrm{NO}}_2^- $往往不足。为尽量消除有机物对AnAOB的抑制作用,需要先通过高负荷活性污泥法(HRAS)[23]、化学强化一级处理(CEPT)[24]或者厌氧消化(AD)[25]等手段来进行COD的捕获。最近有研究发现,CEPT系统能有效除磷且无需曝气,快速的非生物过程可以回收更多的COD;当捕获富铁有机物时,剩余污泥厌氧消化过程不仅能显著提高CH4比产率,高纯度CH4用于发电也利于实现能量中和甚至盈余,并且消化污泥也可自然形成铁磷酸盐类矿物从而利于资源回收[26]。在消除COD不利影响后,解决厌氧氨氧化反应${\mathrm{NO}}_2^- $底物稳定来源实则更为关键,当前可行路径主要包括短程硝化耦合Anammox(PN-A)工艺[27]、短程反硝化耦合Anammox(PD-A)工艺[28]以及甲烷型反硝化耦合Anammox(DAMO-Anammox)工艺[29]。
2.1 短程硝化耦合Anammox
在PN-A脱氮系统过程中〔图2(a)〕,仅有约1/2 的${\mathrm{NH}}_4^+ $被AOB氧化为${\mathrm{NO}}_2^- $,而不会再被继续氧化成${\mathrm{NO}}_3^- $;自养型AnAOB再利用剩余的43% ${\mathrm{NH}}_4^+ $,在缺氧生境同生成的${\mathrm{NO}}_2^- $直接进行厌氧氨氧化反应生成N2[27],以实现氮污染物的移除。相较于传统硝化-反硝化工艺,PN-A在设备电耗指标方面,可节省约62.5%的曝气量;药剂投加指标方面,无需有机碳源,则减少100% COD[12];底物消耗指标方面,在节省50% ${\mathrm{NH}}_4^+ $情况下,相应地能减少80%~90%的污泥产量,同时可降低CO2与N2O的排放;整套工艺的综合运行成本减少近3/4[20]。
全球首座实际工程应用的PN-A工艺是2002年荷兰鹿特丹Dokhaven污水厂建成的两段式SHARON-Anammox系统,其设计容积为70 m3,氮去除负荷可达到9.5 kg/(m3·d)[15]。基于建设成本考量,大多PN-A工艺采用一段式,包括商用DEMON®(SBR+旋液分离颗粒污泥)[30]和ANITA™Mox(基于MBBR)技术等[31]。例如奥地利Strass污水处理厂通过进水COD最大化利用、DEMON®以及共消化等一系列综合技术手段,已经取得200%的能源自给率,完全实现了能量盈余[32]。近10年,全球也快速扩大了厌氧氨氧化在城市污水主流工程中的应用。新加披樟宜污水处理厂是首个达成日处理量20万m3且稳定运行的主流PN-A工程案例,其采用分段式进水活性污泥工艺,在好氧区部分氨氧化(72.2%)与短程硝化过程${\mathrm{NO}}_2^- $积累率76%)得到了良好实现;缺氧区则发生厌氧氨氧化过程(氮移除贡献占比37%);尤其通过能耗指标分析发现,相较其他回用水处理厂,该工艺降低能耗10%~30%,池容亦可减少10%~40%[33]。
2.2 短程反硝化耦合Anammox
在PD-A脱氮系统中,约有1/2 ${\mathrm{NH}}_4^+ $先被AOB与NOB完全氧化至${\mathrm{NO}}_3^- $,接着${\mathrm{NO}}_3^- $被短程反硝化菌还原为${\mathrm{NO}}_2^- $后停止,AnAOB则利用未被氧化的${\mathrm{NH}}_4^+ $与生成的${\mathrm{NO}}_2^- $实现同步自养脱氮[34]。相比于硝化-反硝化工艺,PD-A在设备电耗指标方面,可节省近50%曝气量;在药剂投加指标方面,可减少80% COD;底物消耗指标方面,在节省50% ${\mathrm{NH}}_4^+ $情况下,相应能减少60%污泥产量,同时降低CO2排放量等[28]。因此,仅就设备电耗与药剂投加指标而言,PD-A相比PN-A要多消耗12.5% O2且需额外投加COD[12];但PD与厌氧氨氧化反应的反应物与生成物能形成互补、可实现100%的氮污染物去除,过程相比PN-A更为稳定可控[35]。大量研究表明,目前可实现短程反硝化${\mathrm{NO}}_2^- $累积的有效手段包括投加乙酸钠等小分子有机碳源[36]、低碳氮比(2.0~3.0)进水[28]、高pH(7.5~9.0)环境[37]、提高${\mathrm{NO}}_3^- $浓度[35]、添加生物膜载体等[38]。
实际城市主流A2/O(厌氧-缺氧-好氧)工艺的缺氧池,通常是强化PD-A脱氮途径的优势区域〔图2(b)〕,这一过程在西安第四污水处理厂得到了验证。通过向改造后的A2/O+MBBR中的厌氧、缺氧区大规模投加填料(投加比约10%),缺氧区自然地富集出AnAOB,经测算脱氮贡献率占到15.9%,出水TN浓度也达到了GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准[39]。另外,PN-A+PD-A工艺处理城市污水的可行性及其高脱氮效率也在不断被证明,PN-A产生的${\mathrm{NO}}_3^- $正好能被短程反硝化PD转化为${\mathrm{NO}}_2^- $,被出水中有限的${\mathrm{NH}}_4^+ $和有机物进一步去除[40-41]。目前,全球多个中试规模的PD-A工艺研究已相继展开,我国宜兴市屺亭污水处理厂升级改造工程(5万m3/d)PD-A项目即可实现对原水中碳源的充分利用,节省约30%曝气能耗,且出水COD、TN浓度能严格控制在40和8 mg/L以下,节能减碳效果显著,产业化前景广阔[42-43]。
2.3 甲烷型反硝化耦合Anammox
在DAMO-Anammox脱氮系统中,反硝化厌氧甲烷氧化菌利用厌氧氨氧化反应所产生的${\mathrm{NO}}_3^- $及发酵液中的溶解性CH4为底物,将CH4氧化为CO2,同时生成${\mathrm{NO}}_2^- $或N2;紧接着,甲烷型反硝化反应生成的${\mathrm{NO}}_2^- $与进水中的${\mathrm{NH}}_4^+ $亦可继续被AnAOB所利用[44]。相比硝化-反硝化工艺,DAMO-Anammox不但能实现对厌氧出水中温室气体CH4的直接捕集(吸热效率约为CO2的20倍)[45],而且无需COD即可消除AnAOB产生的${\mathrm{NO}}_3^- $并为AnAOB持续提供底物${\mathrm{NO}}_2^- $,从而达到对氮污染物的同步高效移除,碳减排与碳捕集效应均尤为显著〔图2(c)〕。近期有研究表明,在主流DAMO-Anammox工艺中的反硝化厌氧甲烷氧化菌以Candidatus Mmethylomirabilis菌属为主导,AnAOB则以Candidatus Brocadia和Kuenenia为优势菌属[46]。
近年来,以厌氧氨氧化为核心的生物脱氮工艺快速发展,先后开发出了诸如短程硝化-厌氧氨氧化-反硝化(SNAD)工艺、短程硝化-厌氧氨氧化-反硝化-发酵(SNADF)工艺、厌氧氨氧化同步脱氮回收磷型颗粒污泥(Anammox-HAP)工艺、硫基自养反硝化耦合厌氧氨氧化(SDAD-Anammox)工艺、反硝化聚磷酸微生物耦合厌氧氨氧化工艺等[6,47]。如Ma等[48]采用间歇曝气成功运行SNADF工艺于SBR中,同步实现高效脱氮与污泥减量化,TN移除率高达92.8%;Chen等[49]采用HAP为基础的PN-A工艺,在常温氮负荷6 kg/(m3·d)下,移除负荷高达4.8 kg/(m3·d)。可见,基于碳减排的厌氧氨氧化技术的开发应用正不断取得新的进展与突破。
3. 厌氧氨氧化工艺稳定性的增强
厌氧氨氧化技术虽然节能降耗、碳减排效应显著,但AnAOB生态位窄、对环境因素波动敏感[50-51]。鉴于污水处理厂运作环境复杂,要确保厌氧氨氧化段能有效应对各种干扰并最大限度利用其可用容量全天候满足排放许可限制就显得尤为困难[52]。实际运作中,厌氧氨氧化工艺失稳现象时有发生,比如脱氮效率陡然降低、pH下降、DO浓度增加,甚至菌体红色褪去、污泥上浮解体、异养菌大量繁殖、出水悬浮固体增加、反应器膜污染加剧以及AnAOB大量流失等[53]。不同于污水处理侧流体系,在培养足够多的高品质菌种后,正常运行下的高温、高${\mathrm{NH}}_4^+ $(足够高游离氨浓度可有效抑制NOB生长)[54]生境都较利于AnAOB的富集培养[55],主流厌氧氨氧化工艺更易受到环境低温、氮负荷不均、光照等外界因素等干扰[56],故需要多手段配合、精准调控,以实现稳固运行(表1)。
表 1 厌氧氨氧化活性强化调控手段Table 1. Activity enhancement means of Anammox process生物强化途径 操作方式 强化机理 数据来源 内源性 侧流污泥补充至主流 提高菌种质量与丰度 文献[57] 侧流污水间歇性补充至主流 强化菌体合成代谢适应性 文献[59] 驯化生物膜颗粒 提供附着生长场所,形成内部厌氧环境,提高菌种丰度 文献[62] 外源性 外加无机碳 实现pH缓冲并提供充足碳源 文献[67] 添加酵母提取物 提供氨基酸等微量元素 文献[68] 添加铁基材料(零价铁、铁离子) 降低氧化还原电位促进颗粒化 文献[69] 添加导电材料(氧化石墨烯、碳纤维刷) 促进电子传递 文献[70-71] 施加物理场(电场、磁场、超声波) 改变细胞膜通透性并增强AnAOB酶的活性 文献[72] 培养菌藻共生体 联合脱氮促进菌群团聚 文献[73-75] 注:强化调控手段重点针对主流厌氧氨氧化工艺。 就内源性强化模式而言,有研究人员提出将侧流自养脱氮工艺剩余的AnAOB补充至主流厌氧氨氧化体系,以此提高AnAOB生物量与丰度[57]。例如奥地利Strass污水处理厂与瑞士Glarnerland污水处理厂强化主流厌氧氨氧化脱氮稳固性的方式就是“侧流污泥补充至主流”,每个侧流DEMON®的SBR反应池循环排出的剩余污泥,经过inDENSE™水力旋流器,将沉降性能好的AnAOB颗粒筛分回流到主流反应池;或是从侧流反应区直接提取污泥混合液接种到主流厌氧氨氧化反应池,实现生物强化。再者直接通过周期性地向主流厌氧氨氧化段加入高浓度含氮废水,如侧流厌氧消化上清液,即“侧流污水间歇性补充至主流”同样可实现AnAOB快速富集增殖与颗粒化形成[58]。近期,Chen等[59]利用代谢组学分析证实了进水氮负荷周频率波动驯化培养的AnAOB群落具备合成代谢生长适应性,能够表现出更为高效稳定的脱氮效能与优良的抗冲击性能。
此外,选用AnAOB颗粒或生物膜形式实施针对主流厌氧氨氧化工艺菌种的富集培养,也是内源性强化调控的有效措施。颗粒生物膜内部因为DO传质受限,会形成O2浓度梯度差,AOB或DB附着于生物膜表面将${\mathrm{NH}}_4^+ $氧化为${\mathrm{NO}}_2^- $或将${\mathrm{NO}}_3^- $还原为${\mathrm{NO}}_2^- $,这可为生物膜内部空间提供缺氧环境,并为AnAOB提供所需底物,因此有利于提高厌氧氨氧化系统抗冲击性能[60];包括厌氧膜生物反应器(AnMBR)、升流式厌氧污泥床反应器(UASB)、膨胀颗粒污泥床反应器(EGSB)等均可筛选出沉降性好、活性高的颗粒生物膜[61]。同时反应器中的生物膜填料或载体也能减少AnAOB的水力流失、增加菌种停留时间,若反应器再控制污泥龄以尽可能少排泥或者不排泥,则更能有效提高AnAOB的活性与生物膜形成[62]。如瑞典ANITA™ Mox的MBBR系统[31]即是通过投加生物填料提高AnAOB聚集造粒并加速脱氮的一种生物强化技术,AnAOB因附着繁殖载体表面既能显著减轻膜污染,也利于抵御低温高负荷等不利环境的影响[63]。Li等[64]则采用海泡石-无纺布填充聚丙烯球壳复合载体以增强AnAOB黏附性能,实现了单级PN-A系统的快速启动与长期稳定运行。类似在中式AnMBR和PN-A组合工艺中,固定生物膜-活性污泥(IFAS)的PN-A系统表现出了优良的AnAOB富集特性,AnAOB的DNA拷贝数在短短16 d即呈现指数增长[65]。Ni等[66]则开发出光纤型光催化AnMBR抗污染装置,不但能有效延长膜污染周期,减少因频繁洗膜而导致的AnAOB生物量损耗,而且有机膜污染物可通过光催化被降解,进一步利于AnAOB生物膜的形成。
除上述内源性生物强化模式外,通过外加适量的无机碳、酵母提取物、铁基材料、氧化石墨烯与碳纤维刷类等导电性材料,或施加电场、磁场以及低强度超声波等也能刺激AnAOB活性,强化脱氮[67-72]。此外,还有研究尝试利用藻类进行菌藻共生强化,如Manser等[73]利用12 h光照/12 h黑暗波动周期成功启动了藻类厌氧氨氧化工艺,DO仅依靠藻类光合作用合成,无需机械曝气,${\mathrm{NH}}_4^+ $的去除效率因AnAOB的投加接种提高了62%。Zhang等[74]采取12 h光照/12 h黑暗波动方式,有效培养出藻类活性污泥共生颗粒;相比单一活性污泥,菌藻共生体团聚性能好、胞外聚合物分泌旺盛,实现了对有机物、${\mathrm{PO}}_4^{3-} $、${\mathrm{NH}}_4^+ $等污染物的高效去除。Kong等[75]于序批式光生物反应器成功培养出藻类-短程硝化-厌氧氨氧化颗粒污泥,氮去除负荷达到0.29 kg/(m3·d),同时实现了负碳排放。可见,强化调控的定义范围是开放的,只要能营造利于主流厌氧氨氧化工艺运行的稳固性与高效性,在满足生物安全和生态文明理念的先决条件下都具备适当的应用潜力。
4. 减碳厌氧氨氧化技术的应用展望
在当前我国提出“碳达峰、碳中和”目标以及水处理行业实施提标改造的背景下,推动污水处理厂减污降碳具有重要意义。鉴于污水生物脱氮是一项涵盖生物、材料、信息技术、管理等多学科交叉的系统工程,基于碳减排的厌氧氨氧化脱氮工艺要加快实现实用化和工业化,需坚持技术创新与管理措施“双管齐下”。
(1)侧重脱氮机理解析,促进工艺优化
AnAOB群落系统存在多菌种间复杂互作关系(包括竞争、共生、交叉供食等),随着分子生物学与生物信息学、微生物生态学的爆炸式发展,现获取的微生物组海量信息足以全景展现出厌氧氨氧化脱氮系统中微生物“社会”运行规律,通过构建工艺宏观脱氮效能与AnAOB微生物组之间的关系网,有利于实现厌氧氨氧化菌群结构的定向调控与强化脱氮。特别是未来基因编辑技术有可能极大提升厌氧氨氧化工艺的稳固性与减碳效能。
(2)加速新型膜材料与强化脱氮技术协同发展
膜法厌氧氨氧化污水处理技术因分离效率高、出水水质好、抗冲击能力强在城市污水处理领域应用广泛,而高性能膜材料的制备可显著削减污水处理过程中的碳排放。重点寻求具有抗有机污染与抗生物污染的微滤、超滤膜和光催化膜材料,以及突破过滤性能-选择性相互制约的高压纳滤和反渗透膜材料是值得关注的方向,利于推动膜技术/工艺节能减碳、降低制造与维护成本。
(3)利用数字技术推动智能化生物脱氮
充分发挥数字技术对厌氧氨氧化工艺赋能效应。鉴于AnAOB以及${\mathrm{NO}}_2^- $来源所需的环境窗口都尤为狭窄,将数字技术与厌氧氨氧化脱氮工艺、管理、监控等全过程相结合,利用海量数据(包括流量、DO、悬浮物、有机质、${\mathrm{NH}}_4^+ $和${\mathrm{NO}}_3^- $浓度等)进行数字映射、智能分析,优化控制污泥回流量、曝气量、药剂投加量等关键参数,利于实现减污降碳、深度脱氮。
(4)加强政策支持,加速新型脱氮技术应用推广
打好法治、市场、科技、政策“组合拳”,出台绿色低碳技术创新激励政策。开展多元化投融资,完善支持以厌氧氨氧化工艺为代表的绿色低碳技术的示范应用;推动产学研用深度融合发展,保护知识产权创新;鼓励净水厂加快生物脱氮技术迭代升级、明确减碳路线,持续推动污水处理由耗能向效能与产能方向转型。
-
表 1 厌氧氨氧化活性强化调控手段
Table 1 Activity enhancement means of Anammox process
生物强化途径 操作方式 强化机理 数据来源 内源性 侧流污泥补充至主流 提高菌种质量与丰度 文献[57] 侧流污水间歇性补充至主流 强化菌体合成代谢适应性 文献[59] 驯化生物膜颗粒 提供附着生长场所,形成内部厌氧环境,提高菌种丰度 文献[62] 外源性 外加无机碳 实现pH缓冲并提供充足碳源 文献[67] 添加酵母提取物 提供氨基酸等微量元素 文献[68] 添加铁基材料(零价铁、铁离子) 降低氧化还原电位促进颗粒化 文献[69] 添加导电材料(氧化石墨烯、碳纤维刷) 促进电子传递 文献[70-71] 施加物理场(电场、磁场、超声波) 改变细胞膜通透性并增强AnAOB酶的活性 文献[72] 培养菌藻共生体 联合脱氮促进菌群团聚 文献[73-75] 注:强化调控手段重点针对主流厌氧氨氧化工艺。 -
[1] 黄润秋. 把碳达峰碳中和纳入生态文明建设整体布局[J]. 环境经济,2021(22):12-15. HUANG R Q. Incorporate peak carbon dioxide emissions's carbon neutrality into the overall layout of ecological civilization construction[J]. Environmental Economy,2021(22):12-15.
[2] 郝晓地, 张健. 污水处理的未来: 回归原生态文明[J]. 中国给水排水,2015,31(20):1-7. HAO X D, ZHANG J. Future of wastewater treatment: returning to originally ecological civilization[J]. China Water & Wastewater,2015,31(20):1-7.
[3] 宋新新, 林甲, 刘杰, 等. 面向未来的污水处理厂关键技术研发与工程实践专栏序言[J]. 环境科学学报,2022,42(4):1-6. DOI: 10.13671/j.hjkxxb.2021.0593 SONG X X, LIN J, LIU J, et al. The R & D and practice of key technologies for sewage treatment plants facing the future[J]. Acta Scientiae Circumstantiae,2022,42(4):1-6. DOI: 10.13671/j.hjkxxb.2021.0593
[4] 杨庆, 王亚鑫, 曹效鑫, 等. 污水处理碳中和运行技术研究进展[J]. 北京工业大学学报, 2022, 48(3): 292-305. YANG Q,WANG Y,CAO X,et alResearch progress of carbon neutrality operation technology in sewage treatment[J]. Journal of Beijing University of Technology,2022,48(3):292-305.
[5] HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research,2015,87:424-431. DOI: 10.1016/j.watres.2015.05.050
[6] 薛意, 陈荣, 邢保山, 等. 厌氧氨氧化: 理论和工艺发展概述(代序言)[J]. 环境工程学报,2022,16(2):375-380. XUE Y, CHEN R, XING B S, et al. Anaerobic ammonia oxidation: overview of theory and process development (preface)[J]. Chinese Journal of Environmental Engineering,2022,16(2):375-380.
[7] KLOTZ M G, STEIN L Y. Nitrifier genomics and evolution of the nitrogen cycle[J]. FEMS Microbiology Letters,2008,278(2):146-156. DOI: 10.1111/j.1574-6968.2007.00970.x
[8] KAMPSCHREUR M J, TAN N C G, KLEEREBEZEM R, et al. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture[J]. Environmental Science & Technology,2008,42(2):429-435.
[9] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The Sharon process: an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology,1998,37(9):135-142. DOI: 10.2166/wst.1998.0350
[10] VERSTRAETE W, PHILIPS S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental Pollution,1998,102(1):717-726. DOI: 10.1016/S0269-7491(98)80104-8
[11] 高静. 短程反硝化影响因素优化及耦合厌氧氨氧化深度脱氮性能研究[D]. 扬州: 扬州大学, 2023. [12] 郝晓地, 杨万邦, 李季, 等. 厌氧氨氧化技术研究与应用反差现象归因[J]. 环境科学学报,2023,43(9):1-13. DOI: 10.13671/j.hjkxxb.2023.0256 HAO X D, YANG W B, LI J, et al. Attribution of the contrast phenomena of ANAMMOX techniques on research and application[J]. Acta Scientiae Circumstantiae,2023,43(9):1-13. DOI: 10.13671/j.hjkxxb.2023.0256
[13] BRODA E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift Fur Allgemeine Mikrobiologie,1977,17(6):491-493. DOI: 10.1002/jobm.19770170611
[14] KUENEN J G. Anammox bacteria: from discovery to application[J]. Nature Reviews Microbiology,2008,6(4):320-326. DOI: 10.1038/nrmicro1857
[15] van der STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research,2007,41(18):4149-4163. DOI: 10.1016/j.watres.2007.03.044
[16] KUMAR M, LIN J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal: strategies and issues[J]. Journal of Hazardous Materials,2010,178(1/2/3):1-9.
[17] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research,2011,45(1):135-144. DOI: 10.1016/j.watres.2010.08.018
[18] CAO Y S, van LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology,2017,101(4):1365-1383. DOI: 10.1007/s00253-016-8058-7
[19] PAN Y, LIU D F. Tapping the potential of wastewater treatment with direct ammonia oxidation (dirammox)[J]. Environmental Science & Technology,2023,57(18):7106-7108.
[20] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: an application survey[J]. Water Research,2014,55:292-303. DOI: 10.1016/j.watres.2014.02.032
[21] JIN P F, LI B K, MU D Y, et al. High-efficient nitrogen removal from municipal wastewater via two-stage nitritation/anammox process: long-term stability assessment and mechanism analysis[J]. Bioresource Technology,2019,271:150-158. DOI: 10.1016/j.biortech.2018.09.097
[22] TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater engineering: treatment and reuse[M]. 4th ed. Boston: McGraw-Hill, 2003.
[23] JIMENEZ J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management: evaluation of crucial process mechanisms and design parameters[J]. Water Research,2015,87:476-482. DOI: 10.1016/j.watres.2015.07.032
[24] DIAMANTIS V, VERSTRAETE W, EFTAXIAS A, et al. Sewage pre-concentration for maximum recovery and reuse at decentralized level[J]. Water Science and Technology,2013,67(6):1188-1193. DOI: 10.2166/wst.2013.639
[25] LI X J, SUN S, YUAN H Y, et al. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: long-term performance and microbial community dynamics[J]. Water Research,2017,125:298-308. DOI: 10.1016/j.watres.2017.08.048
[26] CAO S B, KOCH K, DREWES J E, et al. Re-evaluating the necessity of high-rate activated sludge processes for mainstream anammox[J]. Environmental Science & Technology,2023,57(5):1851-1854.
[27] JOSS A, DERLON N, CYPRIEN C, et al. Combined nitritation–anammox: advances in understanding process stability[J]. Environmental Science & Technology,2011,45(22):9735-9742.
[28] DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: opportunities of extending application for anammox[J]. Environment International,2019,131:105001. DOI: 10.1016/j.envint.2019.105001
[29] SHI Y, HU S H, LOU J Q, et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor[J]. Environmental Science & Technology,2013,47(20):11577-11583.
[30] GONZALEZ-MARTINEZ A, MORILLO J A, GARCIA-RUIZ M J, et al. Archaeal populations in full-scale autotrophic nitrogen removal bioreactors operated with different technologies: CANON, DEMON and partial nitritation/anammox[J]. Chemical Engineering Journal,2015,277:194-201. DOI: 10.1016/j.cej.2015.04.137
[31] VEUILLET F, LACROIX S, BAUSSERON A, et al. Integrated fixed-film activated sludge ANITA™Mox process: a new perspective for advanced nitrogen removal[J]. Water Science and Technology,2014,69(5):915-922. DOI: 10.2166/wst.2013.786
[32] AICHINGER P, WADHAWAN T, KUPRIAN M, et al. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction[J]. Water Research,2015,87:416-423. DOI: 10.1016/j.watres.2015.07.033
[33] CAO Y, HONG K B, YAN Z, et al. Mainstream partial nitritation/anammox nitrogen removal process in the largest water reclamation plant in Singapore[J]. Journal of Beijing University of Technology,2015,41(10):1441-1447.
[34] 杜睿, 彭永臻. 城市污水生物脱氮技术变革: 厌氧氨氧化的研究与实践新进展[J]. 中国科学:技术科学,2022,52(3):389-402. DOI: 10.1360/SST-2020-0407 DU R, PENG Y Z. Technical revolution of biological nitrogen removal from municipal wastewater: recent advances in Anammox research and application[J]. Scientia Sinica (Technologica),2022,52(3):389-402. DOI: 10.1360/SST-2020-0407
[35] 刘华光, 董文艺, 王宏杰, 等. 厌氧氨氧化在城市污水脱氮处理中的研究与应用进展[J]. 环境工程技术学报,2022,12(5):1508-1518. LIU H G, DONG W Y, WANG H J, et al. Research and application progress of anaerobic ammonia oxidation in denitrification of municipal sewage[J]. Journal of Environmental Engineering Technology,2022,12(5):1508-1518.
[36] YIN T, CAO J, ZHANG T, et al. Research progress on nitrite accumulation during denitrification with different carbon sources[J]. Applied Chemical Industry,2020,49(11):2919-2925.
[37] QIAN W T, MA B, LI X Y, et al. Long-term effect of pH on denitrification: high pH benefits achieving partial-denitrification[J]. Bioresource Technology,2019,278:444-449. DOI: 10.1016/j.biortech.2019.01.105
[38] 常根旺, 杨津津, 李绍康, 等. 短程反硝化耦合厌氧氨氧化强化脱氮工艺研究与应用进展[J]. 环境工程技术学报,2022,12(5):1519-1527. DOI: 10.12153/j.issn.1674-991X.20210578 CHANG G W, YANG J J, LI S K, et al. Research and application progress of partial denitrification coupled with anammox for enhanced denitrification[J]. Journal of Environmental Engineering Technology,2022,12(5):1519-1527. DOI: 10.12153/j.issn.1674-991X.20210578
[39] LI J W, PENG Y Z, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research,2019,160:178-187. DOI: 10.1016/j.watres.2019.05.070
[40] GAO R T, PENG Y Z, LI J W, et al. Improving performance and efficiency of partial anammox by coupling partial nitrification and partial denitrification (PN/A-PD/A) to treat municipal sewage in a step-feed reactor[J]. Bioresource Technology,2021,341:125804. DOI: 10.1016/j.biortech.2021.125804
[41] LI X C, PENG Y Z, ZHANG J W, et al. Highly efficient and synchronous nitrogen removal from ammonia-rich wastewater and domestic wastewater via a novel anammox coupled with double-nitrite-shunt process at low temperature[J]. Chemical Engineering Journal,2021,425:131449. DOI: 10.1016/j.cej.2021.131449
[42] ALI P, ZALIVINA N, LE T, et al. Primary sludge fermentate as carbon source for mainstream partial denitrification-anammox (PdNA)[J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2021, 93(7): 1044-1059.
[43] ZHAO Q, CHEN K Q, LI J W, et al. Pilot-scale evaluation of partial denitrification/anammox on nitrogen removal from low COD/N real sewage based on a modified process[J]. Bioresource Technology,2021,338:125580
[44] HAROON M F, HU S H, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature,2013,500(7464):567-570. DOI: 10.1038/nature12375
[45] 张福凯, 徐龙君. 甲烷对全球气候变暖的影响及减排措施[J]. 矿业安全与环保,2004,31(5):6-9. DOI: 10.3969/j.issn.1008-4495.2004.05.003 ZHANG F K, XU L J. Effect of methane on global warming and mitigating measures[J]. Mining Safety & Environmental Protection,2004,31(5):6-9. DOI: 10.3969/j.issn.1008-4495.2004.05.003
[46] FAN S Q, WEN W R, XIE G J, et al. Deep insights into the population shift of n-DAMO and Anammox in granular sludge: from sidestream to mainstream[J]. Water Research,2023,244:120448. DOI: 10.1016/j.watres.2023.120448
[47] AL-HAZMI H E, MAKTABIFARD M, GRUBBA D, et al. An advanced synergy of partial denitrification-anammox for optimizing nitrogen removal from wastewater: a review[J]. Bioresource Technology,2023,381:129168. DOI: 10.1016/j.biortech.2023.129168
[48] MA G C, YU D S, ZHANG J H, et al. A novel simultaneous partial nitrification, anammox, denitrification and fermentation process: enhancing nitrogen removal and sludge reduction in a single reactor[J]. Bioresource Technology,2023,369:128484. DOI: 10.1016/j.biortech.2022.128484
[49] CHEN Y J, FENG G, GUO G Z, et al. Improved properties and enhancement strategies of hydroxyapatite-based functional granular sludge for a high-rate partial nitritation/anammox system[J]. Environmental Science & Technology,2023,57(19):7624-7633.
[50] MULDER A, van de GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-183. DOI: 10.1111/j.1574-6941.1995.tb00281.x
[51] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: a review[J]. Chemical Engineering Journal,2012,197:67-79. DOI: 10.1016/j.cej.2012.05.014
[52] OLSSON G. ICA and me: a subjective review[J]. Water Research,2012,46(6):1585-1624. DOI: 10.1016/j.watres.2011.12.054
[53] 魏彩莹, 张静, 任露露, 等. 厌氧氨氧化活性抑制、恢复与强化及工艺应用研究进展[J]. 应用与环境生物学报,2018,24(3):671-680. WEI C Y, ZHANG J, REN L L, et al. Recent advances in activity inhibition, recovery and enhancement, and application of the anaerobic ammonium oxidation process[J]. Chinese Journal of Applied and Environmental Biology,2018,24(3):671-680.
[54] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal-Water Pollution Control Federation,1976,48(5):835-852.
[55] XIE J, JIANG Y, CHANG Y, et al. Research progress of anaerobic ammonia oxidation treatment of urban sewage[J]. Chemical Industry and Engineering Progress,2020,39(10):4175-4184.
[56] LAURENI M, FALÅS P, ROBIN O, et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures[J]. Water Research,2016,101:628-639. DOI: 10.1016/j.watres.2016.05.005
[57] WETT B, OMARI A, PODMIRSEG S M, et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency[J]. Water Science and Technology,2013,68(2):283-289. DOI: 10.2166/wst.2013.150
[58] WETT B, PODMIRSEG S M, GÓMEZ-BRANDÓN M, et al. Expanding DEMON sidestream deammonification technology towards mainstream application[J]. Water Environment Research:a Research Publication of the Water Environment Federation,2015,87(12):2084-2089. DOI: 10.2175/106143015X14362865227319
[59] CHEN Z J, MENG F G, ZHOU C Y, et al. Optimum relative frequency and fluctuating substrate selection in reinforcing anammox-mediated anabolic adaptation[J]. Water Research,2023,228:119377. DOI: 10.1016/j.watres.2022.119377
[60] 王伟刚, 王彤, 樊宇菲, 等. 厌氧氨氧化颗粒污泥聚集机制研究进展[J]. 微生物学通报,2022,49(5):1927-1940. DOI: 10.13344/j.microbiol.china.210893 WANG W G, WANG T, FAN Y F, et al. Research progress on the aggregation mechanism of anammox granular sludge[J]. Microbiology China,2022,49(5):1927-1940. DOI: 10.13344/j.microbiol.china.210893
[61] MANONMANI U, JOSEPH K. Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater[J]. Environmental Chemistry Letters,2018,16(3):881-901. DOI: 10.1007/s10311-018-0732-9
[62] FERNÁNDEZ I, VÁZQUEZ-PADÍN J R, MOSQUERA-CORRAL A, et al. Biofilm and granular systems to improve Anammox biomass retention[J]. Biochemical Engineering Journal,2008,42(3):308-313. DOI: 10.1016/j.bej.2008.07.011
[63] GILBERT E M, AGRAWAL S, KARST S M, et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater[J]. Environmental Science & Technology,2014,48(15):8784-8792.
[64] LI X J, FENG Y M, ZHANG K, et al. Composite carrier enhanced bacterial adhesion and nitrogen removal in partial nitrification/anammox process[J]. Science of the Total Environment,2023,868:161659. DOI: 10.1016/j.scitotenv.2023.161659
[65] WU J, KONG Z, LUO Z B, et al. A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-anammox (PN/A) system: a pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance[J]. Water Research,2021,207:117783. DOI: 10.1016/j.watres.2021.117783
[66] NI L F, WANG K C, WANG Z W, et al. Antibiofouling characteristics and mechanisms in an anammox membrane bioreactor based on an optimized photocatalytic technology-photocatalytic optical fibers[J]. Environmental Science & Technology,2022,56(22):16144-16155.
[67] JIN R C, YU J J, MA C, et al. Transient and long-term effects of bicarbonate on the ANAMMOX process[J]. Applied Microbiology and Biotechnology,2014,98(3):1377-1388. DOI: 10.1007/s00253-013-5004-9
[68] van der STAR W R L, MICLEA A I, van DONGEN U G J M, et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering,2008,101(2):286-294. DOI: 10.1002/bit.21891
[69] ZHANG Y B, AN X L, QUAN X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation[J]. Process Biochemistry,2011,46(2):471-476. DOI: 10.1016/j.procbio.2010.09.021
[70] TOMASZEWSKI M, CEMA G, CIESIELSKI S, et al. Cold anammox process and reduced graphene oxide: varieties of effects during long-term interaction[J]. Water Research,2019,156:71-81. DOI: 10.1016/j.watres.2019.03.006
[71] FENG K, LOU Y, LI Y T, et al. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria[J]. Journal of Hazardous Materials,2023,447:130754. DOI: 10.1016/j.jhazmat.2023.130754
[72] 李天皓, 江雨婕, 毛蔚, 等. 厌氧氨氧化脱氮强化途径的研究进展[J]. 工业水处理,2022,42(7):7-14. DOI: 10.19965/j.cnki.iwt.2021-0483 LI T H, JIANG Y J, MAO W, et al. Research advance on enhanced approaches of Anammox-based nitrogen removal[J]. Industrial Water Treatment,2022,42(7):7-14. DOI: 10.19965/j.cnki.iwt.2021-0483
[73] MANSER N D, WANG M, ERGAS S J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters,2016,3(4):175-179.
[74] ZHANG B, LENS P N L, SHI W X, et al. Enhancement of aerobic granulation and nutrient removal by an algal-bacterial consortium in a lab-scale photobioreactor[J]. Chemical Engineering Journal,2018,334:2373-2382. DOI: 10.1016/j.cej.2017.11.151
[75] KONG L R, ZHENG R, FENG Y M, et al. Anammox bacteria adapt to long-term light irradiation in photogranules[J]. Water Research,2023,241:120144. ⊗ DOI: 10.1016/j.watres.2023.120144
-
期刊类型引用(2)
1. 薛同站,全志道,李卫华,杨厚云,闫祥宇,杨欣蕾. 短程反硝化强化脱氮的影响因素及其耦合工艺应用进展. 环境工程技术学报. 2024(02): 663-671 . 本站查看
2. 邢薇,李龙生,高道清,张泽玺,周光鑫,姚宏. 铁碳自养反硝化高效去除厌氧氨氧化出水硝酸盐氮效能分析. 中国环境科学. 2024(08): 4400-4406 . 百度学术
其他类型引用(2)