留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳减排的厌氧氨氧化脱氮工艺应用及强化调控进展

陈子健 周忠波 孟凡刚

陈子健,周忠波,孟凡刚.基于碳减排的厌氧氨氧化脱氮工艺应用及强化调控进展[J].环境工程技术学报,2024,14(2):389-397 doi: 10.12153/j.issn.1674-991X.20230649
引用本文: 陈子健,周忠波,孟凡刚.基于碳减排的厌氧氨氧化脱氮工艺应用及强化调控进展[J].环境工程技术学报,2024,14(2):389-397 doi: 10.12153/j.issn.1674-991X.20230649
CHEN Z J,ZHOU Z B,MENG F G.Advances in application and reinforced control of Anammox nitrogen removal process based on carbon emission reduction[J].Journal of Environmental Engineering Technology,2024,14(2):389-397 doi: 10.12153/j.issn.1674-991X.20230649
Citation: CHEN Z J,ZHOU Z B,MENG F G.Advances in application and reinforced control of Anammox nitrogen removal process based on carbon emission reduction[J].Journal of Environmental Engineering Technology,2024,14(2):389-397 doi: 10.12153/j.issn.1674-991X.20230649

基于碳减排的厌氧氨氧化脱氮工艺应用及强化调控进展

doi: 10.12153/j.issn.1674-991X.20230649
基金项目: 国家自然科学基金项目(32161143031);中共广东省委党校系统科研规划项目 (2023GDDXXT009);中共广州市委党校新型智库青年学人扶持课题 (QNXR202302)
详细信息
    作者简介:

    陈子健(1992—),男,讲师,博士,主要从事水环境治理研究,chenzj43@mail2.sysu.edu.cn

  • 中图分类号: X703

Advances in application and reinforced control of Anammox nitrogen removal process based on carbon emission reduction

  • 摘要:

    随着我国“双碳”目标的提出和水处理行业提标改造的重点落在生物脱氮,污水处理厂从关注满足排放许可限制转向实现碳中和、能量自给及资源回收。厌氧氨氧化(Anammox)技术凭借无需外加有机碳源、占地面积小、污泥产量少以及脱氮效率高等节能降耗与碳减排优势,代表着未来污水生物脱氮的发展方向。基于已有研究成果,梳理对比了传统脱氮与Anammox反应的发展历程;重点综述了新兴短程硝化耦合Anammox(PN-A)工艺、短程反硝化耦合Anammox(PD-A)工艺和甲烷型反硝化耦合Anammox(DAMO-Anammox)工艺在城市主流工况的应用进展;详细探讨了主流Anammox工艺面临低温、进水负荷不均和光照等环境因素冲击时,可施行的“侧流污泥补充至主流”“侧流污水间歇性补充至主流”“驯化生物膜颗粒”等内源性以及外源性的强化调控策略及内在机制;最后围绕分子生物学技术、材料科学、数字信息技术和管理政策,对加快Anammox生物脱氮技术的创新发展与推广应用进行了展望。

     

  • 图  1  硝化-反硝化、短程硝化-反硝化与厌氧氨氧化途径对比

    Figure  1.  Comparison of nitrification–denitrification, partial nitrification–denitrification and Anammox pathways

    图  2  主流厌氧氨氧化脱氮工艺流程

    Figure  2.  Schematics of mainstream Anammox nitrogen-removal technologies

    表  1  厌氧氨氧化活性强化调控手段

    Table  1.   Activity enhancement means of Anammox process

    生物强化途径 操作方式 强化机理 数据来源
    内源性 侧流污泥补充至主流 提高菌种质量与丰度 文献[57]
    侧流污水间歇性补充至主流 强化菌体合成代谢适应性 文献[59]
    驯化生物膜颗粒 提供附着生长场所,形成内部厌氧环境,提高菌种丰度 文献[62]
    外源性 外加无机碳 实现pH缓冲并提供充足碳源 文献[67]
    添加酵母提取物 提供氨基酸等微量元素 文献[68]
    添加铁基材料(零价铁、铁离子) 降低氧化还原电位促进颗粒化 文献[69]
    添加导电材料(氧化石墨烯、碳纤维刷) 促进电子传递 文献[70-71]
    施加物理场(电场、磁场、超声波) 改变细胞膜通透性并增强AnAOB酶的活性 文献[72]
    培养菌藻共生体 联合脱氮促进菌群团聚 文献[73-75]
      注:强化调控手段重点针对主流厌氧氨氧化工艺。
    下载: 导出CSV
  • [1] 黄润秋. 把碳达峰碳中和纳入生态文明建设整体布局[J]. 环境经济,2021(22):12-15.

    HUANG R Q. Incorporate peak carbon dioxide emissions's carbon neutrality into the overall layout of ecological civilization construction[J]. Environmental Economy,2021(22):12-15.
    [2] 郝晓地, 张健. 污水处理的未来: 回归原生态文明[J]. 中国给水排水,2015,31(20):1-7.

    HAO X D, ZHANG J. Future of wastewater treatment: returning to originally ecological civilization[J]. China Water & Wastewater,2015,31(20):1-7.
    [3] 宋新新, 林甲, 刘杰, 等. 面向未来的污水处理厂关键技术研发与工程实践专栏序言[J]. 环境科学学报,2022,42(4):1-6. doi: 10.13671/j.hjkxxb.2021.0593

    SONG X X, LIN J, LIU J, et al. The R & D and practice of key technologies for sewage treatment plants facing the future[J]. Acta Scientiae Circumstantiae,2022,42(4):1-6. doi: 10.13671/j.hjkxxb.2021.0593
    [4] 杨庆, 王亚鑫, 曹效鑫, 等. 污水处理碳中和运行技术研究进展[J]. 北京工业大学学报, 2022, 48(3): 292-305.

    YANG Q,WANG Y,CAO X,et alResearch progress of carbon neutrality operation technology in sewage treatment[J]. Journal of Beijing University of Technology,2022,48(3):292-305.
    [5] HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research,2015,87:424-431. doi: 10.1016/j.watres.2015.05.050
    [6] 薛意, 陈荣, 邢保山, 等. 厌氧氨氧化: 理论和工艺发展概述(代序言)[J]. 环境工程学报,2022,16(2):375-380.

    XUE Y, CHEN R, XING B S, et al. Anaerobic ammonia oxidation: overview of theory and process development (preface)[J]. Chinese Journal of Environmental Engineering,2022,16(2):375-380.
    [7] KLOTZ M G, STEIN L Y. Nitrifier genomics and evolution of the nitrogen cycle[J]. FEMS Microbiology Letters,2008,278(2):146-156. doi: 10.1111/j.1574-6968.2007.00970.x
    [8] KAMPSCHREUR M J, TAN N C G, KLEEREBEZEM R, et al. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture[J]. Environmental Science & Technology,2008,42(2):429-435.
    [9] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The Sharon process: an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology,1998,37(9):135-142. doi: 10.2166/wst.1998.0350
    [10] VERSTRAETE W, PHILIPS S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental Pollution,1998,102(1):717-726. doi: 10.1016/S0269-7491(98)80104-8
    [11] 高静. 短程反硝化影响因素优化及耦合厌氧氨氧化深度脱氮性能研究[D]. 扬州: 扬州大学, 2023.
    [12] 郝晓地, 杨万邦, 李季, 等. 厌氧氨氧化技术研究与应用反差现象归因[J]. 环境科学学报,2023,43(9):1-13. doi: 10.13671/j.hjkxxb.2023.0256

    HAO X D, YANG W B, LI J, et al. Attribution of the contrast phenomena of ANAMMOX techniques on research and application[J]. Acta Scientiae Circumstantiae,2023,43(9):1-13. doi: 10.13671/j.hjkxxb.2023.0256
    [13] BRODA E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift Fur Allgemeine Mikrobiologie,1977,17(6):491-493. doi: 10.1002/jobm.19770170611
    [14] KUENEN J G. Anammox bacteria: from discovery to application[J]. Nature Reviews Microbiology,2008,6(4):320-326. doi: 10.1038/nrmicro1857
    [15] van der STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research,2007,41(18):4149-4163. doi: 10.1016/j.watres.2007.03.044
    [16] KUMAR M, LIN J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal: strategies and issues[J]. Journal of Hazardous Materials,2010,178(1/2/3):1-9.
    [17] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research,2011,45(1):135-144. doi: 10.1016/j.watres.2010.08.018
    [18] CAO Y S, van LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology,2017,101(4):1365-1383. doi: 10.1007/s00253-016-8058-7
    [19] PAN Y, LIU D F. Tapping the potential of wastewater treatment with direct ammonia oxidation (dirammox)[J]. Environmental Science & Technology,2023,57(18):7106-7108.
    [20] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: an application survey[J]. Water Research,2014,55:292-303. doi: 10.1016/j.watres.2014.02.032
    [21] JIN P F, LI B K, MU D Y, et al. High-efficient nitrogen removal from municipal wastewater via two-stage nitritation/anammox process: long-term stability assessment and mechanism analysis[J]. Bioresource Technology,2019,271:150-158. doi: 10.1016/j.biortech.2018.09.097
    [22] TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater engineering: treatment and reuse[M]. 4th ed. Boston: McGraw-Hill, 2003.
    [23] JIMENEZ J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management: evaluation of crucial process mechanisms and design parameters[J]. Water Research,2015,87:476-482. doi: 10.1016/j.watres.2015.07.032
    [24] DIAMANTIS V, VERSTRAETE W, EFTAXIAS A, et al. Sewage pre-concentration for maximum recovery and reuse at decentralized level[J]. Water Science and Technology,2013,67(6):1188-1193. doi: 10.2166/wst.2013.639
    [25] LI X J, SUN S, YUAN H Y, et al. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: long-term performance and microbial community dynamics[J]. Water Research,2017,125:298-308. doi: 10.1016/j.watres.2017.08.048
    [26] CAO S B, KOCH K, DREWES J E, et al. Re-evaluating the necessity of high-rate activated sludge processes for mainstream anammox[J]. Environmental Science & Technology,2023,57(5):1851-1854.
    [27] JOSS A, DERLON N, CYPRIEN C, et al. Combined nitritation–anammox: advances in understanding process stability[J]. Environmental Science & Technology,2011,45(22):9735-9742.
    [28] DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: opportunities of extending application for anammox[J]. Environment International,2019,131:105001. doi: 10.1016/j.envint.2019.105001
    [29] SHI Y, HU S H, LOU J Q, et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor[J]. Environmental Science & Technology,2013,47(20):11577-11583.
    [30] GONZALEZ-MARTINEZ A, MORILLO J A, GARCIA-RUIZ M J, et al. Archaeal populations in full-scale autotrophic nitrogen removal bioreactors operated with different technologies: CANON, DEMON and partial nitritation/anammox[J]. Chemical Engineering Journal,2015,277:194-201. doi: 10.1016/j.cej.2015.04.137
    [31] VEUILLET F, LACROIX S, BAUSSERON A, et al. Integrated fixed-film activated sludge ANITA™Mox process: a new perspective for advanced nitrogen removal[J]. Water Science and Technology,2014,69(5):915-922. doi: 10.2166/wst.2013.786
    [32] AICHINGER P, WADHAWAN T, KUPRIAN M, et al. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction[J]. Water Research,2015,87:416-423. doi: 10.1016/j.watres.2015.07.033
    [33] CAO Y, HONG K B, YAN Z, et al. Mainstream partial nitritation/anammox nitrogen removal process in the largest water reclamation plant in Singapore[J]. Journal of Beijing University of Technology,2015,41(10):1441-1447.
    [34] 杜睿, 彭永臻. 城市污水生物脱氮技术变革: 厌氧氨氧化的研究与实践新进展[J]. 中国科学:技术科学,2022,52(3):389-402. doi: 10.1360/SST-2020-0407

    DU R, PENG Y Z. Technical revolution of biological nitrogen removal from municipal wastewater: recent advances in Anammox research and application[J]. Scientia Sinica (Technologica),2022,52(3):389-402. doi: 10.1360/SST-2020-0407
    [35] 刘华光, 董文艺, 王宏杰, 等. 厌氧氨氧化在城市污水脱氮处理中的研究与应用进展[J]. 环境工程技术学报,2022,12(5):1508-1518.

    LIU H G, DONG W Y, WANG H J, et al. Research and application progress of anaerobic ammonia oxidation in denitrification of municipal sewage[J]. Journal of Environmental Engineering Technology,2022,12(5):1508-1518.
    [36] YIN T, CAO J, ZHANG T, et al. Research progress on nitrite accumulation during denitrification with different carbon sources[J]. Applied Chemical Industry,2020,49(11):2919-2925.
    [37] QIAN W T, MA B, LI X Y, et al. Long-term effect of pH on denitrification: high pH benefits achieving partial-denitrification[J]. Bioresource Technology,2019,278:444-449. doi: 10.1016/j.biortech.2019.01.105
    [38] 常根旺, 杨津津, 李绍康, 等. 短程反硝化耦合厌氧氨氧化强化脱氮工艺研究与应用进展[J]. 环境工程技术学报,2022,12(5):1519-1527. doi: 10.12153/j.issn.1674-991X.20210578

    CHANG G W, YANG J J, LI S K, et al. Research and application progress of partial denitrification coupled with anammox for enhanced denitrification[J]. Journal of Environmental Engineering Technology,2022,12(5):1519-1527. doi: 10.12153/j.issn.1674-991X.20210578
    [39] LI J W, PENG Y Z, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research,2019,160:178-187. doi: 10.1016/j.watres.2019.05.070
    [40] GAO R T, PENG Y Z, LI J W, et al. Improving performance and efficiency of partial anammox by coupling partial nitrification and partial denitrification (PN/A-PD/A) to treat municipal sewage in a step-feed reactor[J]. Bioresource Technology,2021,341:125804. doi: 10.1016/j.biortech.2021.125804
    [41] LI X C, PENG Y Z, ZHANG J W, et al. Highly efficient and synchronous nitrogen removal from ammonia-rich wastewater and domestic wastewater via a novel anammox coupled with double-nitrite-shunt process at low temperature[J]. Chemical Engineering Journal,2021,425:131449. doi: 10.1016/j.cej.2021.131449
    [42] ALI P, ZALIVINA N, LE T, et al. Primary sludge fermentate as carbon source for mainstream partial denitrification-anammox (PdNA)[J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2021, 93(7): 1044-1059.
    [43] ZHAO Q, CHEN K Q, LI J W, et al. Pilot-scale evaluation of partial denitrification/anammox on nitrogen removal from low COD/N real sewage based on a modified process[J]. Bioresource Technology,2021,338:125580
    [44] HAROON M F, HU S H, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature,2013,500(7464):567-570. doi: 10.1038/nature12375
    [45] 张福凯, 徐龙君. 甲烷对全球气候变暖的影响及减排措施[J]. 矿业安全与环保,2004,31(5):6-9. doi: 10.3969/j.issn.1008-4495.2004.05.003

    ZHANG F K, XU L J. Effect of methane on global warming and mitigating measures[J]. Mining Safety & Environmental Protection,2004,31(5):6-9. doi: 10.3969/j.issn.1008-4495.2004.05.003
    [46] FAN S Q, WEN W R, XIE G J, et al. Deep insights into the population shift of n-DAMO and Anammox in granular sludge: from sidestream to mainstream[J]. Water Research,2023,244:120448. doi: 10.1016/j.watres.2023.120448
    [47] AL-HAZMI H E, MAKTABIFARD M, GRUBBA D, et al. An advanced synergy of partial denitrification-anammox for optimizing nitrogen removal from wastewater: a review[J]. Bioresource Technology,2023,381:129168. doi: 10.1016/j.biortech.2023.129168
    [48] MA G C, YU D S, ZHANG J H, et al. A novel simultaneous partial nitrification, anammox, denitrification and fermentation process: enhancing nitrogen removal and sludge reduction in a single reactor[J]. Bioresource Technology,2023,369:128484. doi: 10.1016/j.biortech.2022.128484
    [49] CHEN Y J, FENG G, GUO G Z, et al. Improved properties and enhancement strategies of hydroxyapatite-based functional granular sludge for a high-rate partial nitritation/anammox system[J]. Environmental Science & Technology,2023,57(19):7624-7633.
    [50] MULDER A, van de GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-183. doi: 10.1111/j.1574-6941.1995.tb00281.x
    [51] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: a review[J]. Chemical Engineering Journal,2012,197:67-79. doi: 10.1016/j.cej.2012.05.014
    [52] OLSSON G. ICA and me: a subjective review[J]. Water Research,2012,46(6):1585-1624. doi: 10.1016/j.watres.2011.12.054
    [53] 魏彩莹, 张静, 任露露, 等. 厌氧氨氧化活性抑制、恢复与强化及工艺应用研究进展[J]. 应用与环境生物学报,2018,24(3):671-680.

    WEI C Y, ZHANG J, REN L L, et al. Recent advances in activity inhibition, recovery and enhancement, and application of the anaerobic ammonium oxidation process[J]. Chinese Journal of Applied and Environmental Biology,2018,24(3):671-680.
    [54] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal-Water Pollution Control Federation,1976,48(5):835-852.
    [55] XIE J, JIANG Y, CHANG Y, et al. Research progress of anaerobic ammonia oxidation treatment of urban sewage[J]. Chemical Industry and Engineering Progress,2020,39(10):4175-4184.
    [56] LAURENI M, FALÅS P, ROBIN O, et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures[J]. Water Research,2016,101:628-639. doi: 10.1016/j.watres.2016.05.005
    [57] WETT B, OMARI A, PODMIRSEG S M, et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency[J]. Water Science and Technology,2013,68(2):283-289. doi: 10.2166/wst.2013.150
    [58] WETT B, PODMIRSEG S M, GÓMEZ-BRANDÓN M, et al. Expanding DEMON sidestream deammonification technology towards mainstream application[J]. Water Environment Research:a Research Publication of the Water Environment Federation,2015,87(12):2084-2089. doi: 10.2175/106143015X14362865227319
    [59] CHEN Z J, MENG F G, ZHOU C Y, et al. Optimum relative frequency and fluctuating substrate selection in reinforcing anammox-mediated anabolic adaptation[J]. Water Research,2023,228:119377. doi: 10.1016/j.watres.2022.119377
    [60] 王伟刚, 王彤, 樊宇菲, 等. 厌氧氨氧化颗粒污泥聚集机制研究进展[J]. 微生物学通报,2022,49(5):1927-1940. doi: 10.13344/j.microbiol.china.210893

    WANG W G, WANG T, FAN Y F, et al. Research progress on the aggregation mechanism of anammox granular sludge[J]. Microbiology China,2022,49(5):1927-1940. doi: 10.13344/j.microbiol.china.210893
    [61] MANONMANI U, JOSEPH K. Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater[J]. Environmental Chemistry Letters,2018,16(3):881-901. doi: 10.1007/s10311-018-0732-9
    [62] FERNÁNDEZ I, VÁZQUEZ-PADÍN J R, MOSQUERA-CORRAL A, et al. Biofilm and granular systems to improve Anammox biomass retention[J]. Biochemical Engineering Journal,2008,42(3):308-313. doi: 10.1016/j.bej.2008.07.011
    [63] GILBERT E M, AGRAWAL S, KARST S M, et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater[J]. Environmental Science & Technology,2014,48(15):8784-8792.
    [64] LI X J, FENG Y M, ZHANG K, et al. Composite carrier enhanced bacterial adhesion and nitrogen removal in partial nitrification/anammox process[J]. Science of the Total Environment,2023,868:161659. doi: 10.1016/j.scitotenv.2023.161659
    [65] WU J, KONG Z, LUO Z B, et al. A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-anammox (PN/A) system: a pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance[J]. Water Research,2021,207:117783. doi: 10.1016/j.watres.2021.117783
    [66] NI L F, WANG K C, WANG Z W, et al. Antibiofouling characteristics and mechanisms in an anammox membrane bioreactor based on an optimized photocatalytic technology-photocatalytic optical fibers[J]. Environmental Science & Technology,2022,56(22):16144-16155.
    [67] JIN R C, YU J J, MA C, et al. Transient and long-term effects of bicarbonate on the ANAMMOX process[J]. Applied Microbiology and Biotechnology,2014,98(3):1377-1388. doi: 10.1007/s00253-013-5004-9
    [68] van der STAR W R L, MICLEA A I, van DONGEN U G J M, et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering,2008,101(2):286-294. doi: 10.1002/bit.21891
    [69] ZHANG Y B, AN X L, QUAN X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation[J]. Process Biochemistry,2011,46(2):471-476. doi: 10.1016/j.procbio.2010.09.021
    [70] TOMASZEWSKI M, CEMA G, CIESIELSKI S, et al. Cold anammox process and reduced graphene oxide: varieties of effects during long-term interaction[J]. Water Research,2019,156:71-81. doi: 10.1016/j.watres.2019.03.006
    [71] FENG K, LOU Y, LI Y T, et al. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria[J]. Journal of Hazardous Materials,2023,447:130754. doi: 10.1016/j.jhazmat.2023.130754
    [72] 李天皓, 江雨婕, 毛蔚, 等. 厌氧氨氧化脱氮强化途径的研究进展[J]. 工业水处理,2022,42(7):7-14. doi: 10.19965/j.cnki.iwt.2021-0483

    LI T H, JIANG Y J, MAO W, et al. Research advance on enhanced approaches of Anammox-based nitrogen removal[J]. Industrial Water Treatment,2022,42(7):7-14. doi: 10.19965/j.cnki.iwt.2021-0483
    [73] MANSER N D, WANG M, ERGAS S J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters,2016,3(4):175-179.
    [74] ZHANG B, LENS P N L, SHI W X, et al. Enhancement of aerobic granulation and nutrient removal by an algal-bacterial consortium in a lab-scale photobioreactor[J]. Chemical Engineering Journal,2018,334:2373-2382. doi: 10.1016/j.cej.2017.11.151
    [75] KONG L R, ZHENG R, FENG Y M, et al. Anammox bacteria adapt to long-term light irradiation in photogranules[J]. Water Research,2023,241:120144. ⊗ doi: 10.1016/j.watres.2023.120144
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  361
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07

目录

    /

    返回文章
    返回