Influencing factors and scenario analysis of carbon emissions in seven cities along the Yellow River basin in Inner Mongolia
-
摘要:
“双碳”目标下,内蒙古沿黄河流域七盟市经济高质量发展是实现该地区高质量发展的关键途径。为探讨碳排放影响因素并预测碳排放峰值,选取内蒙古沿黄河流域七盟市2005—2022年面板数据,运用岭回归和扩展STIRPAT模型探究人口规模、城镇化率和人均GDP等6个因素以及各因素间的交互作用对七盟市碳排放的影响,并基于情景分析法预测七盟市2023—2035年碳排放变化趋势和达峰量。结果表明:2005—2022年七盟市碳排放量总体呈现波动上升趋势;人口规模、城镇化率、人均GDP的增加导致碳排放量增加,而能源强度和碳排放强度的降低可以有效减缓碳排放量增加;城镇化率和人均GDP的交互作用会导致七盟市碳排放量增加,而人口规模和人均GDP的交互作用、能源强度和产业结构的交互作用能有效抑制该地区碳排放量增加;6种不同预测情景下七盟市的碳排放量变化趋势差异较大,高碳情景和基准情景模拟下2030年碳排放量均未达到峰值,而其他4种情景碳排放量均在2030年出现峰值,且此4种情景模拟下碳减排的效果依次为全面低碳情景>能源强度降低情景>碳排放强度降低情景>产业结构优化情景。因此,全面实现产业结构优化、清洁能源开发和绿色工业技术突破性发展是内蒙古沿黄河流域七盟市实现经济与节能减排协同发展目标的最优策略。
Abstract:Under the carbon peaking and carbon neutrality goals, the high-quality economic development of seven cities along the Yellow River basin in Inner Mongolia is a key way to realize the high-quality development of the region. In order to explore the influencing factors of carbon emissions and predict the peak of carbon emissions, the panel data of seven cities along the Yellow River basin in Inner Mongolia from 2005 to 2022 was selected, and the Ridge regression and the extended STIRPAT model were used to study the six influencing factors, including population size, urbanization rate, and GDP per capita, as well as the interaction of them, on the carbon emissions of the seven cities. Based on scenario analysis, the trends and peak levels of carbon emissions of the seven cities from 2023 to 2035 were predicted. The results show that: from 2005 to 2022, the carbon emissions of seven cities showed a fluctuating upward trend; the increase in population size, urbanization rate, and GDP per capita can lead to an increase in carbon emissions, while the reduction in energy intensity and carbon intensity can slow the increase in carbon emissions. The interaction of urbanization rate with GDP per capita can lead to a further increase in carbon emissions of the seven cities, while the interaction of population size and GDP per capita, and the interaction of energy intensity and industrial structure can effectively curb the increase in carbon emissions in the region; the trend of changes in carbon emissions of the seven cities have bigger differences under six different forecast scenarios, under both the high carbon and benchmark scenarios, carbon emissions will not peak by 2030, while the other four scenarios will all peak carbon emissions by 2030. The order of carbon emission reduction effectiveness under these scenarios is as follows: comprehensive low-carbon scenario, energy intensity reduction scenario, carbon emission intensity reduction scenario, and industrial structure optimization scenario. Therefore, the comprehensive optimization of industrial structure, the development of clean energy, and the breakthrough of green industrial technology are the optimal strategies for achieving the synergistic development goals of economy, energy conservation and emission reduction in the seven cities along the Yellow River basin in the Inner Mongolia Autonomous Region.
-
Key words:
- Yellow River basin /
- carbon emission /
- scenario analysis /
- STIRPAT model
-
表 1 变量解释
Table 1. Variable explanation
类型 变量 定义 符号 单位 因变量 碳排放量 当年七盟市CO2排放总量 I 万t 自变量 单一变量 人口规模 当年总人口 P 万人 城镇化率 当年城镇人口占总人口的比例 U % 人均GDP 当年GDP与总人口的比值 A 万元 能源强度 当年能源消耗标准煤与GDP 的比值 T t/万元 产业结构 当年第三产业与第二产业的比值 S % 碳排放强度 当年CO2排放总量与GDP 的比值 C t/万元 交互变量 人口规模×城镇化率 人口规模和城镇化率的交互作用 P×U 人口规模×人均GDP 人口规模和人均GDP的交互作用 P×A 人口规模×能源强度 人口规模和能源强度的交互作用 P×T 人口规模×产业结构 人口规模和产业结构的交互作用 P×S 人口规模×碳排放强度 人口规模和碳排放强度的交互作用 P×C 城镇化率×人均GDP 城镇化率和人均GDP的交互作用 U×A 城镇化率×能源强度 城镇化率和能源强度的交互作用 U×T 城镇化率×产业结构 城镇化率和产业结构的交互作用 U×S 城镇化率×碳排放强度 城镇化率和碳排放强度的交互作用 U×C 人均GDP×能源强度 人均GDP和能源强度的交互作用 A×T 人均GDP×产业结构 人均GDP和产业结构的交互作用 A×S 人均GDP×碳排放强度 人均GDP和碳排放强度的交互作用 A×C 能源强度×产业结构 能源强度和产业结构的交互作用 T×S 能源强度×碳排放强度 能源强度和碳排放强度的交互作用 T×C 产业结构×碳排放强度 产业结构和碳排放强度的交互作用 S×C 表 2 单一变量回归分析结果
Table 2. Single variable regression analysis results
变量 系数 P R² 调整R² 常数项 9.305 0.000** 0.971 0.954 ln P 0.394 0.003** ln U 0.851 0.000** ln A 0.282 0.028* ln T 0.222 0.047* ln S −0.105 0.112 ln C 0.286 0.017* 注:**、*分别代表1%、5%的显著性水平;R²为决定系数。 表 3 交互变量回归分析结果
Table 3. Interactive variable regression analysis results
变量 系数 P R² 调整R² 常数项 10.006 0.000** 0.937 0.924 ln(P×A) −0.976 0.002** ln(U×A) 1.410 0.000** ln(T×S) −0.137 0.048* 注:同表2。 表 4 内蒙古沿黄河流域七盟市不同情景下各影响因素年均变化速率设置
Table 4. Setting of annual average change rates of each influencing factor under different scenarios in seven cities along the Yellow River basin in Inner Mongolia
% 情景设置 年份 人口规模 城镇化率 人均GDP 能源强度 产业结构 碳排放强度 高碳情景 2023—2025 0.20 0.38 5.00 −1.70 3.00 −2.60 2026—2030 −0.05 0.30 4.80 −1.40 2.00 −2.00 2031—2035 −0.20 0.20 3.60 −1.00 0.30 −1.40 基准情景 2023—2025 0.20 0.38 5.00 −2.70 4.00 −3.60 2026—2030 −0.05 0.30 4.80 −2.40 3.00 −3.00 2031—2035 −0.20 0.20 3.60 −2.00 1.00 −2.40 全面低碳情景 2023—2025 0.20 0.38 5.00 −3.20 4.50 −4.10 2026—2030 −0.05 0.30 4.80 −2.90 3.50 −3.50 2031—2035 −0.20 0.20 3.60 −2.50 1.50 −2.90 能源强度降低情景 2023—2025 0.20 0.38 5.00 −3.20 4.00 −3.60 2026—2030 −0.05 0.30 4.80 −2.90 3.00 −3.00 2031—2035 −0.20 0.20 3.60 −2.50 1.00 −2.40 碳排放强度降低情景 2023—2025 0.20 0.38 5.00 −2.70 4.00 −4.10 2026—2030 −0.05 0.30 4.80 −2.40 3.00 −3.50 2031—2035 −0.20 0.20 3.60 −2.00 1.00 −2.90 产业结构优化情景 2023—2025 0.20 0.38 5.00 −2.70 4.50 −3.60 2026—2030 −0.05 0.30 4.80 −2.40 3.50 −3.00 2031—2035 −0.20 0.20 3.60 −2.00 1.50 −2.40 -
[1] 陈亮, 张楠, 王一帆, 等. 京津冀地区碳排放强度变化驱动因素及归因分析[J]. 中国环境科学,2023,43(8):4382-4394.CHEN L, ZHANG N, WANG Y F, et al. Driving factors and attribution analysis of carbon emission intensity change in Beijing-Tianjin-Hebei region[J]. China Environmental Science,2023,43(8):4382-4394. [2] 宋敏, 邹素娟. 黄河流域碳排放效率的区域差异、收敛性及影响因素[J]. 人民黄河,2022,44(8):6-12.SONG M, ZOU S J. Regional differences, convergence and influencing factors of carbon emissions efficiency in the Yellow River Basin[J]. Yellow River,2022,44(8):6-12. [3] 许蕊, 黄贤金, 王佩玉, 等. 黄河流域国土空间碳中和度研究: 以内蒙古段为例[J]. 生态学报,2022,42(23):9651-9662.XU R, HUANG X J, WANG P Y, et al. Territorial spatial carbon neutrality realization degree of the Yellow River Basin: a case study of the Inner Mongolia section[J]. Acta Ecologica Sinica,2022,42(23):9651-9662. [4] 边志强, 钟顺昌. 资源型城市经济增长目标对碳排放效率的影响[J]. 中国环境科学,2023,43(8):4395-4408.BIAN Z Q, ZHONG S C. The impact of economic growth target on carbon emission efficiency in resource-based cities[J]. China Environmental Science,2023,43(8):4395-4408. [5] 杨儒浦, 冯相昭, 王敏, 等. 城市交通部门温室气体和大气污染物协同减排潜力分析: 以唐山市为例[J]. 环境工程技术学报,2023,13(6):2033-2042.YANG R P, FENG X Z, WANG M, et al. Analysis of synergic reduction of greenhouse gases and air pollutants emission in the urban transportation sector: taking Tangshan City as an example[J]. Journal of Environmental Engineering Technology,2023,13(6):2033-2042. [6] 范建双, 周琳. 中国建筑业碳排放时空特征及分省贡献[J]. 资源科学,2019,41(5):897-907.FAN J S, ZHOU L. Spatiotemporal distribution and provincial contribution decomposition of carbon emissions for the construction industry in China[J]. Resources Science,2019,41(5):897-907. [7] 王睿, 张赫, 强文丽, 等. 基于城镇化的中国县级城市碳排放空间分布特征及影响因素[J]. 地理科学进展,2021,40(12):1999-2010. doi: 10.18306/j.issn.1007-6301.2021.12.dlkxjz202112002WANG R, ZHANG H, QIANG W L, et al. Spatial characteristics and influencing factors of carbon emissions in county-level cities of China based on urbanization[J]. Progress in Geography,2021,40(12):1999-2010. doi: 10.18306/j.issn.1007-6301.2021.12.dlkxjz202112002 [8] 花瑞祥, 蓝艳, 李嘉文, 等. 中国省际碳排放脱钩效应及驱动因素分析[J]. 环境科学研究,2023,36(11):2159-2168.HUA R X, LAN Y, LI J W, et al. Analysis of the decoupling effect and driving factors of inter-provincial carbon emissions in China[J]. Research of Environmental Sciences,2023,36(11):2159-2168. [9] 陈邦丽, 徐美萍. 中国碳排放影响因素分析: 基于面板数据STIRPAT-Alasso模型实证研究[J]. 生态经济,2018,34(1):20-24.CHEN B L, XU M P. Analysis of influence factors of carbon emissions in China: an empirical study by STIRPAT-alasso model using panel data[J]. Ecological Economy,2018,34(1):20-24. [10] ZHAO X T, BURNETT J W, FLETCHER J J. Spatial analysis of China province-level CO2 emission intensity[J]. Renewable and Sustainable Energy Reviews,2014,33:1-10. doi: 10.1016/j.rser.2014.01.060 [11] 张哲, 任怡萌, 董会娟. 城市碳排放达峰和低碳发展研究: 以上海市为例[J]. 环境工程,2020,38(11):12-18.ZHANG Z, REN Y M, DONG H J. Research on carbon emissions peaking and low-carbon development of cities: a case of Shanghai[J]. Environmental Engineering,2020,38(11):12-18. [12] 唐赛, 付杰文, 武俊丽. 中国典型城市碳排放影响因素分析[J]. 统计与决策,2021,37(23):59-63. [13] 朱泳丽, 丁利杰. 长三角城市群碳排放强度的空间效应及影响因素: 基于产业转移视角[J]. 资源科学,2022,44(7):1373-1387.ZHU Y L, DING L J. Spatial effects and influencing factors of carbon emission intensity in the Yangtze River Delta urban agglomeration: an industrial transfer-based perspective[J]. Resources Science,2022,44(7):1373-1387. [14] 王子钒, 蔡雨微, 罗仕伟, 等. 成渝城市群碳排放时空趋势特征及影响因素分析[J]. 环境科学与技术,2023,46(4):205-215.WANG Z F, CAI Y W, LUO S W, et al. Temporal and spatial trend of carbon emission and its influencing factors in Chengdu-Chongqing urban agglomeration[J]. Environmental Science & Technology,2023,46(4):205-215. [15] 张国兴, 苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论,2020,32(12):283-294.ZHANG G X, SU Z X. Analysis of influencing factors and scenario prediction of transportation carbon emissions in the Yellow River Basin[J]. Management Review,2020,32(12):283-294. [16] 崔艳芳, 张国兴. 黄河流域资源型城市碳排放影响因素与达峰预测研究[J]. 人民黄河,2023,45(2):9-14.CUI Y F, ZHANG G X. Research on the influencing factors and peak prediction of carbon emission of resources-based cities in the Yellow River Basin[J]. Yellow River,2023,45(2):9-14. [17] 张立, 谢紫璇, 曹丽斌, 等. 中国城市碳达峰评估方法初探[J]. 环境工程,2020,38(11):1-5.ZHANG L, XIE Z X, CAO L B, et al. Discussion on evaluation method on carbon dioxide emissions peaking for Chinese cities[J]. Environmental Engineering,2020,38(11):1-5. [18] 徐丽笑, 王亚菲. 我国城市碳排放核算: 国际统计标准测度与方法构建[J]. 统计研究,2022,39(7):12-30.XU L X, WANG Y F. City carbon emission accounting in China: international statistical standards measurement and methodology construction[J]. Statistical Research,2022,39(7):12-30. [19] 胡建辉, 蒋选. 城市群视角下城镇化对碳排放的影响效应研究[J]. 中国地质大学学报(社会科学版),2015,15(6):11-21. [20] 刘茂辉, 翟华欣, 刘胜楠, 等. 基于LMDI方法和STIRPAT模型的天津市碳排放量对比分析[J]. 环境工程技术学报,2023,13(1):63-70.LIU M H, ZHAI H X, LIU S N, et al. Comparative analysis of carbon emissions in Tianjin based on LMDI method and STIRPAT model[J]. Journal of Environmental Engineering Technology,2023,13(1):63-70. [21] 刘茂辉, 岳亚云, 刘胜楠, 等. 基于STIRPAT模型天津减污降碳协同效应多维度分析[J]. 环境科学,2023,44(3):1277-1286.LIU M H, YUE Y Y, LIU S N, et al. Multi-dimensional analysis of the synergistic effect of pollution reduction and carbon reduction in Tianjin based on the STIRPAT model[J]. Environmental Science,2023,44(3):1277-1286. [22] DIETZ T, ROSA E A. Effects of population and affluence on CO2 emissions[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(1):175-179. [23] YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003,46(3):351-365. doi: 10.1016/S0921-8009(03)00188-5 [24] 刘宁, 李华姣, 边志强, 等. 基于空间面板STIRPAT模型的水足迹影响因素分析: 以山东省为例[J]. 生态学报,2022,42(22):9335-9347.LIU N, LI H J, BIAN Z Q, et al. Influence factors of water footprint based on spatial panel STIRPAT Model: a case study of Shandong Province[J]. Acta Ecologica Sinica,2022,42(22):9335-9347. [25] 郭晓川, 张学敏, 成功, 等. 内蒙古新型城镇化、产业结构合理化协调发展研究[J]. 内蒙古大学学报(自然科学版),2018,49(3):279-288.GUO X C, ZHANG X M, CHENG G, et al. The coordination relationship between new urbanization and industrial structure rationalization in Inner Mongolia[J]. Journal of Inner Mongolia University (Natural Science Edition),2018,49(3):279-288. [26] 王兆峰, 廖红璐. 基于STIRPAT模型的长株潭城市群交通碳排放的影响因素及其区域差异[J]. 湖南师范大学自然科学学报,2019,42(5):1-9.WANG Z F, LIAO H L. Influencing factors and regional disparities of transportation carbon emissions in the Chang-Zhu-Tan urban agglomeration based on STIRPAT model[J]. Journal of Natural Science of Hunan Normal University,2019,42(5):1-9. [27] 封亦代, 刘耀彬, 程风雨. 中国城市绿色全要素能源效率的区域差异及空间收敛[J]. 地理研究,2023,42(9):2343-2368.FENG Y D, LIU Y B, CHENG F Y. Regional differences and spatial convergence of green total-factor energy efficiency in Chinese cities[J]. Geographical Research,2023,42(9):2343-2368. [28] 李云燕, 杜文鑫. 京津冀城市群减污降碳时空特征及影响因素异质性分析[J]. 环境工程技术学报,2023,13(6):2006-2015. doi: 10.12153/j.issn.1674-991X.20230269LI Y Y, DU W X. Spatial and temporal characteristics and the heterogeneity of influencing factors of the synergism of pollution and carbon emissions reduction in Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Environmental Engineering Technology,2023,13(6):2006-2015. doi: 10.12153/j.issn.1674-991X.20230269 [29] 吉兴全, 赵国航, 于一潇, 等. 基于4E平衡的碳排放因素分解与峰值预测方法[J]. 高电压技术,2022,48(7):2483-2494.JI X Q, ZHAO G H, YU Y X, et al. Carbon emission peak prediction and factor decompose method based on 4E equilibrium[J]. High Voltage Engineering,2022,48(7):2483-2494. [30] 王瑛, 何艳芬. 中国省域二氧化碳排放的时空格局及影响因素[J]. 世界地理研究,2020,29(3):512-522.WANG Y, HE Y F. Spatiotemporal dynamics and influencing factors of provincial carbon emissions in China[J]. World Regional Studies,2020,29(3):512-522. [31] 高国力, 文扬, 王丽, 等. 基于碳排放影响因素的城市群碳达峰研究[J]. 经济管理,2023,45(2):39-58.GAO G L, WEN Y, WANG L, et al. Study on carbon peak of urban clusters based on analysis of influencing factors of carbon emissions[J]. Business and Management Journal,2023,45(2):39-58. [32] 庞娇, 安晓明, 刘鑫, 等. 河北省大学生碳排放结构特征分析及减排路径研究[J]. 干旱区资源与环境,2023,37(5):8-14.PANG J, AN X M, LIU X, et al. Structural characteristics of college students' carbon emissions in Hebei Province and the path of carbon emission reduction[J]. Journal of Arid Land Resources and Environment,2023,37(5):8-14. [33] 张现苓, 翟振武, 陶涛. 中国人口负增长: 现状、未来与特征[J]. 人口研究,2020,44(3):3-20. [34] 原新, 杜鹏, 童玉芬, 等. 专题笔谈: 中国人口负增长与人口高质量发展[J]. 北京行政学院学报,2023(3):11-25.YUAN X, DU P, TONG Y F, et al. Negative population growth and high-quality population development in China[J]. Journal of Beijing Administration Institute,2023(3):11-25. [35] 杨舸. 我国“十四五”时期的人口变动及重大“转变”[J]. 北京工业大学学报(社会科学版),2021,21(1):17-29.YANG G. China's population changes and major transition during the 14th Five-Year Plan period[J]. Journal of Beijing University of Technology(Social Sciences Edition),2021,21(1):17-29. [36] 王凯, 林辰辉, 吴乘月. 中国城镇化率60%后的趋势与规划选择[J]. 城市规划,2020,44(12):9-17.WANG K, LIN C H, WU C Y. Trends and planning choices after China's urbanization rate reaching above 60%[J]. City Planning Review,2020,44(12):9-17. [37] 杜修立, 张昱昭. 中国城镇化率提升的动力分解与新发展阶段趋势预测: 基于国际比较的一种新方法[J]. 统计研究,2022,39(2):33-47.DU X L, ZHANG Y Z. Driving-force decomposition increase of China's urbanization rate increase and trend forecast in the new development stage: a new method based on international comparison[J]. Statistical Research,2022,39(2):33-47. [38] 胡鞍钢. 中国经济发展大趋势[J]. 人民论坛,2017(14):16-19. [39] 中国社会科学院宏观经济研究中心课题组. 未来15年中国经济增长潜力与“十四五”时期经济社会发展主要目标及指标研究[J]. 中国工业经济,2020(4):5-22. [40] 方福前. 中国居民消费潜力及增长点分析: 基于2035年基本实现社会主义现代化的目标[J]. 经济学动态,2021(2):50-64.FANG F Q. Analysis on the consumption potential and growth points of Chinese residents: based on the goal of basic socialist modernization in 2035[J]. Economic Perspectives,2021(2):50-64. [41] KIM K, KIM Y. International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition[J]. Energy Economics,2012,34(5):1724-1741. doi: 10.1016/j.eneco.2012.02.009 [42] GONG W F, FAN Z Y, WANG C H, et al. Spatial spillover effect of carbon emissions and its influencing factors in the Yellow River Basin[J]. Sustainability,2022,14(6):3608. doi: 10.3390/su14063608 [43] 金贵朝, 王国梁, 何怡然. 数字化水平、产业结构调整与区域碳减排[J]. 统计与决策,2023,39(3):27-32.JIN G C, WANG G L, HE Y R. Digitization level, industrial structure adjustment and regional carbon emission reduction[J]. Statistics & Decision,2023,39(3):27-32. [44] 潘金玉, 苏布达, 王艳君, 等. 共享社会经济路径(SSPs)下2020—2050年中国分产业产值时空变化[J]. 气候变化研究进展,2020,16(6):725-737.PAN J Y, SU B D, WANG Y J, et al. Spatio-temporal changes of output value from the primary, secondary and tertiary industries for 2020-2050 under the Shared Socioeconomic Pathways[J]. Climate Change Research,2020,16(6):725-737. [45] 李江苏, 孟琳琳, 李韦华, 等. 黄河流域生产性服务业综合发展水平时空演变及影响因素分析[J]. 人文地理,2023,38(2):116-125.LI J S, MENG L L, LI W H, et al. Spatial-temporal pattern and influencing factors of comprehensive development level of producer services in the Yellow River Basin[J]. Human Geography,2023,38(2):116-125. □