Study on the joint toxicity of flocculants used in water treatment on luminescent bacteria
-
摘要:
随着絮凝剂在污水污泥处理过程的广泛使用,其残留在水处理系统中可能存在的单一或联合毒性效应日益受到关注。以聚合硫酸铁(PFS)、聚合氯化铝(PAC)和聚丙烯酰胺(PAM)为研究对象,通过发光细菌单一毒性和联合毒性试验探讨其可能造成的毒性效应。结果表明:1)对于单一毒性效应,PFS、PAC和PAM对发光细菌抑制效应的半数效应浓度(EC50)分别为29.41、71.82和1 072.64 mg/L,毒性效应大小为PFS>PAC>PAM。2)对于二元絮凝剂联合毒性效应,PFS-PAM在毒性比为1∶1混合时具有协同作用,而PAC-PAM在毒性比为1∶3和3∶1混合时均存在拮抗作用。3)采用浓度加和(CA)和独立作用(IA)模型对联合毒性进行预测,PFS-PAM组合实测值与CA模型的预测值相近,而PFS-PAC和PAC-PAM组合实测值与IA模型预测结果相近。4)三维偏差响应面结果显示,试验观测值与CA模型预测值的偏差(dCA)和试验观测值与IA模型预测值的偏差(dIA)会随着絮凝剂浓度变化而变化,CA模型在PFS和PAC浓度较高时拟合程度较好,而对于PAC-PAM体系,IA模型的拟合程度较CA模型好。研究发现,PFS和PAC对发光细菌的毒性效应较强,PFS与PAM混合使用可能会增加毒性效应,对水处理系统中的微生物造成环境风险。
-
关键词:
- 聚合硫酸铁(PFS) /
- 聚合氯化铝(PAC) /
- 聚丙烯酰胺(PAM) /
- 发光细菌 /
- 联合毒性
Abstract:With the widespread application of flocculants in water and sewage sludge treatment, the potential single or joint toxic effects of their residues in treatment systems are increasingly receiving attention. Polymeric iron sulfate (PFS), polymeric aluminum chloride (PAC) and polyacrylamide (PAM) were used as research objects to explore their potential toxic effects through single toxicity and joint toxicity tests using luminescent bacteria. The results showed that: 1) In the single toxicity test, median effective concentration (EC50) value of PFS, PAC and PAM of luminescent bacteria were 29.41, 71.82 and 1 072.64 mg/L, respectively. The single toxicity effect order was PFS>PAC>PAM. 2) In the joint toxicity of binary flocculants test, PFS-PAM had synergistic effect when mixed with the toxicity ratio of 1∶1, while PAC-PAM had antagonistic effect when mixed with the toxicity ratio of 1∶3 and 3∶1. 3) The concentration addition (CA) and independent action (IA) models were used to predict joint toxicity. The results of PFS-PAM were consistent with the predicted values of CA model, while the results of PFS-PAC and PAC-PAM were consistent with the predicted values of IA model. 4) The three-dimensional deviation response surface results showed that the deviation between experimental observations and CA model (dCA) and IA model predictions (dIA) values changed with the mass concentrations of the flocculants. The CA model was consistent with the results of PFS-PAC, when the mass concentrations of PFS and PAC were high, while for the PAC-PAM system, the prediction of IA model was better than that of CA model. The results indicate that PFS and PAC have higher toxic effect on luminescent bacteria, and the combined use of PFS and PAM may increase the toxic effect and pose environmental risks to microorganisms in water treatment systems.
-
表 1 单一絮凝剂含量对发光细菌的浓度-效应拟合参数和毒性数据
Table 1. Fitting parameters of concentration-effect and toxicity data of single flocculants concentration on luminescent bacteria
絮凝剂 A1 A2 e k R2 EC50/(mg/L) 95%置信限/(mg/L) PFS 9.65 100.14 31.51 3.138 0.975 6 29.41 25.59,32.43 PAC −57.79 98.96 57.68 3.599 0.998 3 71.82 70.72,72.52 PAM 4.06 96.16 1073.47 6.112 0.980 5 1 072.64 1 033.83,1 112.31 表 2 废水急性毒性分级
Table 2. Acute toxicity classes of wastewater
毒性单位范围 分级 <0.4 无毒 0.4~1 微毒 1~10 中毒 10~100 重毒 >100 剧毒 表 3 二元絮凝剂含量对发光细菌的浓度-效应拟合参数和毒性数据
Table 3. Fitting parameters of concentration-effect and toxicity data of binary flocculants concentration on luminescent bacteria
絮凝剂组合 毒性比 A1 A2 x0 p R2 EC50/(mg/L) 95%置信限/(mg/L) PFS-PAC 1∶1 4.21 101.74 79.10 8.347 0.995 6 77.95 77.17,78.66 1∶3 2.82 92.20 81.42 8.128 0.991 9 82.54 78.95,85.57 3∶1 4.14 92.12 51.71 6.263 0.991 5 52.42 50.59,54.34 PFS-PAM 1∶1 15.51 99.54 577.98 4.087 0.990 1 528.98 500.18,553.66 1∶3 16.03 100.35 901.40 3.778 0.995 9 812.21 785.04,840.49 3∶1 1.343 102.82 361.42 3.520 0.998 3 353.10 347.46,358.94 PAC-PAM 1∶1 −0.568 83.75 849.26 9.058 0.992 1 888.02 876.64,900.07 1∶3 −0.620 104.75 1176.02 2.829 0.997 6 1 143.87 1 108.72,1 179.67 3∶1 0.919 93.92 467.61 6.755 0.996 4 475.37 464.37,485.21 表 4 不同评价方法的联合作用类型判断标准
Table 4. Criteria for types of joint effects using different evaluation methods
TU MTI 作用类型 TU<1 MTI>1 协同作用 TU=1 MTI=1 简单相加作用 1<TU<M0 0<MTI<1 部分相加作用 TU=M0 MTI=0 独立作用 TU>M0 MTI<0 拮抗作用 表 5 二元絮凝剂联合作用评价
Table 5. Evaluation of joint effects on binary flocculants
絮凝剂组合 毒性比 TU法 MTI法 TU M0 联合作用 MTI 联合作用 PFS-PAC 1∶1 1.5 2.0 部分相加作用 0.38 部分相加作用 1∶3 1.3 1.3 独立作用 0 独立作用 3∶1 1.3 1.3 独立作用 0 独立作用 PFS-PAM 1∶1 0.96 2.0 协同作用 1.10 协同作用 1∶3 1.0 1.3 简单相加作用 1.00 简单相加作用 3∶1 1.2 1.3 部分相加作用 0.31 部分相加作用 PAC-PAM 1∶1 1.6 2.0 部分相加作用 0.36 部分相加作用 1∶3 1.4 1.3 拮抗作用 −0.16 拮抗作用 3∶1 1.5 1.3 拮抗作用 −0.36 拮抗作用 -
[1] 李威, 周启星, 华涛. 常用化学絮凝剂的环境效应与生态毒性研究进展[J]. 生态学杂志,2007,26(6):943-947. doi: 10.3321/j.issn:1000-4890.2007.06.030LI W, ZHOU Q X, HUA T. Research advances in environmental effect and ecological toxicity of commonly used chemical flocculants[J]. Chinese Journal of Ecology,2007,26(6):943-947. doi: 10.3321/j.issn:1000-4890.2007.06.030 [2] 郭非凡, 张秦, 孙振钧, 等. 聚丙烯酰胺对蚯蚓的毒性效应[J]. 农业工程学报,2012,28(增刊1):224-229.GUO F F, ZHANG Q, SUN Z J, et al. Toxicity effects of polyacrylamide to earthworm (Eisenia fetida)[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(Suppl 1):224-229. [3] 张凯松, 周启星. 中性环境中铝盐絮凝剂对典型作物的生态毒性效应[J]. 应用生态学报,2005,16(11):2173-2177.ZHANG K S, ZHOU Q X. Ecological toxicity of aluminum-based coagulant on representative corps in neutral environment[J]. Chinese Journal of Applied Ecology,2005,16(11):2173-2177. [4] 侯艳玲. 城市污水处理厂化学除磷工艺优化运行与控制系统研究[D]. 北京: 清华大学, 2010. [5] 祝苑, 潘丁瑞, 汪艳, 等. 新型助凝剂海藻酸钠的助凝效能及作用机制研究[J]. 环境工程技术学报,2019,9(6):680-684. doi: 10.12153/j.issn.1674-991X.2019.05.150ZHU Y, PAN D R, WANG Y, et al. Study on coagulation aid efficiency and mechanism of new coagulant sodium alginate[J]. Journal of Environmental Engineering Technology,2019,9(6):680-684. doi: 10.12153/j.issn.1674-991X.2019.05.150 [6] 黄胜, 刘根凡, 李华飞, 等. 聚铝和聚铁在造纸废水处理中的交互作用[J]. 华中科技大学学报(自然科学版),2004,32(3):51-53.HUANG S, LIU G F, LI H F, et al. Study of coagulant interaction in treatment of pulping waste water by using PAC and PFS together[J]. Journal of Huazhong University of Science and Technology,2004,32(3):51-53. [7] 石宝友, 汤鸿霄. 聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性[J]. 环境科学,2000,21(1):18-22.SHI B Y, TANG H X. The coagulating behaviors and adsorption properties of polyaluminum-organic polymer composites[J]. Chinese Journal of Enviromental Science,2000,21(1):18-22. [8] 姜金宏, 何席伟, 熊晓敏, 等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理,2021,41(6):77-87.JIANG J H, HE X W, XIONG X M, et al. Research progress on toxicity characteristics and control technologies of textile dyeing wastewater[J]. Industrial Water Treatment,2021,41(6):77-87. [9] 刘双, 王思宇, 代云容. 珠线型载漆酶电纺纤维膜对水中菲的净化性能和机理[J]. 环境工程技术学报,2019,9(4):389-396. doi: 10.12153/j.issn.1674-991X.2019.03.280LIU S, WANG S Y, DAI Y R. Purification performance and mechanism of phenanthrene in water by beads-in-string structural laccase-carrying electrospun fibrous membranes[J]. Journal of Environmental Engineering Technology,2019,9(4):389-396. doi: 10.12153/j.issn.1674-991X.2019.03.280 [10] 高嘉蔚, 赵莎莎, 李富云, 等. 微塑料对大型溞摄食和抗氧化防御系统的影响[J]. 环境科学研究,2021,34(5):1205-1212.GAO J W, ZHAO S S, LI F Y, et al. Effects of microplastics on feeding behavior and antioxidant system of Daphnia magna[J]. Research of Environmental Sciences,2021,34(5):1205-1212. [11] 宋张杨, 韦昊, 魏玥, 等. 发光细菌法在煤化工废污水急性毒性评价中的应用[J]. 工业水处理,2022,42(1):158-162.SONG Z Y, WEI H, WEI Y, et al. Application of bioluminescent bacteria test on evaluating toxicity of coal chemical enterprise wastewater[J]. Industrial Water Treatment,2022,42(1):158-162. [12] 杜丽娜, 杨帆, 穆玉峰, 等. 某制药废水对发光细菌急性毒性的评价研究[J]. 环境科学,2014,35(1):286-291.DU L N, YANG F, MU Y F, et al. Evaluation of the acute toxicity of pharmaceutical wastewater to luminescent bacteria[J]. Environmental Science,2014,35(1):286-291. [13] 马晓妍, 陈文凤, 成芳德, 等. 两种分子量分级下DOM的组分特征及其生物毒性[J]. 中国环境科学,2021,41(12):5885-5895. doi: 10.3969/j.issn.1000-6923.2021.12.045MA X Y, CHEN W F, CHENG F D, et al. The spectral characteristics and biotoxicity of fractions obtained from two different DOM molecular weight fractionation methods[J]. China Environmental Science,2021,41(12):5885-5895. doi: 10.3969/j.issn.1000-6923.2021.12.045 [14] JONKER M J, SVENDSEN C, BEDAUX J J M, et al. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis[J]. Environmental Toxicology and Chemistry,2005,24(10):2701-2713. doi: 10.1897/04-431R.1 [15] SILVA A R R, GONÇALVES S F, PAVLAKI M D, et al. Mixture toxicity prediction of substances from different origin sources in Daphnia magna[J]. Chemosphere,2022,292:133432. doi: 10.1016/j.chemosphere.2021.133432 [16] JUNGHANS M. Studies on combination effects of environmentally relevant toxicants validation of prognostic concepts for assessing the algal toxicity of realistic aquatic pesticide mixtures[D]. Bremen: Bremen University, 2004. [17] 潘永正, 孙昊宇, 王大力, 等. 混合污染物联合毒性评价模型曲线和实际浓度效应曲线之间交叉现象的研究进展[J]. 生态毒理学报,2017,12(3):72-85.PAN Y Z, SUN H Y, WANG D L, et al. Progress in researches on cross phenomenon between evaluation model curve and actual concentration-response curve of mixture pollutants[J]. Asian Journal of Ecotoxicology,2017,12(3):72-85. [18] 徐小庆, 郭璞, 王晓静, 等. 浓度加和模型与独立作用模型在化学混合物联合毒性预测方面的研究进展[J]. 动物医学进展,2020,41(4):91-94.XU X Q, GUO P, WANG X J, et al. Progress on CA and IA models in combined toxicity prediction of chemical mixtures[J]. Progress in Veterinary Medicine,2020,41(4):91-94. [19] 国家环境保护局, 国家技术监督局. 水质 急性毒性的测定 发光细菌法: GB/T 15441—1995[S]. 北京: 中国标准出版社, 1995. [20] 许玉洁, 余明喧, 黄叶梅, 等. 铜和异噻唑啉酮类化合物对大型溞的联合毒性研究[J]. 环境科学学报,2022,42(12):462-470.XU Y J, YU M X, HUANG Y M, et al. Joint toxicity of copper and isothiazolinones to Daphnia magna [J]. Acta Scientiae Circumstantiae,2022,42(12):462-470. [21] DOU R N, LIU S S, MO L Y, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos[J]. Environmental Science and Pollution Research International,2011,18(5):734-742. doi: 10.1007/s11356-010-0419-7 [22] BUCZEK S B, COPE W G, McLAUGHLIN R A, et al. Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels[J]. Environmental Toxicology and Chemistry,2017,36(10):2715-2721. doi: 10.1002/etc.3821 [23] CHEN Y S. The effect on activated sludge of chemical coagulants applied in synchronization dephosphorization[J]. Journal of Environmental Protection,2013,4(12):1423-1427. doi: 10.4236/jep.2013.412162 [24] PERSOONE G, MARSALEK B, BLINOVA I, et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters[J]. Environmental Toxicology,2003,18(6):395-402. doi: 10.1002/tox.10141 [25] 孟庆俊, 肖昕. 不同方法对联合毒性作用的评价[J]. 污染防治技术,2004,17(1):33-35. [26] 周彦宏, 王丹, 李珊珊, 等. 应用明亮发光杆菌检测联合毒性的研究进展[J]. 环境科学与技术,2022,45(8):117-131.ZHOU Y H, WANG D, LI S S, et al. Advances in the application of Photobacterium phosphoreum on joint toxicity detection[J]. Environmental Science & Technology,2022,45(8):117-131. [27] 郑毅, 丁曰堂, 李峰, 等. 国内外混凝机理研究及混凝剂的开发现状[J]. 中国给水排水,2007,23(10):14-17.ZHENG Y, DING Y T, LI F, et al. Coagulation mechanism and coagulant development status at home and abroad[J]. China Water & Wastewater,2007,23(10):14-17. [28] MOUSSAS P A, ZOUBOULIS A I. A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA)[J]. Water Research,2009,43(14):3511-3524. doi: 10.1016/j.watres.2009.05.015 [29] LIU Y, LV C C, DING J, et al. Characterization of a hybrid polyacrylamide and its flocculation properties in cyanide tailing suspensions[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2017,76(9/10):2482-2493. [30] 杨宇, 刘锐, 朱勇强, 等. 聚铁与聚铝联用处理草浆造纸中段废水的研究[J]. 中北大学学报(自然科学版),2011,32(4):490-495.YANG Y, LIU R, ZHU Y Q, et al. Study on the treatment of wastewater from straw pulping process by using both PFS and PAC[J]. Journal of North University of China (Natural Science Edition),2011,32(4):490-495. [31] 钱玉兰, 李燕, 乔椋, 等. 无机絮凝剂对SBR系统中活性污泥的影响研究[J]. 中国环境科学,2020,40(6):2445-2453.QIAN Y L, LI Y, QIAO L, et al. Effect of the addition of inorganic flocculants on the activated sludge in a SBR system[J]. China Environmental Science,2020,40(6):2445-2453. [32] HUANG W Y, LIU F, LIU S S, et al. Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to Vibrio qinghaiensis sp. nov. Q67[J]. Ecotoxicology and Environmental Safety,2011,74(6):1600-1606. doi: 10.1016/j.ecoenv.2011.01.007 [33] KUWAHARA H, NINOMIYA J, MORITA H. Control of Aliivibrio fischeri luminescence and decrease in bioluminescence by fungicides[J]. Biocontrol Science,2018,23(3):85-96. doi: 10.4265/bio.23.85 [34] PUCKOWSKI A, STOLTE S, WAGIL M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna[J]. International Journal of Hygiene and Environmental Health,2017,220(3):575-582. ⊗ doi: 10.1016/j.ijheh.2017.01.011