Phytotoxic effects and environmental risk assessment of petunia hybrida irrigated with reclaimed water from the chip industry
-
摘要:
芯片行业废水的再生利用对减少水环境污染、缓解水资源短缺、推动行业绿色发展具有重要意义。为明确芯片行业再生水灌溉对植物的毒理效应,采用矮牵牛作为模型生物,分析2种再生水灌溉期间其生长形态及对总蛋白、叶绿素、抗氧化系统和能量系统标志物的响应特征,基于第二代综合生物标志物响应指数(IBRv2)法评估再生水灌溉的环境风险。结果表明:2种再生水灌溉期间未对矮牵牛的生长形态产生明显不良影响;灌溉中期(9 d)矮牵牛总蛋白、叶绿素均被显著诱导,随后诱导作用减弱,抑制作用开始显现;灌溉中长期(9~15 d)矮牵牛的抗氧化标志物以抑制效应为主,但机体未出现明显的氧化损伤;灌溉期间矮牵牛能量系统标志物的响应规律无明显的一致性。芯片行业再生水灌溉矮牵牛的平均IBRv2为0.85~1.72,环境风险水平较低,但因再生水仍含有高浓度的氯离子和溶解性总固体(TDS),可选择敏感的生物标志物组合谷氨酸脱氢酶、丙酮酸激酶、丙二醛(MDA)或超氧化物歧化酶、MDA对环境风险进行监测和管控。建议进一步研发可有效降低芯片行业再生水中氯离子和TDS浓度的处理工艺,以保障芯片行业再生水回用于绿化灌溉的生态环境安全。
Abstract:Regeneration and utilization of wastewater in the chip industry is of great significance to reduce water pollution, alleviate water shortage and promote the green development of the chip industry. In order to clarify the phytotoxic effects of reclaimed water from the chip industry on plants, petunia hybrida was used as a model organism to analyze the response characteristics of growth morphology, total protein, chlorophyll, antioxidant system and energy system biomarkers, and to evaluate environmental risks based on the second-generation Integrated Biological Responses version 2 (IBRv2) during irrigation with two types of reclaimed water. The results showed that there was no obvious adverse effect on the growth and morphology of petunia hybrida irrigated with two kinds of reclaimed water. At the middle stage of irrigation (9 days), the total protein and chlorophyll of petunia hybrida were significantly induced, and then the induction was relieved and the inhibition began to appear. At the middle and late stage of irrigation (9-15 days), the antioxidant biomarkers of petunia hybrida were mainly inhibited, but no obvious oxidative damage to petunia hybrida occurred. The response patterns of energy system biomarkers were inconsistent during irrigation. The average values of IBRv2 for the two types of reclaimed water from chip industry were between 0.85 and 1.72, and the environmental risk level was low. However, because the reclaimed water still contained high concentrations of chloride ion and total dissolved solids (TDSs), the sensitive biomarker combination of glutamate dehydrogenase, pyruvate kinase, malondialdehyde (MDA) or superoxide dismutase, MDA could be selected to monitor and control the environmental risk. It was recommended to further research and develop the treatment process which could effectively reduce the concentration of chloride ion and TDS in the reclaimed water of chip industry, so as to ensure the ecological environment safety of the reclaimed water for green irrigation.
-
Key words:
- chip industry /
- reclaimed water irrigation /
- petunia hybrida /
- biomaker /
- phytotoxic effect /
- environmental risk
-
表 1 再生水的主要风险因子
Table 1. Major risk factors of reclaimed water
mg/L 编号 溶解性总固体
(TDS)浓度氯离子浓度 RW1 6680 2 041 RW2 5920 3 051 GB/T 25499—2010限值 ≤1 000 ≤250 表 2 矮牵牛生物标志物Spearman相关性分析
Table 2. Spearman correlation analysis of biomarkers in petunia hybrida
生物标志物 SOD CAT GSH-PX MDA PGK ATPase PK GR GDH Chl T-AOC RW1 0.724** 0.823** 0.785** 0.976*** 0.851*** 0.769** 0.909*** 0.845*** 0.783** 0.109 RW2 0.603* 0.964*** 0.704* 0.793** 0.103 0.672* 0.984*** 0.215 0.874*** 0.191 TW 0.605* 0.782** 0.949*** 0.909*** 0.512 0.810** 0.782** 0.941*** 0.151 0.461 SOD RW1 0.204 0.304 0.815** 0.398 0.865*** 0.630* 0.250 0.590* 0.388 RW2 0.598* 0.641* 0.859*** −0.168 0.712** 0.464 −0.342 0.888*** −0.654* TW 0.039 0.326 0.776** −0.23 0.662* 0.008 0.794** −0.614* 0.072 CAT RW1 0.858*** 0.712** 0.875*** 0.378 0.767** 0.994*** 0.619* −0.173 RW2 0.857*** 0.873*** 0.344 0.821** 0.927*** 0.400 0.805** 0.136 TW 0.914*** 0.647* 0.931*** 0.356 0.995*** 0.633* 0.731** 0.257 GSH-PX RW1 0.778** 0.992*** 0.226 0.931*** 0.814** 0.903*** 0.342 RW2 0.934*** 0.618* 0.990*** 0.605* 0.499 0.626* −0.204 TW 0.777** 0.733** 0.703* 0.925*** 0.808** 0.419 0.515 MDA RW1 0.843*** 0.758** 0.942*** 0.727** 0.863*** 0.039 RW2 0.300 0.954*** 0.679* 0.179 0.846*** −0.354 TW 0.341 0.641* 0.611* 0.990*** 0.013 0.097 PGK RW1 0.333 0.959*** 0.843*** 0.915*** 0.320 RW2 0.554 0.084 0.931*** −0.202 0.190 TW 0.063 0.934*** 0.315 0.924*** 0.166 ATPase RW1 0.507 0.452 0.359 −0.078 RW2 0.559 0.404 0.654* −0.315 TW 0.392 0.739** −0.304 0.765** PK RW1 0.748** 0.967*** 0.445 RW2 0.255 0.798** 0.352 TW 0.608* 0.729** 0.334 GR RW1 0.581* −0.233 RW2 −0.212 0.527 TW −0.038 0.219 GDH RW1 0.646* RW2 −0.254 TW −0.053 -
[1] 曾岭岭. 深圳市工业污水处理及回用研究[D]. 贵阳: 贵州大学, 2007. [2] 汪焕心. 工业污水再生利用是企业治污、节水的有效途径[J]. 广州化工,2012,40(13):1-2. doi: 10.3969/j.issn.1001-9677.2012.13.002 [3] 郭宇杰, 郭祎阁, 王学超, 等. 城市再生水回用途径安全性浅析[J]. 华北水利水电学院学报,2013,34(2):5-7.GUO Y J, GUO Y G, WANG X C, et al. Safety analysis of the way of city reclaimed water reuse[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2013,34(2):5-7. [4] 孟婷婷, 董月群, 闻丞, 等. 生物多样性导向的再生水补给型城市河道水生态修复效果[J]. 环境工程技术学报,2023,13(4):1552-1561. doi: 10.12153/j.issn.1674-991X.20221067MENG T T, DONG Y Q, WEN C, et al. Biodiversity-oriented water ecological restoration effect in urban river with reclaimed water supply[J]. Journal of Environmental Engineering Technology,2023,13(4):1552-1561. doi: 10.12153/j.issn.1674-991X.20221067 [5] AL-LAHHAM O, EL ASSI N M, FAYYAD M. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit[J]. Agricultural Water Management,2003,61(1):51-62. doi: 10.1016/S0378-3774(02)00173-7 [6] 陈鸿芳, 刘洋, 张国斌, 等. 某芯片企业废水再生回用于绿化灌溉的风险因子识别研究[J]. 广东化工,2022,49(21):142-145. doi: 10.3969/j.issn.1007-1865.2022.21.046CHEN H F, LIU Y, ZHANG G B, et al. Research on risk factor identification of the greenland irrigated with reclaimed wastewater from a chip company[J]. Guangdong Chemical Industry,2022,49(21):142-145. doi: 10.3969/j.issn.1007-1865.2022.21.046 [7] GORI R, FERRINI F, NICESE F P, et al. Effect of reclaimed wastewater on the growth and nutrient content of three landscape shrubs[J]. Journal of Environmental Horticulture,2000,18(2):108-114. doi: 10.24266/0738-2898-18.2.108 [8] HARIVANDI M A. Irrigating turfgrass and landscape plants with municipal recycled water[J]. Acta Horticulturae,2000,537:697-703. [9] 韩洋, 齐学斌, 李平, 等. 再生水和清水不同灌水水平对土壤理化性质及病原菌分布的影响[J]. 灌溉排水学报,2018,37(8):32-38.HAN Y, QI X B, LI P, et al. Effects of the amount of irrigation with reclaimed wastewater on soil properties and distribution of pathogenic bacteria[J]. Journal of Irrigation and Drainage,2018,37(8):32-38. [10] JORDAN L, DEVITT D, MORRIS R, et al. Foliar damage to ornamental trees sprinkler-irrigated with reuse water[J]. Irrigation Science,2001,21(1):17-25. doi: 10.1007/s00271-001-0050-y [11] MENZAL C, BROOMHALL P, GASH M. Extra nitrogen needed for parks, gardens and sporting fields irrigated with tertiary effluent[J]. Australasian Parks and Leisure,2002,5:42-44. [12] 中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978. [13] HUMPHRIES E C, WHEELER A W. The physiology of leaf growth[J]. Annual Review of Plant Physiology,1963,14:385-410. doi: 10.1146/annurev.pp.14.060163.002125 [14] GONG C M, BAI J, DENG J M, et al. Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability[J]. Plant Ecology,2011,212(4):675-687. doi: 10.1007/s11258-010-9854-2 [15] MATTOS J J, SIEBERT M N, BAINY A C D. Integrated biomarker responses: a further improvement of IBR and IBRv2 indexes to preserve data variability in statistical analyses[J]. Environmental Science and Pollution Research,2024,31(1):871-881. [16] 贺志理, 王洪春. 盐胁迫下苜蓿中盐蛋白的诱导产生[J]. 植物生理学报,1991,17(1):71-79. doi: 10.3321/j.issn:1671-3877.1991.01.015HE Z L, WANG H C. The emergence of salt-induced proteins in alfalfa under NaCl stress[J]. Physiology and Molecular Biology of Plants,1991,17(1):71-79. doi: 10.3321/j.issn:1671-3877.1991.01.015 [17] 王颖, 杜荣骞, 赵素然. 不同NaCl处理条件诱导盐胁迫蛋白的效果[J]. 南开大学学报(自然科学版),1997,30(4):14-20.WANG Y, DU R Q, ZHAO S R. The effects of different NaCl treatment on salt-stress proteins[J]. Journal of Nankai University,1997,30(4):14-20. [18] SINGH N K, HANDA A K, HAEGAWA P M, et al. Electrophoretic protein patterns in cultured cells of tobacco adapted to NaCl[J]. Plant Physiol,1983,72(Suppl):94-95. [19] 马翠兰, 刘星辉, 潘锦山, 等. 盐胁迫对坪山柚、福橘幼苗叶片蛋白质合成的影响[J]. 福建农业大学学报,2005,34(4):450-453.MA C L, LIU X H, PAN J S, et al. Effects of salt stress on the protein synthesis in seedlings of Citrus grandis Osbeck and C. reticulata Blanco[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2005,34(4):450-453. [20] LOPEZ F, VANSUYT G, FOURCROY P, et al. Accumulation of a 22-kDa protein and its mRNA in the leaves of Raphanus sativus in response to salt stress or water deficit[J]. Physiologia Plantarum,1994,91(4):605-614. doi: 10.1111/j.1399-3054.1994.tb02995.x [21] ERICSON M C, ALFINITO S H. Proteins produced during salt stress in tobacco cell culture[J]. Plant Physiology,1984,74(3):506-509. doi: 10.1104/pp.74.3.506 [22] 汪良驹, 王业遴, 刘友良. 盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系[J]. 江苏农业学报,1991,7(1):38-44.WANG L J, WANG Y L, LIU Y L. The possible relation between protein synthesis and accumulation of abscisic acid and free proline in fig leaves under salt stress[J]. Jiangsu Journal of Agricultural Sciences,1991,7(1):38-44. [23] 郭金耀, 杨晓玲. 矮牵牛耐盐生理特性研究[J]. 北方园艺,2011(4):88-90.GUO J Y, YANG X L. Study on salt-tolerant physiological characteristics of Petunia hybrida[J]. Northern Horticulture,2011(4):88-90. [24] 潘瑞炽. 植物生理学[M]. 6版. 北京: 高等教育出版社, 2008. [25] 罗国忠, 孙吉雄, 王齐. 中水浇灌对3种绿地植物若干生理指标的影响[J]. 亚热带植物科学,2009,38(2):26-29. doi: 10.3969/j.issn.1009-7791.2009.02.007LUO G Z, SUN J X, WANG Q. Influence of reclaimed water irrigation on several physiological indexes of three landscape plants[J]. Subtropical Plant Science,2009,38(2):26-29. doi: 10.3969/j.issn.1009-7791.2009.02.007 [26] 杨有俊. 兰州地区再生水灌溉对绿地植物及土壤的影响研究[D]. 兰州: 兰州大学, 2013. [27] 张楠. 再生水灌溉绿地水质指标限值的试验研究[D]. 天津: 天津大学, 2005. [28] 杨晓玲, 郭金耀. 矮牵牛耐盐的形态结构研究[J]. 北方园艺,2011(15):113-115.YANG X L, GUO J Y. Study on salt-tolerant morphology of Petunia hybrida[J]. Northern Horticulture,2011(15):113-115. [29] 郭华. 铵态氮和硝态氮对矮牵牛生长发育及花瓣氨基酸代谢的影响[D]. 泰安: 山东农业大学, 2022. [30] 秦玉春, 邹涛, 张璇, 等. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应[J]. 环境工程技术学报,2023,13(3):1079-1087. doi: 10.12153/j.issn.1674-991X.20220380QIN Y C, ZOU T, ZHANG X, et al. Differential responses of five wetland plants and their root microbial communities under ofloxacin pollution stress[J]. Journal of Environmental Engineering Technology,2023,13(3):1079-1087. doi: 10.12153/j.issn.1674-991X.20220380 [31] 刘硕, 周启星. 抗氧化酶诊断环境污染研究进展[J]. 生态学杂志,2008,27(10):1791-1798.LIU S, ZHOU Q X. Research advances in antioxidant enzymes for diagnosing environmental contamination[J]. Chinese Journal of Ecology,2008,27(10):1791-1798. [32] 陈帆, 潘玉英, 徐青霞, 等. 潮间带原油污染对泥蚶(Tegillarca granosa)抗氧化酶活性影响与综合生物标志物响应研究[J]. 环境科学研究,2022,35(12):2836-2846.CHEN F, PAN Y Y, XU Q X, et al. Effects of intertidal crude oil pollutionon on antioxidant enzyme activity of Tegillarca granosa and integrated biomarker response[J]. Research of Environmental Sciences,2022,35(12):2836-2846. [33] 魏爱丽, 白桦, 陈云昭, 等. 盐胁迫下大豆初生叶愈伤组织SOD活性及其同工酶变化的研究[J]. 大豆科学,1999,18(1):85-88. doi: 10.11861/j.issn.1000-9841.1999.01.0085WEI A L, BAI H, CHEN Y Z, et al. Studies on the changes of superoxide dismutase activity and its isozyme in primary leaves callus of soybean under salt stress[J]. Soybean Science,1999,18(1):85-88. doi: 10.11861/j.issn.1000-9841.1999.01.0085 [34] 陈计芳. 盐胁迫下丛枝菌根真菌对小麦叶部蛋白组的影响[D]. 临汾: 山西师范大学, 2018. [35] 王文银, 高小刚, 司晓林, 等. 外源钙盐对盐胁迫下沙拐枣渗透调节和膜脂过氧化的影响[J]. 环境科学研究,2017,30(8):1230-1237.WANG W Y, GAO X G, SI X L, et al. Effects of exogenous calcium on osmotic adjustment and peroxidation of Calligonum mongolicum membrane under salt stress[J]. Research of Environmental Sciences,2017,30(8):1230-1237. [36] 姜岩. 重金属铜对菹草无菌苗的毒理学研究[D]. 南京: 南京师范大学, 2013. [37] 林源秀, 顾欣昕, 汤浩茹. 植物谷胱甘肽还原酶的生物学特性及功能[J]. 中国生物化学与分子生物学报,2013,29(6):534-542.LIN Y X, GU X X, TANG H R. Characteristics and biological functions of glutathione reductase in plants[J]. Chinese Journal of Biochemistry and Molecular Biology,2013,29(6):534-542. [38] 胡丽, 袁华. 植物丙酮酸激酶研究进展[J/OL]. 分子植物育种, 2023: 1-12. (2023-04-10). https://kns.cnki.net/kcms/detail/46.1068.S.20230407.1828.012.html.HU L, YUAN H. Advances in the study of pyruvate kinase in plants[J/OL]. Molecular Plant Breeding, 2023: 1-12. (2023-04-10). https://kns.cnki.net/kcms/detail/46.1068.S.20230407.1828.012.html. [39] 吴德, 吴忠道, 余新炳. 磷酸甘油酸激酶的研究进展[J]. 中国热带医学,2005,5(2):385-387. doi: 10.3969/j.issn.1009-9727.2005.02.100WU D, WU Z D, YU X B. Advance in the research of phosphoglycerate kinase[J]. China Tropical Medicine,2005,5(2):385-387. doi: 10.3969/j.issn.1009-9727.2005.02.100 [40] 薄军, 郑榕辉, 陈晔, 等. 应用鱼类生物标志物和IBRv2监测与评价泉州湾石油类污染生物效应状况[J]. 应用海洋学学报,2016,35(3):380-390. doi: 10.3969/J.ISSN.2095-4972.2016.03.009BO J, ZHENG R H, CHEN Y, et al. Applying fish biomarkers and IBRv2 for monitoring and assessing biological effects of petroleum hydrocarbon pollution in Quanzhou Bay[J]. Journal of Applied Oceanography,2016,35(3):380-390. ⊗ doi: 10.3969/J.ISSN.2095-4972.2016.03.009