留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯片行业再生水灌溉矮牵牛的植物毒理效应及环境风险评价

陈鸿芳 余波平 卢星星 陈何曦 谢林伸 黄毅 陈瑛

陈鸿芳,余波平,卢星星,等.芯片行业再生水灌溉矮牵牛的植物毒理效应及环境风险评价[J].环境工程技术学报,2024,14(3):921-932 doi: 10.12153/j.issn.1674-991X.20230690
引用本文: 陈鸿芳,余波平,卢星星,等.芯片行业再生水灌溉矮牵牛的植物毒理效应及环境风险评价[J].环境工程技术学报,2024,14(3):921-932 doi: 10.12153/j.issn.1674-991X.20230690
CHEN H F,YU B P,LU X X,et al.Phytotoxic effects and environmental risk assessment of petunia hybrida irrigated with reclaimed water from the chip industry[J].Journal of Environmental Engineering Technology,2024,14(3):921-932 doi: 10.12153/j.issn.1674-991X.20230690
Citation: CHEN H F,YU B P,LU X X,et al.Phytotoxic effects and environmental risk assessment of petunia hybrida irrigated with reclaimed water from the chip industry[J].Journal of Environmental Engineering Technology,2024,14(3):921-932 doi: 10.12153/j.issn.1674-991X.20230690

芯片行业再生水灌溉矮牵牛的植物毒理效应及环境风险评价

doi: 10.12153/j.issn.1674-991X.20230690
详细信息
    作者简介:

    陈鸿芳(1986—),女,博士,主要从事环境管理、固体废物处理技术研究,530126473@qq.com

    通讯作者:

    余波平(1981—),男,高级工程师,主要从事固体废物管理、水处理技术研究,371465514@qq.com

  • 中图分类号: X76,X173

Phytotoxic effects and environmental risk assessment of petunia hybrida irrigated with reclaimed water from the chip industry

  • 摘要:

    芯片行业废水的再生利用对减少水环境污染、缓解水资源短缺、推动行业绿色发展具有重要意义。为明确芯片行业再生水灌溉对植物的毒理效应,采用矮牵牛作为模型生物,分析2种再生水灌溉期间其生长形态及对总蛋白、叶绿素、抗氧化系统和能量系统标志物的响应特征,基于第二代综合生物标志物响应指数(IBRv2)法评估再生水灌溉的环境风险。结果表明:2种再生水灌溉期间未对矮牵牛的生长形态产生明显不良影响;灌溉中期(9 d)矮牵牛总蛋白、叶绿素均被显著诱导,随后诱导作用减弱,抑制作用开始显现;灌溉中长期(9~15 d)矮牵牛的抗氧化标志物以抑制效应为主,但机体未出现明显的氧化损伤;灌溉期间矮牵牛能量系统标志物的响应规律无明显的一致性。芯片行业再生水灌溉矮牵牛的平均IBRv2为0.85~1.72,环境风险水平较低,但因再生水仍含有高浓度的氯离子和溶解性总固体(TDS),可选择敏感的生物标志物组合谷氨酸脱氢酶、丙酮酸激酶、丙二醛(MDA)或超氧化物歧化酶、MDA对环境风险进行监测和管控。建议进一步研发可有效降低芯片行业再生水中氯离子和TDS浓度的处理工艺,以保障芯片行业再生水回用于绿化灌溉的生态环境安全。

     

  • 图  1  灌溉20 d后矮牵牛的生长形态

    Figure  1.  Growth and morphology of petunia hybrida after 20 days of irrigation

    图  2  再生水灌溉对矮牵牛总蛋白含量的影响

    注: *表示差异显著水平为P<0.05, **表示差异显著水平为P<0.01,***表示差异显著水平为P<0.001。全文同。

    Figure  2.  Effects of reclaimed water irrigation on the total protein content of petunia hybrida

    图  3  再生水灌溉对矮牵牛叶绿素的影响

    Figure  3.  Effects of reclaimed water irrigation on chlorophyll of petunia hybrida

    图  4  矮牵牛抗氧化生物标志物的响应

    Figure  4.  Response of antioxidant biomarkers in petunia hybrida

    图  5  矮牵牛能量代谢生物标志物的响应

    Figure  5.  Response of energy metabolism biomarkers in petunia hybrida

    图  6  基于矮牵牛IBRv2的环境风险评估

    Figure  6.  Environmental risk assessment based on IBRv2 of petunia hybrida

    表  1  再生水的主要风险因子

    Table  1.   Major risk factors of reclaimed water mg/L 

    编号 溶解性总固体
    (TDS)浓度
    氯离子浓度
    RW1 6680 2 041
    RW2 5920 3 051
    GB/T 25499—2010限值 ≤1 000 ≤250
    下载: 导出CSV

    表  2  矮牵牛生物标志物Spearman相关性分析

    Table  2.   Spearman correlation analysis of biomarkers in petunia hybrida

    生物标志物 SOD CAT GSH-PX MDA PGK ATPase PK GR GDH Chl
    T-AOCRW10.724**0.823**0.785**0.976***0.851***0.769**0.909***0.845***0.783**0.109
    RW20.603*0.964***0.704*0.793**0.1030.672*0.984***0.2150.874***0.191
    TW0.605*0.782**0.949***0.909***0.5120.810**0.782**0.941***0.1510.461
    SODRW10.2040.3040.815**0.3980.865***0.630*0.2500.590*0.388
    RW20.598*0.641*0.859***−0.1680.712**0.464−0.3420.888***−0.654*
    TW0.0390.3260.776**−0.230.662*0.0080.794**−0.614*0.072
    CATRW10.858***0.712**0.875***0.3780.767**0.994***0.619*−0.173
    RW20.857***0.873***0.3440.821**0.927***0.4000.805**0.136
    TW0.914***0.647*0.931***0.3560.995***0.633*0.731**0.257
    GSH-PXRW10.778**0.992***0.2260.931***0.814**0.903***0.342
    RW20.934***0.618*0.990***0.605*0.4990.626*−0.204
    TW0.777**0.733**0.703*0.925***0.808**0.4190.515
    MDARW10.843***0.758**0.942***0.727**0.863***0.039
    RW20.3000.954***0.679*0.1790.846***−0.354
    TW0.3410.641*0.611*0.990***0.0130.097
    PGKRW10.3330.959***0.843***0.915***0.320
    RW20.5540.0840.931***−0.2020.190
    TW0.0630.934***0.3150.924***0.166
    ATPaseRW10.5070.4520.359−0.078
    RW20.5590.4040.654*−0.315
    TW0.3920.739**−0.3040.765**
    PKRW10.748**0.967***0.445
    RW20.2550.798**0.352
    TW0.608*0.729**0.334
    GRRW10.581*−0.233
    RW2−0.2120.527
    TW−0.0380.219
    GDHRW10.646*
    RW2−0.254
    TW−0.053
    下载: 导出CSV
  • [1] 曾岭岭. 深圳市工业污水处理及回用研究[D]. 贵阳: 贵州大学, 2007.
    [2] 汪焕心. 工业污水再生利用是企业治污、节水的有效途径[J]. 广州化工,2012,40(13):1-2. doi: 10.3969/j.issn.1001-9677.2012.13.002
    [3] 郭宇杰, 郭祎阁, 王学超, 等. 城市再生水回用途径安全性浅析[J]. 华北水利水电学院学报,2013,34(2):5-7.

    GUO Y J, GUO Y G, WANG X C, et al. Safety analysis of the way of city reclaimed water reuse[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2013,34(2):5-7.
    [4] 孟婷婷, 董月群, 闻丞, 等. 生物多样性导向的再生水补给型城市河道水生态修复效果[J]. 环境工程技术学报,2023,13(4):1552-1561. doi: 10.12153/j.issn.1674-991X.20221067

    MENG T T, DONG Y Q, WEN C, et al. Biodiversity-oriented water ecological restoration effect in urban river with reclaimed water supply[J]. Journal of Environmental Engineering Technology,2023,13(4):1552-1561. doi: 10.12153/j.issn.1674-991X.20221067
    [5] AL-LAHHAM O, EL ASSI N M, FAYYAD M. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit[J]. Agricultural Water Management,2003,61(1):51-62. doi: 10.1016/S0378-3774(02)00173-7
    [6] 陈鸿芳, 刘洋, 张国斌, 等. 某芯片企业废水再生回用于绿化灌溉的风险因子识别研究[J]. 广东化工,2022,49(21):142-145. doi: 10.3969/j.issn.1007-1865.2022.21.046

    CHEN H F, LIU Y, ZHANG G B, et al. Research on risk factor identification of the greenland irrigated with reclaimed wastewater from a chip company[J]. Guangdong Chemical Industry,2022,49(21):142-145. doi: 10.3969/j.issn.1007-1865.2022.21.046
    [7] GORI R, FERRINI F, NICESE F P, et al. Effect of reclaimed wastewater on the growth and nutrient content of three landscape shrubs[J]. Journal of Environmental Horticulture,2000,18(2):108-114. doi: 10.24266/0738-2898-18.2.108
    [8] HARIVANDI M A. Irrigating turfgrass and landscape plants with municipal recycled water[J]. Acta Horticulturae,2000,537:697-703.
    [9] 韩洋, 齐学斌, 李平, 等. 再生水和清水不同灌水水平对土壤理化性质及病原菌分布的影响[J]. 灌溉排水学报,2018,37(8):32-38.

    HAN Y, QI X B, LI P, et al. Effects of the amount of irrigation with reclaimed wastewater on soil properties and distribution of pathogenic bacteria[J]. Journal of Irrigation and Drainage,2018,37(8):32-38.
    [10] JORDAN L, DEVITT D, MORRIS R, et al. Foliar damage to ornamental trees sprinkler-irrigated with reuse water[J]. Irrigation Science,2001,21(1):17-25. doi: 10.1007/s00271-001-0050-y
    [11] MENZAL C, BROOMHALL P, GASH M. Extra nitrogen needed for parks, gardens and sporting fields irrigated with tertiary effluent[J]. Australasian Parks and Leisure,2002,5:42-44.
    [12] 中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978.
    [13] HUMPHRIES E C, WHEELER A W. The physiology of leaf growth[J]. Annual Review of Plant Physiology,1963,14:385-410. doi: 10.1146/annurev.pp.14.060163.002125
    [14] GONG C M, BAI J, DENG J M, et al. Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability[J]. Plant Ecology,2011,212(4):675-687. doi: 10.1007/s11258-010-9854-2
    [15] MATTOS J J, SIEBERT M N, BAINY A C D. Integrated biomarker responses: a further improvement of IBR and IBRv2 indexes to preserve data variability in statistical analyses[J]. Environmental Science and Pollution Research,2024,31(1):871-881.
    [16] 贺志理, 王洪春. 盐胁迫下苜蓿中盐蛋白的诱导产生[J]. 植物生理学报,1991,17(1):71-79. doi: 10.3321/j.issn:1671-3877.1991.01.015

    HE Z L, WANG H C. The emergence of salt-induced proteins in alfalfa under NaCl stress[J]. Physiology and Molecular Biology of Plants,1991,17(1):71-79. doi: 10.3321/j.issn:1671-3877.1991.01.015
    [17] 王颖, 杜荣骞, 赵素然. 不同NaCl处理条件诱导盐胁迫蛋白的效果[J]. 南开大学学报(自然科学版),1997,30(4):14-20.

    WANG Y, DU R Q, ZHAO S R. The effects of different NaCl treatment on salt-stress proteins[J]. Journal of Nankai University,1997,30(4):14-20.
    [18] SINGH N K, HANDA A K, HAEGAWA P M, et al. Electrophoretic protein patterns in cultured cells of tobacco adapted to NaCl[J]. Plant Physiol,1983,72(Suppl):94-95.
    [19] 马翠兰, 刘星辉, 潘锦山, 等. 盐胁迫对坪山柚、福橘幼苗叶片蛋白质合成的影响[J]. 福建农业大学学报,2005,34(4):450-453.

    MA C L, LIU X H, PAN J S, et al. Effects of salt stress on the protein synthesis in seedlings of Citrus grandis Osbeck and C. reticulata Blanco[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2005,34(4):450-453.
    [20] LOPEZ F, VANSUYT G, FOURCROY P, et al. Accumulation of a 22-kDa protein and its mRNA in the leaves of Raphanus sativus in response to salt stress or water deficit[J]. Physiologia Plantarum,1994,91(4):605-614. doi: 10.1111/j.1399-3054.1994.tb02995.x
    [21] ERICSON M C, ALFINITO S H. Proteins produced during salt stress in tobacco cell culture[J]. Plant Physiology,1984,74(3):506-509. doi: 10.1104/pp.74.3.506
    [22] 汪良驹, 王业遴, 刘友良. 盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系[J]. 江苏农业学报,1991,7(1):38-44.

    WANG L J, WANG Y L, LIU Y L. The possible relation between protein synthesis and accumulation of abscisic acid and free proline in fig leaves under salt stress[J]. Jiangsu Journal of Agricultural Sciences,1991,7(1):38-44.
    [23] 郭金耀, 杨晓玲. 矮牵牛耐盐生理特性研究[J]. 北方园艺,2011(4):88-90.

    GUO J Y, YANG X L. Study on salt-tolerant physiological characteristics of Petunia hybrida[J]. Northern Horticulture,2011(4):88-90.
    [24] 潘瑞炽. 植物生理学[M]. 6版. 北京: 高等教育出版社, 2008.
    [25] 罗国忠, 孙吉雄, 王齐. 中水浇灌对3种绿地植物若干生理指标的影响[J]. 亚热带植物科学,2009,38(2):26-29. doi: 10.3969/j.issn.1009-7791.2009.02.007

    LUO G Z, SUN J X, WANG Q. Influence of reclaimed water irrigation on several physiological indexes of three landscape plants[J]. Subtropical Plant Science,2009,38(2):26-29. doi: 10.3969/j.issn.1009-7791.2009.02.007
    [26] 杨有俊. 兰州地区再生水灌溉对绿地植物及土壤的影响研究[D]. 兰州: 兰州大学, 2013.
    [27] 张楠. 再生水灌溉绿地水质指标限值的试验研究[D]. 天津: 天津大学, 2005.
    [28] 杨晓玲, 郭金耀. 矮牵牛耐盐的形态结构研究[J]. 北方园艺,2011(15):113-115.

    YANG X L, GUO J Y. Study on salt-tolerant morphology of Petunia hybrida[J]. Northern Horticulture,2011(15):113-115.
    [29] 郭华. 铵态氮和硝态氮对矮牵牛生长发育及花瓣氨基酸代谢的影响[D]. 泰安: 山东农业大学, 2022.
    [30] 秦玉春, 邹涛, 张璇, 等. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应[J]. 环境工程技术学报,2023,13(3):1079-1087. doi: 10.12153/j.issn.1674-991X.20220380

    QIN Y C, ZOU T, ZHANG X, et al. Differential responses of five wetland plants and their root microbial communities under ofloxacin pollution stress[J]. Journal of Environmental Engineering Technology,2023,13(3):1079-1087. doi: 10.12153/j.issn.1674-991X.20220380
    [31] 刘硕, 周启星. 抗氧化酶诊断环境污染研究进展[J]. 生态学杂志,2008,27(10):1791-1798.

    LIU S, ZHOU Q X. Research advances in antioxidant enzymes for diagnosing environmental contamination[J]. Chinese Journal of Ecology,2008,27(10):1791-1798.
    [32] 陈帆, 潘玉英, 徐青霞, 等. 潮间带原油污染对泥蚶(Tegillarca granosa)抗氧化酶活性影响与综合生物标志物响应研究[J]. 环境科学研究,2022,35(12):2836-2846.

    CHEN F, PAN Y Y, XU Q X, et al. Effects of intertidal crude oil pollutionon on antioxidant enzyme activity of Tegillarca granosa and integrated biomarker response[J]. Research of Environmental Sciences,2022,35(12):2836-2846.
    [33] 魏爱丽, 白桦, 陈云昭, 等. 盐胁迫下大豆初生叶愈伤组织SOD活性及其同工酶变化的研究[J]. 大豆科学,1999,18(1):85-88. doi: 10.11861/j.issn.1000-9841.1999.01.0085

    WEI A L, BAI H, CHEN Y Z, et al. Studies on the changes of superoxide dismutase activity and its isozyme in primary leaves callus of soybean under salt stress[J]. Soybean Science,1999,18(1):85-88. doi: 10.11861/j.issn.1000-9841.1999.01.0085
    [34] 陈计芳. 盐胁迫下丛枝菌根真菌对小麦叶部蛋白组的影响[D]. 临汾: 山西师范大学, 2018.
    [35] 王文银, 高小刚, 司晓林, 等. 外源钙盐对盐胁迫下沙拐枣渗透调节和膜脂过氧化的影响[J]. 环境科学研究,2017,30(8):1230-1237.

    WANG W Y, GAO X G, SI X L, et al. Effects of exogenous calcium on osmotic adjustment and peroxidation of Calligonum mongolicum membrane under salt stress[J]. Research of Environmental Sciences,2017,30(8):1230-1237.
    [36] 姜岩. 重金属铜对菹草无菌苗的毒理学研究[D]. 南京: 南京师范大学, 2013.
    [37] 林源秀, 顾欣昕, 汤浩茹. 植物谷胱甘肽还原酶的生物学特性及功能[J]. 中国生物化学与分子生物学报,2013,29(6):534-542.

    LIN Y X, GU X X, TANG H R. Characteristics and biological functions of glutathione reductase in plants[J]. Chinese Journal of Biochemistry and Molecular Biology,2013,29(6):534-542.
    [38] 胡丽, 袁华. 植物丙酮酸激酶研究进展[J/OL]. 分子植物育种, 2023: 1-12. (2023-04-10). https://kns.cnki.net/kcms/detail/46.1068.S.20230407.1828.012.html.

    HU L, YUAN H. Advances in the study of pyruvate kinase in plants[J/OL]. Molecular Plant Breeding, 2023: 1-12. (2023-04-10). https://kns.cnki.net/kcms/detail/46.1068.S.20230407.1828.012.html.
    [39] 吴德, 吴忠道, 余新炳. 磷酸甘油酸激酶的研究进展[J]. 中国热带医学,2005,5(2):385-387. doi: 10.3969/j.issn.1009-9727.2005.02.100

    WU D, WU Z D, YU X B. Advance in the research of phosphoglycerate kinase[J]. China Tropical Medicine,2005,5(2):385-387. doi: 10.3969/j.issn.1009-9727.2005.02.100
    [40] 薄军, 郑榕辉, 陈晔, 等. 应用鱼类生物标志物和IBRv2监测与评价泉州湾石油类污染生物效应状况[J]. 应用海洋学学报,2016,35(3):380-390. doi: 10.3969/J.ISSN.2095-4972.2016.03.009

    BO J, ZHENG R H, CHEN Y, et al. Applying fish biomarkers and IBRv2 for monitoring and assessing biological effects of petroleum hydrocarbon pollution in Quanzhou Bay[J]. Journal of Applied Oceanography,2016,35(3):380-390. ⊗ doi: 10.3969/J.ISSN.2095-4972.2016.03.009
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  46
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-22

目录

    /

    返回文章
    返回